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Abstract. We consider the diophantine approximation problem
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x−
p

q
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∣

≤
f(log q)

q2

where f is a fixed function satisfying suitable assumptions. Suppose
that x is randomly chosen in the unit interval. In a series of papers that
appeared in earlier issues of this journal, LeVeque raised the question
whether or not the central limit theorem holds for the solution set of
the above inequality (compare also with some work of Erdős). Here, we
are going to extend and solve LeVeque’s problem.

1. Introduction and Result

Suppose f is a positive real-valued function defined on the non-negative
real numbers satisfying the following conditions

f ↓ 0, ∑∞
k=1 f(k) =∞,(1)

∑n
k=1 f(k)k

−δ ¿ (
∑n

k=1 f(k))
1/2 ,(2)

∑n
k=1 f(k)

2 ¿ (
∑n

k=1 f(k))
1/2 ,(3)

where 0 < δ < 1/2.
We are concerned with the diophantine approximation problem

(4)

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ f(log q)

q2
.

According to a result of Szüsz [10] (which extends a famous result due to
Khintchine [4]), it is known that inequality (4) has infinitely many integer
solutions 〈p, q〉 subjected to the conditions

q > 0, q ≡ s mod r, s, r ∈ N

for almost all x ∈ [0, 1] (in the sense of Lebesgue measure which we are going
to denote by λ).
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We are interested in the statistical behavior of the following sequence of
random variables

Xn(x) := #{〈p, q〉|1 ≤ q ≤ n, q ≡ s mod r, p/q is a solution of (4)}
that encodes the number of solutions of (4) for a fixed x ∈ [0, 1].

In [5], LeVeque claimed that he had proved a central limit theorem for the
above sequence of random variables (actually, LeVeque considered a more
restrictive class of functions f and defined the random variables without the
restriction that denominators have to be in an arithmetic progression). This
result turned out to be wrong. In fact, LeVeque had proved a central limit
theorem under the additional restriction of p and q being coprime (as it was
observed by Erdős). Therefore, LeVeque wrote a second paper (see [6]) where
he once more tried to obtain the result he originally had in mind. Although
he could prove the strong law of large numbers even under much weaker
assumptions on f , he failed in proving the desired central limit theorem and
so, he had to leave this problem open.

LeVeque’s central limit theorem [5] with the additional restriction of p
and q being coprime was generalized a few years later by Philipp (see [8]) to
more or less to the setting introduced above. Furthermore in the same paper,
Philipp stated a theorem that apparently solved LeVeque’s problem and
outlined a proof. However, there is an uncorrectable mistake in this sketch
(to be more precise Lemma 3.3.1 on page 62 in [8] for the approximating
sequence of random variables η̃ν cannot hold because they have infinite
variance) and so, LeVeque’s problem remained to be unsolved.

The main result of this paper is the next theorem which extends (in the
flavor of Philipp) and finally gives an answer to LeVeque’s question.

Theorem 1. Set

F (n) :=
n
∑

k=1

f(log k)

k
.

Then, we have

lim
n−→∞

λ
[

Xn ≤ σ1F (n) + ω (σ2F (n) logF (n))
1/2
]

=
1√
2π

∫ ω

−∞
e−u

2/2du,

where

σ1 =
2

r
, σ2 =

12(s, r)ϕ(r)

π2rC(s, r)
,

and

C(s, r) = r2
∏

p|r

(

1− 1

p

)

∏

p| r
(s,r)

(

1 +
1

p

)

.

Remark 1. Note that the result is different from the claimed result in [8].
Especially, the variance is of order F (n) logF (n) whereas in [8] the variance
was claimed to be of order F (n).
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Remark 2. Furthermore note, that the above conditions on f are not exactly
the same than the conditions possed by Philipp [8]; especially (3) is added.
This is done in order to shorten the proof on the one hand and to make the
arguments more lucid on the other hand. However, by combining Philipp’s
method with the method introduced in this paper, it is straightforward to
avoid this additional assumption.

