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Random m-ary Search Trees

Proposed by Muntz and Uzgalis in 1971.

Input: 6, 2, 4, 8, 7, 1, 5, 3, 10, 9

2, 6

1 4, 5 7, 8

3 9, 10

m = 3

2, 4, 6

31 5 7, 8, 9

10

m = 4

If permutations are equally likely −→ random m-ary search trees
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Size, KPL, and NPL

Size (or Storage Requirement)

Number of nodes holding keys. Only random if m ≥ 3.

Sn = size of a random m-ary search tree built from n keys.

Key Path Length (KPL)

Sum of all key-distances to the root.

Kn = KPL of a random m-ary search tree built from n keys.

Node Path Length (NPL)

Sum of all node-distances to the root.

Nn = NPL of a random m-ary search tree built from n keys.
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Size: Mean

Knuth (1973):
E(Sn) ∼ φn,

where

φ :=
1

2(Hm − 1)

and Hm are the Harmonic numbers.

Mahmoud and Pittel (1989):

E(Sn) = φ(n+ 1)− 1

m− 1
+O(nα−1),

where α is the real part of the second largest zero of

Λ(z) = z(z + 1) · · · (z +m− 2)−m!.
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Size: Phase Change for Variance

Mahmoud and Pittel (1989):

Var(Sn) ∼

{
CSn, if m ≤ 26;

F1(β log n)n2α−2, if m ≥ 27,

where λ = α+ iβ is the second largest zero of Λ(z).

Here, F1(z) is the periodic function

F1(z) = 2
|A|2

|Γ(λ)|2

(
−1 +

m!(m− 1)|Γ(λ)|2

Γ(2α+m− 2)−m!Γ(2α− 1)

)
+ 2<

(
A2e2iz

Γ(λ)2

(
−1 +

m!(m− 1)Γ(λ)2

Γ(2λ+m− 2)−m!Γ(2λ− 1)

))
with A = 1/(λ(λ− 1)

∑
0≤j≤m−2

1
j+λ).
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Size: Phase Change for Limit Law

Theorem (Mahmoud & Pittel (1989); Lew & Mahmoud (1994))

For 3 ≤ m ≤ 26,
Sn − E(Sn)√

Var(Sn)

d−→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Theorem (Chern & Hwang (2001))

For m ≥ 27,
Sn − E(Sn)√

Var(Sn)

does not converge to a fixed limit law.
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KPL: Moments

Mahmoud (1986):

E(Kn) = 2φn log n+ c1n+ o(n),

where c1 is an explicitly computable constant.

Mahmoud (1992):
Var(Kn) ∼ CKn2,

where

CK = 4φ2

(
(m+ 1)H

(2)
m − 2

m− 1
− π2

6

)

with H
(2)
m =

∑
1≤j≤m 1/j2.

So, no phase change here for the variance!
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KPL: Limit Law

Theorem (Neininger & Rüschendorf (1999))

We have,
Kn − E(Kn)

n

d−→ K,

where K is the unique solution of

X
d
=

∑
1≤r≤m

VrX
(r) + 2φ

∑
1≤r≤m

Vr log Vr

with X(r) an independent copy of X and

Vr = U(r) − U(r−1),

where U(r) is the r-th order statistic of m i.i.d. uniform RVs.
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Node Path Length (NPL)

Nn = sum of all node-distances in an m-search tree built from n keys.

Broutin and Holmgren (2012):

E(Nn) = 2φ2n log n+ c2n+ o(n),

where c2 is an explicitly computable constant.

We have, {
Sn

d
= S

(1)
I1

+ · · ·+ S
(m)
Im

+ 1,

Nn
d
= N

(1)
I1

+ · · ·+N
(m)
Im

+ S
(1)
I1

+ · · ·+ S
(m)
Im

.

So, one expects a strong positive dependence between Sn and Nn!
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Size and NPL: Correlation (i)

Theorem (Chern, F., Hwang, Neininger)

We have,

Cov(Sn, Nn) ∼

{
CRn log n, if 3 ≤ m ≤ 13;

φF2(β log n)nα, if m ≥ 14,
,

where CR is a constant and F2(z) is a periodic function. Moreover,

Var(Nn) ∼ φ2CKn2.

Thus (!),

ρ(Sn, Nn)

−→ 0, if 3 ≤ m ≤ 26;

∼ F2(β logn)√
CKF1(β logn)

, if m ≥ 27.
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Size and NPL: Correlation (ii)

Periodic function of ρ(Sn, Nn) for m = 27, 54, . . . , 270.
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Pearson’s Correlation Coefficient

Pearson: for RVs X and Y

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

Measures linear dependence between X and Y !

