Dependence between Path Lengths and Size in Random Trees (joint with H.-H. Chern, H.-K. Hwang and R. Neininger)

Michael Fuchs

Institute of Applied Mathematics National Chiao Tung University

Hsinchu, Taiwan

Kraków, July 4, 2016

4 D F

 \rightarrow \rightarrow \rightarrow Michael Fuchs (NCTU) [Dependence in Random Trees](#page-80-0) Kraków, July 4, 2016 1/30

 QQ

Proposed by Muntz and Uzgalis in 1971.

 \leftarrow \Box

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

重

 2990

Proposed by Muntz and Uzgalis in 1971.

```
Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9
```
- 3

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

4 0 8

 2990

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

4 0 8

14.1

 QQ

画

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

4 日下

 \sim

 QQ

画

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

If permutations are equally likely \longrightarrow random m -ary search trees

- 3

ミメスミメ

4 ロ ▶ 4 母 ▶ 4

 299

Size, KPL, and NPL

• Size (or Storage Requirement)

Number of nodes holding keys. Only random if $m \geq 3$.

 S_n = size of a random m-ary search tree built from n keys.

4 日下

 $=$ Ω

 $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \vert \rangle$, $\langle \vert \bar{m} \rangle$, $\langle \vert \bar{m} \rangle$

Size, KPL, and NPL

• Size (or Storage Requirement)

Number of nodes holding keys. Only random if $m \geq 3$.

 S_n = size of a random m-ary search tree built from n keys.

• Key Path Length (KPL)

Sum of all key-distances to the root.

 $K_n =$ KPL of a random m -ary search tree built from n keys.

 $=$ Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Size, KPL, and NPL

• Size (or Storage Requirement)

Number of nodes holding keys. Only random if $m \geq 3$.

 S_n = size of a random m-ary search tree built from n keys.

• Key Path Length (KPL)

Sum of all key-distances to the root.

 $K_n =$ KPL of a random m -ary search tree built from n keys.

• Node Path Length (NPL)

Sum of all node-distances to the root.

 $N_n = \text{NPL}$ of a random m-ary search tree built from n keys.

KOD KARD KED KED B YOUR

Size: Mean

Knuth (1973):

$$
\mathbb{E}(S_n) \sim \phi n,
$$

where

$$
\phi:=\frac{1}{2(H_m-1)}
$$

and H_m are the Harmonic numbers.

- 19

 2990

メロメ メ都 メメ きょくきょ

Size: Mean

Knuth (1973):

$$
\mathbb{E}(S_n) \sim \phi n,
$$

where

$$
\phi:=\frac{1}{2(H_m-1)}
$$

and H_m are the Harmonic numbers.

Mahmoud and Pittel (1989):

$$
\mathbb{E}(S_n) = \phi(n+1) - \frac{1}{m-1} + \mathcal{O}(n^{\alpha-1}),
$$

where α is the real part of the second largest zero of

$$
\Lambda(z) = z(z+1)\cdots(z+m-2) - m!.
$$

 OQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Size: Phase Change for Variance

Mahmoud and Pittel (1989):

$$
\operatorname{Var}(S_n) \sim \begin{cases} C_S n, & \text{if } m \le 26; \\ F_1(\beta \log n) n^{2\alpha - 2}, & \text{if } m \ge 27, \end{cases}
$$

where $\lambda = \alpha + i\beta$ is the second largest zero of $\Lambda(z)$.

4 0 8

Size: Phase Change for Variance

Mahmoud and Pittel (1989):

$$
\operatorname{Var}(S_n) \sim \begin{cases} C_S n, & \text{if } m \le 26; \\ F_1(\beta \log n) n^{2\alpha - 2}, & \text{if } m \ge 27, \end{cases}
$$

where $\lambda = \alpha + i\beta$ is the second largest zero of $\Lambda(z)$.

Here, $F_1(z)$ is the periodic function

$$
F_1(z) = 2 \frac{|A|^2}{|\Gamma(\lambda)|^2} \left(-1 + \frac{m!(m-1)|\Gamma(\lambda)|^2}{\Gamma(2\alpha + m - 2) - m!\Gamma(2\alpha - 1)} \right) + 2\Re \left(\frac{A^2 e^{2iz}}{\Gamma(\lambda)^2} \left(-1 + \frac{m!(m-1)\Gamma(\lambda)^2}{\Gamma(2\lambda + m - 2) - m!\Gamma(2\lambda - 1)} \right) \right)
$$

with $A = 1/(\lambda(\lambda-1)\sum_{0 \leq j \leq m-2} \frac{1}{j+1}$ $\frac{1}{j+\lambda}$).