By using the new condition (3), the proofs in [8] can be considerably
simplified as well. Thereby, the main simplification emerges from the possi-
bility of direct application of limit theorems for mixing sequences of random
variables. This especially makes the elaborate blocking arguments avoidable.

We conclude the introduction by giving a short plan of the paper: in the
next section, we prepare the proof of the main result by approximating the
sequence of random variables (Xn)n≥1 several times. In Section 3, we prove
the corresponding central limit theorem for the approximating sequence of
random variables and finally, Section 4 is used to finish the proof of our main
result by showing that the approximation is good enough to entail asymp-
totic normality of (Xn)n≥1 from the one of the approximating sequence.

2. Preparatory results

In order to fix notation let x = [0, a1, . . .] be the continued fraction ex-
pansion of x ∈ [0, 1] and denote by

pk
qk

= [0, a1, . . . , ak]

the k-th convergent. Furthermore put

ϕk = [ak+1, ak+2, ak+3, . . .] + [0, ak, ak−1, . . . , a1],

and

ξk = [0, ak+1, ak+2, . . .].

We consider the following sequence of random variables

Yk(x) := #{1 ≤ c ≤ ak+1|cqk ≡ s mod r, c2 ≤ ϕkf(log cqk)}
which, by [10], can be used to approximate the sequence of random variables
introduced in the first section

(5)
∑

qk+1≤n

Yk(x) ≤ Xn(x) ≤
∑

qk≤n

Yk(x).

As it was pointed out in [10], it is not possible to prove some mixing
condition for the sequence (Yk)k≥0 and therefore, we have to approximate
once more. In order to do this, we need the following result of the metric
theory of continued fraction expansion due to Gordin and Reznik (see [2])

Lemma 1. For almost all x ∈ [0, 1], we have

lim sup
k−→∞

| log qk − k log γ|
√

2σ2k log log k
= 1,
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where σ > 0 and γ = exp
(

π2/(12 log 2)
)

is the Khintchine-Levy constant.

By this Lemma, we have for each ε > 0 that there exists κ large enough
such that

(6) k log γ − κk1−δ ≤ log qk ≤ k log γ + κk1−δ, k ≥ 1

for a subset F of [0, 1] with λ(F ) ≥ 1− ε. Using this, we get

f((k + 1) log γ + κ(k + 1)1−δ) ≤ f( log qk+1) ≤ f(log cqk)
≤ f(log qk) ≤ f(k log γ − κk1−δ)

for x ∈ F and 1 ≤ c ≤ ak+1. Next, we set

f1(k) := f((k + 1) log γ + κ(k + 1)1−δ), f2(k) := f((k log γ − κk1−δ),
and define the following random variables

Z
(i)
k (x) := #{1 ≤ c|cqk ≡ s mod r, c2 ≤ (ak+1 + 2δ2,i)fi(k)} i = 1, 2,

where δi,j is the Kronecker function. It is easy to see that we have

(7) Z
(1)
k (x) ≤ Yk(x) ≤ Z(2)

k (x)

for all x ∈ F .
Our main goal is to obtain the central limit theorem for the sequences

(Z
(i)
k )k≥0. By a theorem of Szüsz (see [11]), it is easy to see that these

sequences are ψ-mixing with an exponential mixing rate, i.e. there exists a
constant q ∈ (0, 1) such that

|λ(AB)− λ(A)λ(B)| ¿ qnλ(A)λ(B)

for all A ∈ Fk0 , B ∈ F∞k+n, k ≥ 0, n ≥ 1 (here, F ba denotes the σ-algebra

generated by (Z
(i)
k )a≤k≤b). However, central limit theorems for ψ-mixing se-

quences of random variables cannot be applied directly because the variance

of (Z
(i)
k )k≥0 is infinite (this was overlooked in the sketch of [8]; compare with

the introduction). Therefore, we use truncation in order to approximate the

sequences (Z
(i)
k )k≥0 by a double sequence of random variables.

