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Analytic Combinatorics (i)

Combinatorialists use recurrence, generating functions, and
such transformations as the Vandermonde convolution; oth-
ers, to my horror, use contour integrals, differential equa-
tions, and other resources of mathematical analysis.

- John Riordan (1968).
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Analytic Combinatorics (ii)
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Outline of the Talk

1 Introduction

2 Biodiversity Indices

F. and Jin (2015). Equality of Shapley value and fair proportion index
in phylogenetic trees.

F. and Paningbatan (2019+). Correlation between Shapley values of
rooted phylogenetic trees under the beta-splitting model.

3 Group Pattern Formation of Social Animals

Drmota, F., Y.-W. Lee (2016). Stochastic analysis of the extra
clustering model for animal grouping.

F., C.-H. Lee, Paningbatan (2019+). Distributional analysis of the
extra clustering model with uniformly generated phylogenetic trees.
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Evolutionary or Phylogenetic tree (=PT)

Phylogenetic tree of size n: rooted, plane, unlabelled binary tree with n
external nodes (and consequently n− 1 internal nodes).
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Aldous β-splitting Model (i)

Let f be probability density on [0, 1] which is symmetric (i.e.
f(x) = f(1− x))

Throw n balls uniformly at random into [0, 1].

Split [0, 1] into two subintervals according to f ; if one subinterval
contains no ball repeat.

Recursively continue with the subintervals, where a subinterval [a, b]
is split at a+X(b− a) with X having distribution f .

Stop when a subinterval contains only one ball.

−→ This gives a probability distribution on PTs of size n.
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Aldous β-splitting Model (ii)

T . . . random PT.

Choose a β-distribution (β > −1):

f(x) =
Γ(2β + 2)

Γ2(β + 1)
xβ(1− x)β, x ∈ [0, 1].

Let πn,i be the probability that left subtree has size i. Then,

πn,i =
1

πn(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)

i!(n− i)! , 1 ≤ i ≤ n− 1,

where πn(β) is a suitable constant.

Note that the above expression makes also sense for −2 < β ≤ −1.
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Special Cases

β = 0: Yule-Harding model:

πn,i =
1

n− 1
, 1 ≤ i ≤ n− 1.

Is also generated by a continuous-time pure birth process..

β = −3/2: Uniform or PDA model:

πn,i =
Ci−1Cn−i−1

Cn−1
, 1 ≤ i ≤ n− 1,

where Cn =
(
2n
n

)
/(n+ 1) are the Catalan numbers.

β = −1: with Hn the harmonic numbers:

πn,i =
n

2Hn−1
· 1

i(n− i) , 1 ≤ i ≤ n− 1.

This model seems to have the best match with real trees.
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Lloyd Shapley

Lloyd Shapley
(1923-2016)

Shapley value:

Measure of importance of each
player in a cooperative game

−→ recently used as prioritization
tool of taxa in biodiversity
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Shapley Value and Fair Proportion Index

Let T be a PT and a a taxon (=leaf) of T .

Rooted Shapley Value SV
[r]
T (a):

SV
[r]
T (a) =

1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a})),

where PD(S) is the size of the ancestor tree of S.

Fair Proportion Index FPT (a):

FPT (a) =
∑
e

D−1e ,

where De the number of taxa below e.

Used (somehow arbitrarily) for EDGE of Existence conservation program!
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Correlation between SV[r] and FP

Hartmann (2013):
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SV[r] = FP

Assume a is in left subtree T` and |T`| = i.

Lemma

We have,

FPT (a) =
1

i
+ FPT`(a).

and

SV
[r]
T (a) =

1

i
+ SV

[r]
T`

(a)

Theorem (F. and Jin; 2015)

We have,
SV

[r]
T (a) = FPT (a).
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Modified Shapley Value

Which Shapley value did Hartmann use?

Modified Shapley Value S̃VT (a):

S̃VT (a) =
1

n!

∑
|S|≥2,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a})),

where PD(S) is as before.

Theorem (F. and Jin; 2015)

Under the PDA model and the Yule-Harding model,

lim
n→∞

ρ(S̃Vn,FPn) = 1,

where ρ denotes the correlation coefficient.
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Unrooted Shapley Value

It turned out that Hartmann used yet another Shapley value!

Unrooted Shapley Value SV
[u]
T (a):

SV
[u]
T (a) =

1

n!

∑
S,a∈S

(|S| − 1)!(n− |S|)!(PDT (S)− PDT (S \ {a})),

where PD(S) is the size of the Steiner tree of S.