KOD KARD KED KED B YOUR

Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994)) For $3 \le m \le 26$, $S_n - \mathbb{E}(S_n)$ $\sqrt{\text{Var}(S_n)}$ $\stackrel{d}{\longrightarrow} N(0,1),$

where $N(0, 1)$ is the standard normal distribution.

 Ω

メ御き メミメ メミメン 差

4 D F

Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994)) For $3 \le m \le 26$. $S_n - \mathbb{E}(S_n)$ $\sqrt{\text{Var}(S_n)}$ $\stackrel{d}{\longrightarrow} N(0,1),$

where $N(0, 1)$ is the standard normal distribution.

Theorem (Chern & Hwang (2001)) For $m \geq 27$, $S_n - \mathbb{E}(S_n)$ $\sqrt{\text{Var}(S_n)}$ does not converge to a fixed limit law.

 QQ

イロメ イ何 メイヨメ イヨメーヨー

KPL: Moments

Mahmoud (1986):

$$
\mathbb{E}(K_n) = 2\phi n \log n + c_1 n + o(n),
$$

where c_1 is an explicitly computable constant.

- 19

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Mahmoud (1986):

$$
\mathbb{E}(K_n) = 2\phi n \log n + c_1 n + o(n),
$$

where c_1 is an explicitly computable constant.

Mahmoud (1992):

$$
\text{Var}(K_n) \sim C_K n^2,
$$

where

$$
C_K = 4\phi^2 \left(\frac{(m+1)H_m^{(2)} - 2}{m-1} - \frac{\pi^2}{6} \right)
$$

with $H_m^{(2)}=\sum_{1\leq j\leq m}1/j^2.$

4 0 8

Mahmoud (1986):

$$
\mathbb{E}(K_n) = 2\phi n \log n + c_1 n + o(n),
$$

where c_1 is an explicitly computable constant.

Mahmoud (1992):

$$
\text{Var}(K_n) \sim C_K n^2,
$$

where

$$
C_K = 4\phi^2 \left(\frac{(m+1)H_m^{(2)} - 2}{m-1} - \frac{\pi^2}{6} \right)
$$

with $H_m^{(2)}=\sum_{1\leq j\leq m}1/j^2.$

So, no phase change here for the variance!

4 D F

KPL: Limit Law

Theorem (Neininger & Rüschendorf (1999)) We have.

$$
\frac{K_n - \mathbb{E}(K_n)}{n} \stackrel{d}{\longrightarrow} K,
$$

where K is the unique solution of

$$
X \stackrel{d}{=} \sum_{1 \le r \le m} V_r X^{(r)} + 2\phi \sum_{1 \le r \le m} V_r \log V_r
$$

with $X^{(r)}$ an independent copy of X and

$$
V_r = U_{(r)} - U_{(r-1)},
$$

where $U_{(r)}$ is the $r\text{-}th$ order statistic of m i.i.d. uniform RVs.

 QQQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

 N_n = sum of all node-distances in an m-search tree built from n keys.

- 로

 2990

イロト イ部 トイヨ トイヨト

 N_n = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

$$
\mathbb{E}(N_n) = 2\phi^2 n \log n + c_2 n + o(n),
$$

where c_2 is an explicitly computable constant.

- 3

 Ω

 $A \oplus B$ $A \oplus B$ $A \oplus B$

4 0 8

 N_n = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

$$
\mathbb{E}(N_n) = 2\phi^2 n \log n + c_2 n + o(n),
$$

where c_2 is an explicitly computable constant.

We have,

$$
\begin{cases}\nS_n \stackrel{d}{=} S_{I_1}^{(1)} + \dots + S_{I_m}^{(m)} + 1, \\
N_n \stackrel{d}{=} N_{I_1}^{(1)} + \dots + N_{I_m}^{(m)} + S_{I_1}^{(1)} + \dots + S_{I_m}^{(m)}.\n\end{cases}
$$

 Ω

イロト イ何 トイヨト イヨト ニヨー

 N_n = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

$$
\mathbb{E}(N_n) = 2\phi^2 n \log n + c_2 n + o(n),
$$

where c_2 is an explicitly computable constant.