We put

Fi(n) :=
n
∑

k=1

fi(k), i = 1, 2,

and define the following double sequence of random variables

Z
(i)
k,n(x) := #{1 ≤ c ≤ φn|cqk ≡ s mod r, c2 ≤ (ak+1+2δ2,i)fi(k)}, i = 1, 2,

where φn = [(Fi(n))
1/2(logFi(n))

1/2−ρ].
Next, we recall a theorem due to Szüsz (see [11]) that will enable us to

compute moments of the above random variables.
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Lemma 2. For t ∈ [0, 1] and a, b ∈ N0 define

mk(a, b, t) := λ{x ∈ [0, 1]|qk−1 ≡ a mod r, qk ≡ b mod r, ξk ≤ t}.
Then, we have

mk(a, b, t) =

{

1
C(r)

log(1+t)
log 2 (1 +O(qk)) (a, b, r) = 1

0 (a, b, r) 6= 1,

where C(r) = r2
∏

p|r

(

1− 1
p2

)

, q < 1 is a constant, and the constant implied

in the error term only depends on r.

Furthermore, we need the following identity observed by Philipp (see [8]).

Lemma 3. Set

K(d) :=
rϕ((d, r))

C(r)(d, r)
,

where C(r) is defined as above. Then, we have

∑

0≤d<r

∑

1 ≤ c
cd ≡ s (r)

K(d)
1

c2
=
π2

6r
.

Finally, we need two technical lemmas. The first one can easily be proved
by using ideas of [6] (compare with Lemma 4 there).

Lemma 4. We have, as n −→∞,

n
∑

k=1

fi(k)
2 ¿ Fi(n)

1/2, i = 1, 2.

Lemma 5. We have

(8)
∑

0≤d<r,(d,r)|s

(d, r)ϕ((d, r)) = (s, r)ϕ(r)
∏

p|r,p- r
(s,r)

(

1 +
1

p

)

.

Proof. We start by observing that
∑

0≤d<r,(d,r)|s

(d, r)ϕ((d, r)) =
∑

k|(s,r)

kϕ(k)
∑

0≤d<r,(d,r)=k

1 =
∑

k|(s,r)

kϕ(k)ϕ
( r

k

)

.

Furthermore, we put

r =
n
∏

i=1

pei
i , (s, r) =

n
∏

i=1

pfi
i

for the prime number decomposition of r resp. (s, r). We prove the claimed
result by induction on n.
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An easy calculation gives the case n = 1. Therefore, suppose that (8)
is proved for all integers with at most n − 1 prime numbers in the prime
number decomposition. Denote by

r̄ =
n−1
∏

i=1

pei
i =

r

pfn
n

and notice that

∑

k|(s,r)

kϕ(k)ϕ
( r

k

)

=

fn
∑

l=0

∑

k|(s,r̄)

kplnϕ(kp
l
n)ϕ

( r̄

k
pen−l
n

)

=





∑

k|(s,r̄)

kϕ(k)ϕ
( r̄

k

)









∑

k|pfn
n

kϕ(k)ϕ

(

pen
n

k

)



 .

Applying twice the induction hypothesis yields

∑

0≤d<r,(d,r)|s

(d, r)ϕ((d, r)) = (s, r̄)ϕ(r̄)
∏

p|r̄,p- r̄
(s,r̄)

(

1 +
1

p

)

·

· pfn
n ϕ(p

en
n )

∏

pn-pen−fn
n

(

1 +
1

p

)

= (s, r)ϕ(r)
∏

p|r,p- r
(s,r)

(

1 +
1

p

)

which is the desired result. ¤

By these lemmas, we obtain the mean value and the variance of the double
sequence introduced above.