Theorem (F. and Paningbatan; 2019+)

Under the β-splitting model with β > −1,

lim
n→∞

ρ(SV[u]
n ,FPn) = 1,

where ρ denotes the correlation coefficient.
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Outline of the Proof

Bounds for moments of additive shape parameters under the
β-splitting model.

For this, we study

an = 2

n−1∑
i=1

πn,iai + bn

for varying toll-sequence bn.

An expression for the difference:

SV
[u]
T (a)− FPT (a) = SV

[u]
T (a)− SV

[r]
T (a).

Using the above two steps to bound the correlation coefficient with a
bound which tends to 0.
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Master Theorems

Let an satisfy the recurrence from the last slide with β > −1.

Proposition

Assume that
bn = O(nγ logδ n)

for integers γ, δ ≥ 0. Then,

(i) if γ = 1, then an = O(n logδ+1 n);

(ii) if γ > 1, then an = O(nγ logδ n).

Proposition

If bn is non-negative and bn0 > 0 for at least one n0, then

bn = Ω(n).
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Bounds for Moments

Consider the additive shape parameters:

Sackin Index Sn: sum over all taxon-root distances;

Depth Dn: distance to root of a random taxon.

Corollary

For β > −1, we have

E(Sn) = O(n log n), E(S2
n) = O(n2 log2 n);

E(Dn) = O(log n), E(D2
n) = O(log2 n).

Corollary

For β > −1, we have
Var(FPn) = Ω(1).
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More Additive Shape Parameters

Two more additive shape parameters:

X
[i]
T : sum of all distances between the root and common ancestor of

sets of size i;

Y
[i]
T (a): sum of all distances between the common ancestors of a set

of size i and the set together with a.

We have,

X
[i]
T = X

[i]
T`

+X
[i]
Tr

+

(|T`|
i

)
+

(|Tr|
i

)
and

Y
[i]
T (a) =


Y

[i]
T`

(a) +X
[i]
Tr

+

(|Tr|
i

)
, if a ∈ T`;

Y
[i]
Tr

(a) +X
[i]
T`

+

(|T`|
i

)
, if a ∈ Tr.
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Difference between SV[u] and FP

Proposition

For a ∈ T`, we have

SV
[u]
T (a)− SV

[r]
T (a) =− 1

n
DT (a)

+
1

n!

|Tr|∑
i=1

i!(n− i− 1)!

(
X

[i]
Tr

+

(|Tr|
i

))

+
1

n!

|T`|−1∑
i=1

i!(n− i− 1)!Y
[i]
T`

(a).

Since FPT , DT (a), X
[i]
T , Y

[i]
T (a) can all be computed recursively, SV

[u]
T can

be computed efficiently.
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Does our Theorem extend to β = −1 (and beyond)?
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Figure 5: Numerical data for β = 0 (Yule-Harding model), β = −1/2 and β = −1. For each choice
of β and n (indicated at the top of the plots), five hundred random trees were generated and for each
of them a taxon was picked uniformly at random from the set of all taxa. For these random taxa, the
corresponding pair of unrooted Shapley value and fair proportion index was computed by the recursive
method from Section 3 and then plotted. Note that points with small fair proportion index tend to be
above the line y = x whereas points with large fair proportion index tend to be below the line y = x.
This is explained by (10) since the only negative term on the right hand side is also small in the former
case and large in the latter case.
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Phylogenetic Trees and Animal Grouping

Let the leaves represent social animals.

Describes the genetic relatedness of the animals.
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Animal Groups

Durand, Blum and François (2007):

Groups contain more likely animals which are genetically related.

−→ neutral model.

Clade of a leaf:

All leaves of the
tree rooted at the
parent.

Maximal Clades =
Groups
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# of Groups

Xn = # of groups

We have,

Xn
d
=

{
1, if In = 1 or In = n− 1,

XIn +X∗n−In , otherwise,

where X∗n is an independent copy of Xn.

Extra Clustering Model: 0 ≤ p < 1

We have,

Xn
d
=

{
1, with probability p

same as neutral model, otherwise.

For p = 0 this is the neutral model.
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Expected Number of Groups – YH Model

Theorem (Durand and François; 2010)

We have,

E(Xn) ∼



c(p)

Γ(2(1− p))n
1−2p, if p < 1/2;

log n

2
, if p = 1/2;

p

2p− 1
, if p > 1/2,

where

c(p) :=
1

e2(1−p)

∫ 1

0
(1− t)−2pe2(1−p)t

(
1− (1− p)t2

)
dt.
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Testing for the Neutral Model

Durand, Blum and François (2007):
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p = 0 – YH Model

Theorem (Lee; 2012)

We have,

Var(Xn) ∼ (1− e−2)2
4

n log n

and for k ≥ 3,

E(Xn − E(Xn))k ∼ (−1)k
2k

k − 2

(
1− e−2

4

)k
nk−1.