We have,

$$
\begin{cases}\nS_n \stackrel{d}{=} S_{I_1}^{(1)} + \dots + S_{I_m}^{(m)} + 1, \\
N_n \stackrel{d}{=} N_{I_1}^{(1)} + \dots + N_{I_m}^{(m)} + S_{I_1}^{(1)} + \dots + S_{I_m}^{(m)}.\n\end{cases}
$$

So, one expects a strong positive dependence between S_n and $N_n!$

KOD KARD KED KED E VAN

Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger) We have,

$$
Cov(S_n, N_n) \sim \begin{cases} C_R n \log n, & \text{if } 3 \le m \le 13; \\ \phi F_2(\beta \log n) n^{\alpha}, & \text{if } m \ge 14, \end{cases}
$$

where C_R is a constant and $F_2(z)$ is a periodic function. Moreover,

 $\text{Var}(N_n) \sim \phi^2 C_K n^2$.

 Ω

K ロ X K (日) X X 정 X X 정 X X 정 ...

Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger) We have,

$$
Cov(S_n, N_n) \sim \begin{cases} C_R n \log n, & \text{if } 3 \le m \le 13; \\ \phi F_2(\beta \log n) n^{\alpha}, & \text{if } m \ge 14, \end{cases}
$$

where C_R is a constant and $F_2(z)$ is a periodic function. Moreover,

$$
Var(N_n) \sim \phi^2 C_K n^2.
$$

Thus (!),

$$
\rho(S_n, N_n) \begin{cases} \longrightarrow 0, & \text{if } 3 \le m \le 26; \\ \sim \frac{F_2(\beta \log n)}{\sqrt{C_K F_1(\beta \log n)}}, & \text{if } m \ge 27. \end{cases}
$$

 Ω

Size and NPL: Correlation (ii)

Periodic function of $\rho(S_n, N_n)$ for $m = 27, 54, \ldots, 270$.

Michael Fuchs (NCTU) [Dependence in Random Trees](#page-0-0) Kraków, July 4, 2016 11 / 30

イロト イ押ト イヨト イヨト

 299

造

Pearson: for RVs X and Y

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Measures linear dependence between X and $Y!$

 \equiv 990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Pearson: for RVs X and Y

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Measures linear dependence between X and $Y!$

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total correlation, dual total correlation, etc.

- 3

 Ω

Pearson: for RVs X and Y

$$
\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Measures linear dependence between X and $Y!$

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total correlation, dual total correlation, etc.

Question: Can our counterintuitive result for $\rho(S_n, N_n)$ be ascribed to the weakness of Pearson's correlation coefficient?

Pearson: for RVs X and Y

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}.
$$

Measures linear dependence between X and $Y!$

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total correlation, dual total correlation, etc.

Question: Can our counterintuitive result for $\rho(S_n, N_n)$ be ascribed to the weakness of Pearson's correlation coefficient? NO!

Size and NPL: Limit Law for $3 \le m \le 26$

Theorem (Chern, F., Hwang, Neininger)

Consider

$$
Q_n = (S_n, N_n).
$$

Then,

$$
Cov(Q_n)^{-1/2}\Big(Q_n - \mathbb{E}(Q_n)\Big) \stackrel{d}{\longrightarrow} \Big(N, C_K^{-1/2}K\Big),\,
$$

where N has a standard normal distribution.

Moreover, N and K are independent!

 Ω

イロト 不優 ト 不差 ト 不差 トー 差

Size and NPL: Limit Law for $3 \le m \le 26$

Theorem (Chern, F., Hwang, Neininger)

Consider

$$
Q_n = (S_n, N_n).
$$

Then,

$$
Cov(Q_n)^{-1/2}\Big(Q_n - \mathbb{E}(Q_n)\Big) \stackrel{d}{\longrightarrow} \Big(N, C_K^{-1/2}K\Big),\,
$$

where N has a standard normal distribution.

Moreover, N and K are independent!

Thus, asymptotic independence for $3 \le m \le 26$ is also observed in the bivariate limit law!