Lemma 6. For the random variables Z
(i)
k,n introduced above, we have

(9) µi,n := E
∑

k≤n

Z
(i)
k,n =

π2

6r log 2
Fi(n) +O

(

Fi(n)
1/2
)

,

and

(10) τ 2i,n := V
∑

k≤n

Z
(i)
k,n ∼ σFi(n) logFi(n)

with

σ =
(s, r)ϕ(r)

rC(s, r) log 2

where C(s, r) is as in the introduction.
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Proof. First, we observe

(11) Z
(i)
k,n(x) =

∑

0≤d<r

∑

1 ≤ c ≤ φn

cd ≡ s (r)

ξ
(d,c,i)
k (x),

where

ξ
(d,c,i)
k (x) =

{

1 if qk ≡ d (r) and c2 ≤ (ak+1 + 2δi,2)fi(k)
0 otherwise

.

Therefore

(12) EZ
(i)
k,n =

∑

0≤d<r

∑

1 ≤ c ≤ φn

cd ≡ s (r)

Eξ
(d,c,i)
k .

Next notice that

c2 ≤ (ak+1 + 2δi,2)fi(k)⇐⇒ ξk ≤ 1/

(⌈

c2 − 2δi,2fi(k)

fi(k)

⌉)

and together with Lemma 2

(13) Eξ
(d,c,i)
k =

K(d)

log 2

(

fi(k)

c2
+O

(

fi(k)
2

c2

))

(1 + O(qk)).

Hence, by combining (12) and (13)

EZ
(i)
k,n =

1

log 2
(1 + O(qk))

(

fi(k)
∑

0≤d<r

∑

1 ≤ c

cd ≡ s (r)

K(d)

c2
−

− fi(k)
∑

0≤d<r

∑

φn < c
cd ≡ s (r)

K(d)

c2
+ fi(k)

2
∑

0≤d<r

∑

1 ≤ c ≤ φn

cd ≡ s (r)

O

(

K(d)

c2

)

)

.

Using Lemma 3 for the first double sum and simple estimates for the second
and third implies

(14) EZ
(i)
k,n =

1

log 2

(

π2

6r
fi(k) + O

(

fi(k)

φn

)

+O(fi(k)
2)

)

(1 + O(qk)).

Finally, summing up and applying Lemma 4 gives (9).
In order to compute the variance, we need to consider the second moment

of Z
(i)
k,n. By (11), it is not hard to see that

(15) E(Z
(i)
k,n)

2 =
∑

0≤d<r

∑

1 ≤ c ≤ φn

cd ≡ s (r)

kc,dEξ
(d,l,i)
k ,
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where kc,d is the number of pairs 〈k1, k2〉 of solutions of xd ≡ s (r) with
k1 ≤ c, k2 ≤ c and either k1 = c or k2 = c. Furthermore

(16) kc,d =

{

2 (d,r)
r c+ cd if (d, r)|s
0 otherwise

,

with a suitable constant cd. Combining (13),(15), and (16) implies

E(Z
(i)
k,n)

2 =
1

log 2
(1 + O(qk))

∑

0 ≤ d < r

(d, r)|s

∑

1 ≤ c ≤ φn

cd ≡ s (r)

K(d)·

·
(

2
(d, r)

r
c+ cd

)(

fi(k)

c2
+O

(

fi(k)
2

l2

))

.