Refined correlation measures:

Distance correlation, Brownian covariance, mutual information, total
correlation, dual total correlation, etc.

Question: Can our counterintuitive result for ρ(Sn, Nn) be ascribed to the
weakness of Pearson’s correlation coefficient? NO!
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Size and NPL: Limit Law for 3 ≤ m ≤ 26

Theorem (Chern, F., Hwang, Neininger)

Consider
Qn = (Sn, Nn).

Then,

Cov(Qn)−1/2
(
Qn − E(Qn)

)
d−→
(
N,C

−1/2
K K

)
,

where N has a standard normal distribution.

Moreover, N and K are independent!

Thus, asymptotic independence for 3 ≤ m ≤ 26 is also observed in the
bivariate limit law!
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Size and NPL: Limit Law for m ≥ 27

Theorem (Chern, F., Hwang, Neininger)

Consider

Yn =

(
Sn − φn
nα−1

,
Nn − E(Nn)

n

)
.

Then,
`2(Yn, (<(niβΛ), φK)) −→ 0,

where `2 is the minimal L2-metric and Λ is the unique solution of

W
d
=

∑
1≤r≤m

V λ−1
r W (r)

with W (r) independent copies of W .
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Size and KPL

Same results hold for size and KPL, e.g.,

ρ(Sn,Kn)

{
−→ 0, if 3 ≤ m ≤ 26;

∼ ρ(Sn, Nn), if m ≥ 27.

Theorem (Chern, F., Hwang, Neininger)

We have ρ(Kn, Nn) ∼ 1 and

‖Nn − φKn − (E(Nn − φKn)) ‖2 = o(n).

In particular, (
Kn − E(Kn)

n
,
Nn − E(Nn)

n

)
d−→ (K,φK).
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Trie

Proposed by René de la Briandais in 1959.

Name from the word data retrieval (suggested by Fredkin).

Example:

0

1

0 1

1

0 1

0

1

0 1

0

011011
010101
101110
010000
101010
001100
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Notation and Random Model

Two types of nodes:

Internal nodes: only used for branching;

External nodes: nodes which hold data.

Random Model:

Bits are independent Bernoulli random variables with mean p.

p = 1/2: symmetric trie;

p 6= 1/2: asymmetric trie.

Question: correlation between size and path-length in random tries?
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Size, EPL, and IPL

Size

Number of internal nodes.

External Path Length (EPL)

Sum of all distances between external nodes and root.

Internal Path Length (IPL)

Sum of all distances between internal nodes and root.

We again use Sn,Kn, Nn and

EPL ! KPL;

IPL ! NPL.
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Some Notation

We use the following notation:

Entropy: h = −p log p− q log q;

If log p/ log q ∈ Q, then

log p

log q
=
r

`
, gcd(r, `) = 1.

and
χk =

2rkπi

log p
, (k ∈ Z).

For a sequence gk:

F [g](z) =

{∑
k∈Z gkz

−χk , if log p/ log q ∈ Q;

g0, if log p/ log q 6∈ Q.
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Means and Variances

Shape parameters 1
n(mean) ∼ 1

n(variance) ∼
Size Sn F [·](n) F [g(1)](n)

NPL Nn
E(Sn)
n

logn
h

Var(Sn)
n

(logn)2

h2

KPL Kn
logn
h + F [·](n)

pq log2 p
q

h2
· lognh + F [g(3)](n)

Depth Dn E(Dn) = E(Kn)
n Var(Dn) = Var(Kn)

n +O(1)

Note that

Nn ≈ Sn
log n

h

and for p 6= q

Var(Dn) ∼ Var(Kn)

n
.
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Main Approaches

Rice Method

Exercise 54 in Section 5.2.2 of Knuth’s book. Developed into a
systematic tool by Flajolet and Sedgewick.

Two-stage Approach

Introduced by Jacquet and Régnier. Further developed by Jacquet
and Szpankowski.

Poisson Variance and Covariance

F., Hwang and Zacharovas.

Other Approaches

Elementary (Schachinger), probabilistic (Devroye, Janson, etc.)
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Introduced by Jacquet and Régnier. Further developed by Jacquet
and Szpankowski.

Poisson Variance and Covariance

F., Hwang and Zacharovas.

Other Approaches

Elementary (Schachinger), probabilistic (Devroye, Janson, etc.)