Size and NPL: Limit Law for $m \geq 27$

Theorem (Chern, F., Hwang, Neininger)

Consider

$$
Y_n = \left(\frac{S_n - \phi n}{n^{\alpha - 1}}, \frac{N_n - \mathbb{E}(N_n)}{n}\right).
$$

Then,

$$
\ell_2(Y_n, (\Re(n^{i\beta}\Lambda), \phi K)) \longrightarrow 0,
$$

where ℓ_2 is the minimal L_2 -metric and Λ is the unique solution of

$$
W \stackrel{d}{=} \sum_{1 \le r \le m} V_r^{\lambda - 1} W^{(r)}
$$

with $W^{(r)}$ independent copies of $W.$

画

 QQ

イロト イ押ト イヨト イヨト

Size and KPL

Same results hold for size and KPL, e.g.,

$$
\rho(S_n, K_n) \begin{cases} \longrightarrow 0, & \text{if } 3 \le m \le 26; \\ \sim \rho(S_n, N_n), & \text{if } m \ge 27. \end{cases}
$$

Size and KPL

Same results hold for size and KPL, e.g.,

$$
\rho(S_n, K_n) \begin{cases} \longrightarrow 0, & \text{if } 3 \le m \le 26; \\ \sim \rho(S_n, N_n), & \text{if } m \ge 27. \end{cases}
$$

Theorem (Chern, F., Hwang, Neininger) We have $\rho(K_n, N_n) \sim 1$ and

$$
||N_n - \phi K_n - (\mathbb{E}(N_n - \phi K_n))||_2 = o(n).
$$

In particular,

$$
\left(\frac{K_n-\mathbb{E}(K_n)}{n},\frac{N_n-\mathbb{E}(N_n)}{n}\right)\stackrel{d}{\longrightarrow}(K,\phi K).
$$

 \Rightarrow

 299

イロト イ部 トメ ヨ トメ ヨト

Proposed by René de la Briandais in 1959.

- 196

 2990

イロト イ部 トメ ヨ トメ ヨト
Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

4 日下

 298

 \equiv

Proposed by René de la Briandais in 1959.

 \Box

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 8

G.

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 8

ヨメ メヨメ

目

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

4 0 8

 \triangleright \rightarrow \Rightarrow

目

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

 \leftarrow

 \mathbf{p} 一本 重 下 目

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

 \rightarrow \equiv \rightarrow

目

4.0.3

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

 \rightarrow \equiv \rightarrow

目

4.0.3

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

G.

 Ω

4 日下

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p .

- 30

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

4 0 8

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p .

- $p = 1/2$: symmetric trie;
- \bullet $p \neq 1/2$: asymmetric trie.

Two types of nodes:

- Internal nodes: only used for branching;
- External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p .

- $p = 1/2$: symmetric trie;
- \bullet $p \neq 1/2$: asymmetric trie.

Question: correlation between size and path-length in random tries?

Size

Number of internal nodes.

 \equiv 990

イロト イ部 トイヨ トイヨト

Size

Number of internal nodes.

External Path Length (EPL)

Sum of all distances between external nodes and root.

4 0 8

 \equiv Ω

Size

Number of internal nodes.

External Path Length (EPL)

Sum of all distances between external nodes and root.

• Internal Path Length (IPL)

Sum of all distances between internal nodes and root.

 \equiv

 Ω

医单位 医单位

4 D F

Size

Number of internal nodes.

External Path Length (EPL)

Sum of all distances between external nodes and root.

• Internal Path Length (IPL)

Sum of all distances between internal nodes and root.

We again use S_n, K_n, N_n and

K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め&企

We use the following notation:

- 로스

 OQ

→ 老人 + 差人

∢ ロ ▶ イ 伊 ▶

We use the following notation:

 \bullet Entropy: $h = -p \log p - q \log q$;

 $E = 990$

メロト メ都 トメ 君 トメ 君 ト

We use the following notation:

- \bullet Entropy: $h = -p \log p q \log q$;
- If $\log p / \log q \in \mathbb{Q}$, then

$$
\frac{\log p}{\log q} = \frac{r}{\ell}, \quad \gcd(r,\ell) = 1.
$$

4 日下

 \leftarrow \leftarrow \leftarrow

[K 플 K X 플 K 및 L YO Q O

and

We use the following notation:

 \bullet Entropy: $h = -p \log p - q \log q$;

• If $\log p / \log q \in \mathbb{Q}$, then

$$
\frac{\log p}{\log q} = \frac{r}{\ell}, \qquad \gcd(r, \ell) = 1.
$$

$$
\chi_k = \frac{2rk\pi i}{\log p}, \qquad (k \in \mathbb{Z}).
$$

4 日下

4 同 下

STATE

 OQ

We use the following notation:

- \bullet Entropy: $h = -p \log p q \log q$;
- If $\log p / \log q \in \mathbb{Q}$, then

$$
\frac{\log p}{\log q} = \frac{r}{\ell}, \qquad \gcd(r, \ell) = 1.
$$

and

$$
\chi_k = \frac{2rk\pi i}{\log p}, \qquad (k \in \mathbb{Z}).
$$

• For a sequence g_k :

$$
\mathscr{F}[g](z) = \begin{cases} \sum_{k \in \mathbb{Z}} g_k z^{-\chi_k}, & \text{if } \log p / \log q \in \mathbb{Q}; \\ g_0, & \text{if } \log p / \log q \notin \mathbb{Q}. \end{cases}
$$

4 同 下

4 0 8

医心室 医心室 医心室

Means and Variances

イロト イ部 トイヨ トイヨト

 \equiv 990

Means and Variances

Note that

$$
N_n \approx S_n \frac{\log n}{h}
$$

and for $p \neq q$

$$
Var(D_n) \sim \frac{Var(K_n)}{n}.
$$

造

 QQ

イロト イ部 トイヨ トイヨト

• Rice Method

Exercise 54 in Section 5.2.2 of Knuth's book. Developed into a systematic tool by Flajolet and Sedgewick.

4 0 8

 \equiv

 Ω

• Rice Method

Exercise 54 in Section 5.2.2 of Knuth's book. Developed into a systematic tool by Flajolet and Sedgewick.

• Two-stage Approach

Introduced by Jacquet and Régnier. Further developed by Jacquet and Szpankowski.

4 0 8

目

 QQ

• Rice Method

Exercise 54 in Section 5.2.2 of Knuth's book. Developed into a systematic tool by Flajolet and Sedgewick.

Two-stage Approach

Introduced by Jacquet and Régnier. Further developed by Jacquet and Szpankowski.

• Poisson Variance and Covariance

F., Hwang and Zacharovas.

4 D F

 QQ

÷

• Rice Method

Exercise 54 in Section 5.2.2 of Knuth's book. Developed into a systematic tool by Flajolet and Sedgewick.

Two-stage Approach

Introduced by Jacquet and Régnier. Further developed by Jacquet and Szpankowski.

• Poisson Variance and Covariance

F., Hwang and Zacharovas.

Other Approaches

Elementary (Schachinger), probabilistic (Devroye, Janson, etc.)

∢ □ ▶ ⊣ n □ ▶

 Ω

Size: Variance

Theorem (Régnier & Jacquet (1989); Kirschenhofer & Prodinger (1991); F., Hwang, Zacharovas (2014))

We have.

$$
\text{Var}(S_n) \sim \mathscr{F}[g^{(1)}](n)n,
$$

where

$$
g_k^{(1)} = \frac{\chi_k \Gamma(-1 + \chi_k)}{h} \left(1 - \frac{\chi_k + 3}{2^{1 + \chi_k}}\right)
$$

$$
- \frac{1}{h^2} \sum_{j \in \mathbb{Z}} \Gamma(\chi_j + 1) \Gamma(\chi_{k-j} + 1)
$$

$$
- \frac{2}{h} \sum_{j \ge 1} \frac{(-1)^j (j + 1 + \chi_k) \Gamma(j + \chi_k) (p^{j+1} + q^{j+1})}{(j-1)!(j+1)(1 - p^{j+1} - q^{j+1})}.
$$

 \equiv

 299

イロト イ部 トイヨ トイヨト

Size and NPL: Variances and Covariance

Theorem (F., Hwang, Zacharovas (2014))
\nWe have,
\n
$$
Var(S_n) \sim \mathcal{F}[g^{(1)}](n)n,
$$
\nand
\n
$$
Cov(S_n, N_n) \sim \mathcal{F}[g^{(1)}](n) \frac{n \log n}{h}
$$
\nand
\n
$$
Var(N_n) \sim \mathcal{F}[g^{(1)}](n) \frac{n \log^2 n}{h^2}.
$$

重 OQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Size and NPL: Variances and Covariance