Theorem (Drmota, F., Lee; 2016)

We have,
Xn − E(Xn)√

Var(Xn)/2

d−→ N(0, 1).
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0 < p < 1/2 – YH model

Theorem (Drmota, F., Lee; 2016)

We have,
Xn

n1−2p
d−→ X,

with convergence of all moments.

Here, the law of X is the sum of a discrete law with mass p/(1− p) at 0
and a continuous law on [0,∞) with density

f(x) = −δ(p)1− 2p

1− p
∑
k≥0

δ(p)k

k!Γ(2(k + 1)p− k)
xk,

where

δ(p) =
(1− 2p)2Wp,(1−2p)/p (−2(1− p))

e2πip4p−1(1− p)2pMp,(1−2p)/p (−2(1− p)) .
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1/2 ≤ p < 1 – YH Model

Theorem (Drmota, F., Lee; 2016)

We have,

Xn
d−→ X,

with convergence of all moments for 1/2 < p < 1.

Here, X is the discrete
law with

E
(
uX
)

=
1−

√
1− 4p(1− p)u
2(1− p) .

Theorem (Drmota, F., Lee; 2016)

For p = 1/2, we have

E(Xk
n) ∼ k!J2k−1

(2k − 1)!22k−1
log2k−1 n, J2k−1 = (2k − 1)![z2k−1] tan(z).
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A Decomposition

Every PT can be decomposed as:

+
=

For the extra clustering model, one has to introduce weights!
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Two Generating Functions

Weighted binary trees: internal nodes are weighted by q := 1− p,

G(z) =
∑
n≥1

qn−1Cn−1z
n = zC(qz),

where C(z) = (1−
√

1− 4z)/(2z).

Maximal clades:

H(z) = z2 +
∑
n≥3

(pCn−1 + 2qCn−2)z
n

= z2 + pz(C(z)− 1− z) + 2qz2(C(z)− 1).

Lemma

We have, G(H(z)) = z(C(z)− 1)
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# of Groups – PDA Model

We have,

P(Xn = k) =
[ukzn]G(uH(z))

Cn−1
.

Theorem (F., Lee, Paningbatan; 2019+)

We have,

Xn
d−→ X := NB

(
1

2
,
3− 2p− p2

4

)
+ 1

with convergence of all moments.

Corollary

We have,

E(Xn) ∼ 5 + 2p+ p2

2 + 4p+ 2p2
.
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# of Groups of Size m – PDA Model

With am = pCm−1 + (2− δ2,m)qCm−2,

E(X [m]
n = k) =

[ukzn]G(am(u− 1)zm +H(z))

Cn−1
.

Theorem (F., Lee, Paningbatan; 2019+)

We have,

X [m]
n

d−→ X [m] := NB

(
1

2
,

42−mqam
(1 + p)2 + 42−mqam

)
with convergence of all moments.

Corollary

We have
∑

m≥2 E(X [m]) = E(X) + 1.
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Largest Groups Size – PDA Model (i)

For the largest group size Mn, we have

P(Mn = n− k) =
[zk]G′(H(z))[zn−k]H(z)

Cn−1
,

where 0 ≤ k < n/2.

Theorem (F., Lee, Paningbatan; 2019+)

We have,

n−Mn
d−→M,

where M has probability generating function (1 + p)/(2F (u/4)) with

F (u) =

√
r(u)− 2p(p− 2qu)

√
1− 4u,

where r(u) = 1− 2p+ 2p2 − 4(1− 2p)qu+ 4q2u2.
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Largest Group Size – PDA Model (ii)

In the limit theorem for Mn, moments do not converge.

Theorem (F., Lee, Paningbatan; 2019+)

We have,

E(Mn) = n− 2q

(1 + p)
√
π
n1/2 + o(n1/2)

and for ` ≥ 2,

E((Mn − E(Mn))`) ∼ (−1)`d`n
`−1/2,

where

d` =
q

(1 + p)
√
π

∫ 1/2

0
x`−3/2(1− x)−3/2dx.

Proof uses singularity analysis and Euler-Maclaurin summation formula.
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Summary and Open Problems

We studied the correlation coefficient of biodiversity indices.

We studied the extra clustering model when trees are generated by
the PDA model.

Our result shows that on average there is only a finite number of
groups all of which are small except one group which contains almost
all animals.

How about the number of groups of fixed size and largest group size
under the YH model?

Mean for number of groups of fixed size was studied by Durand and
François (2010). Refined results will appear in:

A. Paningbatan (2020). Three Combinatorial Topics Arising from
Phylogenetics, PhD thesis, in preparation.
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