Michael Fuchs (NCTU) Dependence in Random Trees Kraków, July 4, 2016 21 / 30



Main Approaches

Rice Method

Exercise 54 in Section 5.2.2 of Knuth’s book. Developed into a
systematic tool by Flajolet and Sedgewick.

Two-stage Approach
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Size: Variance

Theorem (Régnier & Jacquet (1989); Kirschenhofer & Prodinger (1991);
F., Hwang, Zacharovas (2014))

We have,
Var(Sn) ∼ F [g(1)](n)n,

where

g
(1)
k =

χkΓ(−1 + χk)

h

(
1− χk + 3

21+χk

)
− 1

h2

∑
j∈Z

Γ(χj + 1)Γ(χk−j + 1)

− 2

h

∑
j≥1

(−1)j(j + 1 + χk)Γ(j + χk)
(
pj+1 + qj+1

)
(j − 1)!(j + 1)(1− pj+1 − qj+1)

.
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Size and NPL: Variances and Covariance

Theorem (F., Hwang, Zacharovas (2014))

We have,
Var(Sn) ∼ F [g(1)](n)n,

and

Cov(Sn, Nn) ∼ F [g(1)](n)
n log n

h

and

Var(Nn) ∼ F [g(1)](n)
n log2 n

h2
.

Corollary

We have,
ρ(Sn, Nn) −→ 1.
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Size and NPL: Limit Law

Theorem (F. & Lee (2015))

We have, (
Sn − E(Sn)√

Var(Sn)
,
Nn − E(Nn)√

Var(Nn)

)
d−→ N (0, E2),

where E2 is the 2× 2 unit matrix

E2 =

(
1 1
1 1

)
.

NPL was also investigated by Nguyen-The (2004) in his PhD-thesis, but
his result is incorrect.

Question: same result for size and KPL?
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Size and KPL: Covariance

Theorem (F. & Hwang)

We have,
Cov(Sn,Kn) ∼ F [g(2)](n)n,

where

g
(2)
k =

Γ(χk)

h

(
1− χk + 2

2χk+1

)
− 1

h2

∑
j∈Z\{0}

Γ(χk−j + 1)(χj − 1)Γ(χj)

− Γ(χk + 1)

h2

(
γ + 1 + ψ(χk + 1)− p log2 p+ q log2 q

2h

)
+

1

h

∑
j≥2

(−1)j(2j2 − 2j + 1 + (2j − 1)χk)Γ(j − 1χk)(p
j + qj)

j!(1− pj − qj)
.
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Correlation Coefficient

p = q = 1/2:

ρ(Sn,Kn)
Cov(Sn,Kn)√

Var(Sn)(Var(Kn)+1.046)
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Size and KPL: Correlation Coefficient

Theorem (F. & Hwang)

We have,

ρ(Sn,Kn) ∼

{
0, if p 6= q;

F (n), if p = q,

where

F (n) =
F [g(2)](n)√

F [g(1)](n)F [g(3)](n)

is a periodic function with

average value = 0.927 · · · and amplitude ≤ 1.5× 10−5.

Question: is now this behavior due to the weakness of Pearson’s
correlation coefficient?

Again NO!
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Size and KPL: Limit Laws

Theorem (F. & Hwang)

p 6= q: (
Sn − E(Sn)√

Var(Sn)
,
Kn − E(Kn)√

Var(Kn)

)
d−→ N (0, I2),

where I2 is the 2× 2 identity matrix.

p = q:

Σ−1/2n

(
Sn − E(Sn),Kn − E(Kn)

)
d−→ N2(0, I2),

where Σn is the (asymptotic) covariance matrix:

Σn := n

(
F [g(1)](n) F [g(2)](n)

F [g(2)](n) F [g(3)](n)

)
.
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Joint Distribution of Sn and Kn

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

p = 0.4 p = 0.5 p = 0.6

p = 0.1 p = 0.2 p = 0.3
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Summary

trees ρ(Sn,Kn) ρ(Sn, Nn)

tries

{
p 6= q :→ 0
p = q : periodic

∼ 1

m-ary
search trees

{
3 ≤ m ≤ 26 :→ 0
m ≥ 27 : periodic

Similar results for fringe-balanced binary search trees and quadtrees:

H.-H. Chern, M. Fuchs, H.-K. Hwang, R. Neininger. Dependence and
phase changes in random m-ary search trees, arxiv:1501.05135.

Similar results for m-ary tries, m-ary PATRICIA tries and bucket
digital search trees.

Better explanation of our results?
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