Theorem (F., Hwang, Zacharovas (2014))
\nWe have,
\n
$$
Var(S_n) \sim \mathscr{F}[g^{(1)}](n)n,
$$
\nand
\n
$$
Cov(S_n, N_n) \sim \mathscr{F}[g^{(1)}](n) \frac{n \log n}{h}
$$
\nand
\n
$$
Var(N_n) \sim \mathscr{F}[g^{(1)}](n) \frac{n \log^2 n}{h^2}.
$$
\nCorollary
\nWe have,
\n
$$
\rho(S_n, N_n) \longrightarrow 1.
$$

Michael Fuchs (NCTU) [Dependence in Random Trees](#page-0-0) Kraków, July 4, 2016 23 / 30

 \equiv 990

イロト イ部 トメ ヨ トメ ヨト

Size and NPL: Limit Law

Theorem (F. & Lee (2015))

We have,

$$
\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}}, \frac{N_n - \mathbb{E}(N_n)}{\sqrt{\text{Var}(N_n)}}\right) \xrightarrow{d} \mathcal{N}(0, E_2),
$$

where E_2 is the 2×2 unit matrix

$$
E_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.
$$

- 로

 2980

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$

4 0 8

Size and NPL: Limit Law

Theorem (F. & Lee (2015)) We have. $\int S_n - \mathbb{E}(S_n)$ $\sqrt{\text{Var}(S_n)}$ $\sum_{n} \frac{N_n - \mathbb{E}(N_n)}{(\overline{N_n} - \mathbb{E}(N_n))}$ $\sqrt{\text{Var}(N_n)}$ $\Big\} \stackrel{d}{\longrightarrow} \mathcal{N}(0, E_2),$ where E_2 is the 2×2 unit matrix $E_2 = \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}.$

NPL was also investigated by Nguyen-The (2004) in his PhD-thesis, but his result is incorrect.

 Ω

K ロ X - 제 P X - 제 파 X - 파 파 파

Size and NPL: Limit Law

Theorem (F. & Lee (2015)) We have. $\int S_n - \mathbb{E}(S_n)$ $\sqrt{\text{Var}(S_n)}$ $\sum_{n} \frac{N_n - \mathbb{E}(N_n)}{(\overline{N_n} - \mathbb{E}(N_n))}$ $\sqrt{\text{Var}(N_n)}$ $\Big\} \stackrel{d}{\longrightarrow} \mathcal{N}(0, E_2),$ where E_2 is the 2×2 unit matrix $E_2 = \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}.$

NPL was also investigated by Nguyen-The (2004) in his PhD-thesis, but his result is incorrect.

Question: same result for size and KPL?

Size and KPL: Covariance

Theorem (F. & Hwang)

We have,

$$
Cov(S_n, K_n) \sim \mathscr{F}[g^{(2)}](n)n,
$$

where

$$
g_k^{(2)} = \frac{\Gamma(\chi_k)}{h} \left(1 - \frac{\chi_k + 2}{2\chi_{k+1}} \right)
$$

-
$$
\frac{1}{h^2} \sum_{j \in \mathbb{Z} \setminus \{0\}} \Gamma(\chi_{k-j} + 1)(\chi_j - 1) \Gamma(\chi_j)
$$

-
$$
\frac{\Gamma(\chi_k + 1)}{h^2} \left(\gamma + 1 + \psi(\chi_k + 1) - \frac{p \log^2 p + q \log^2 q}{2h} \right)
$$

+
$$
\frac{1}{h} \sum_{j \ge 2} \frac{(-1)^j (2j^2 - 2j + 1 + (2j - 1)\chi_k) \Gamma(j - 1\chi_k) (p^j + q^j)}{j!(1 - p^j - q^j)}.
$$

重

 299

(ロ) (d)

Correlation Coefficient

 $p = q = 1/2$:

 \mathbb{B} is a \mathbb{B} is Michael Fuchs (NCTU) [Dependence in Random Trees](#page-0-0) Kraków, July 4, 2016 26 / 30

4 D F

∢母

 299

D.

Size and KPL: Correlation Coefficient

Theorem (F. & Hwang)

We have.

$$
\rho(S_n, K_n) \sim \begin{cases} 0, & \text{if } p \neq q; \\ F(n), & \text{if } p = q, \end{cases}
$$

where

$$
F(n) = \frac{\mathscr{F}[g^{(2)}](n)}{\sqrt{\mathscr{F}[g^{(1)}](n)\mathscr{F}[g^{(3)}](n)}}
$$

is a periodic function with

average value = $0.927\cdots$ and amplitude $\leq 1.5\times 10^{-5}$.
Size and KPL: Correlation Coefficient

Theorem (F. & Hwang)

We have.

$$
\rho(S_n, K_n) \sim \begin{cases} 0, & \text{if } p \neq q; \\ F(n), & \text{if } p = q, \end{cases}
$$

where

$$
F(n) = \frac{\mathscr{F}[g^{(2)}](n)}{\sqrt{\mathscr{F}[g^{(1)}](n)\mathscr{F}[g^{(3)}](n)}}
$$

is a periodic function with

average value = $0.927\cdots$ and amplitude $\leq 1.5\times 10^{-5}$.

Question: is now this behavior due to the weakness of Pearson's correlation coefficient?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @ Michael Fuchs (NCTU) [Dependence in Random Trees](#page-0-0) Kraków, July 4, 2016 27 / 30

Size and KPL: Correlation Coefficient

Theorem (F. & Hwang)

We have.

$$
\rho(S_n, K_n) \sim \begin{cases} 0, & \text{if } p \neq q; \\ F(n), & \text{if } p = q, \end{cases}
$$

where

$$
F(n) = \frac{\mathscr{F}[g^{(2)}](n)}{\sqrt{\mathscr{F}[g^{(1)}](n)\mathscr{F}[g^{(3)}](n)}}
$$

is a periodic function with

average value = $0.927\cdots$ and amplitude $\leq 1.5\times 10^{-5}$.

Question: is now this behavior due to the weakness of Pearson's correlation coefficient? Again NO!

Size and KPL: Limit Laws

Theorem (F. & Hwang)\n
$$
\bullet \ p \neq q:
$$
\n
$$
\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}}, \frac{K_n - \mathbb{E}(K_n)}{\sqrt{\text{Var}(K_n)}}\right) \xrightarrow{d} \mathcal{N}(0, I_2),
$$

where I_2 is the 2×2 identity matrix.

×.

重

 299

(ロ) (d)

Size and KPL: Limit Laws

Theorem (F. & Hwang)

$$
\bullet \quad p \neq q:
$$
\n
$$
\left(\frac{S_n - \mathbb{E}(S_n)}{\sqrt{\text{Var}(S_n)}}, \frac{K_n - \mathbb{E}(K_n)}{\sqrt{\text{Var}(K_n)}}\right) \xrightarrow{d} \mathcal{N}(0, I_2),
$$

where I_2 is the 2×2 identity matrix.

$$
\bullet \ \ p = q.
$$

$$
\Sigma_n^{-1/2}\Big(S_n - \mathbb{E}(S_n), K_n - \mathbb{E}(K_n)\Big) \stackrel{d}{\longrightarrow} \mathcal{N}_2(0, I_2),
$$

where Σ_n is the (asymptotic) covariance matrix:

$$
\Sigma_n := n \begin{pmatrix} \mathscr{F}[g^{(1)}](n) & \mathscr{F}[g^{(2)}](n) \\ \mathscr{F}[g^{(2)}](n) & \mathscr{F}[g^{(3)}](n) \end{pmatrix}.
$$

∍ ×

← ロ ▶ → イ 同

 QQ

E

Joint Distribution of S_n and K_n

Michael Fuchs (NCTU) [Dependence in Random Trees](#page-0-0) Kraków, July 4, 2016 29 / 30

→ 君下 → 君下

 299

活

(ロ) (d) →

Similar results for fringe-balanced binary search trees and quadtrees: H.-H. Chern, M. Fuchs, H.-K. Hwang, R. Neininger. Dependence and phase changes in random m -ary search trees, arxiv:1501.05135.

4 0 8

-∢ n D →

目

 QQ

- Similar results for fringe-balanced binary search trees and quadtrees: H.-H. Chern, M. Fuchs, H.-K. Hwang, R. Neininger. Dependence and phase changes in random m -ary search trees, arxiv:1501.05135.
- \bullet Similar results for m -ary tries, m -ary PATRICIA tries and bucket digital search trees.

- Similar results for fringe-balanced binary search trees and quadtrees: H.-H. Chern, M. Fuchs, H.-K. Hwang, R. Neininger. Dependence and phase changes in random m -ary search trees, arxiv:1501.05135.
- \bullet Similar results for m -ary tries, m -ary PATRICIA tries and bucket digital search trees.
- Better explanation of our results?