We extend the last product and break the double sum into four parts. For
one part, we have

∑

0 ≤ d < r
(d, r)|s

∑

1 ≤ c ≤ φn

cd ≡ s (r)

2cK(d)
(d, r)

r

fi(k)

c2

=
2fi(k)

C(r)

∑

0 ≤ d < r
(d, r)|s

ϕ(d, r)
∑

1 ≤ c ≤ φn

cd ≡ s (r)

1

c

= fi(k)σ log 2 logFi(n) + O(fi(k) log logFi(n))

where Lemma 5 was used. It is easy to see that the other parts are bounded
by either fi(k), fi(k)

2, or fi(k)
2 logFi(n). Hence

∑

k≤n

E(Z
(i)
k,n)

2 = σFi(n) logFi(n) + O(Fi(n) log logFi(n))

+ O(Fi(n)) + O

(

n
∑

k=1

fi(k)
2

)

+O

(

logFi(n)
n
∑

k=1

fi(k)
2

)

,

and taking Lemma 4 into account gives

(17)
∑

k≤n

E(Z
(i)
k,n)

2 ∼ σFi(n) logFi(n).

Next observe, by (14) and Lemma 4

(18)
∑

k≤n

(EZ
(i)
k,n)

2 ¿ (Fi(n))
1/2,

and we finish the proof by considering the covariance of Z
(i)
k1,n

and Z
(i)
k2,n

(with k1 ≤ k2).
By [10], it is plain that (Z

(i)
k,n)k≤n is ψ-mixing with an exponential mixing

rate and that q of Lemma 2 is the basis of the mixing rate. Hence, by Lemma
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1.2.1 in [8]

|EZ(i)
k1,n

Z
(i)
k2,n
−EZ

(i)
k1

EZ
(i)
k2
| ¿ qk2−k1EZ

(i)
k1,n

EZ
(i)
k2,n

¿ qk2−k1fi(k1)fi(k2),
(19)

where the last estimation follows from (14). Combining (17), (18), and (19)
immediately gives (10). ¤

The next step is normalization. Therefore, we define

η
(i)
k,n := (Z

(i)
k,n −EZ

(i)
k,n)/τi,n.

In order to prepare the proof of the central limit theorem of these double
sequences of random variables, we gather some useful properties.

Lemma 7. The double sequence η
(i)
k,n satisfies the following properties

(i) η
(i)
k,n is uniformly strong mixing (see [7] for a definition),

(ii)

V
∑

k≤n

η
(i)
k,n = 1,

(iii)

|η(i)k,n| ≤ εn and εn −→ 0, as n −→∞,
(iv)

V
∑

k∈I

η
(i)
k,n =

∑

k∈I

Vη
(i)
k,n +O (ψ1(n)) ,

where I ⊆ {0, 1, . . . , n}, the implied constant doesn’t depend on I,
and ψ1(n) −→ 0, as n −→∞,

(v)

E

(

∑

k∈I

η
(i)
k,n

)4

¿
∑

k∈I

E(Z
(i)
k,n)

4 +

(

∑

k∈I

E(Z
(i)
k,n)

2

)2

+O(ψ2(n)),

where I ⊆ {0, 1, . . . , n}, the implied constant doesn’t depend on I,
and ψ2(n) −→ 0, as n −→∞.

Remark 3. Inequality (v) is - except of the error term - an analogue of the
famous Rosenthal inequality.

Proof. (i) is an easy consequence of a theorem of Szüsz (see [11]) and (ii)

follows immediately from the definition of η
(i)
k,n. Furthermore, by (10), (14),

and the definition of Z
(i)
k,n property (iii) is obvious.

In order to prove (iv), observe

V
∑

k∈I

Z
(i)
k,n =

∑

k∈I

VZ
(i)
k,n + 2

∑

0 ≤ k1 < k2 ≤ n

k1, k2 ∈ I

(EZ
(i)
k1,n

Z
(i)
k2,n
−EZ

(i)
k1,n

EZ
(i)
k2,n

).
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Applying Lemma 4 and using (19) yields

2
∑

0 ≤ k1 < k2 ≤ n

k1, k2 ∈ I

(EZ
(i)
k1,n

Z
(i)
k2,n
−EZ

(i)
k1,n

EZ
(i)
k2,n

)¿
n
∑

k=1

fi(k)
2 ¿ Fi(n)

1/2

and hence (iv) follows.
We are left with the proof of property (v). Therefore, we expand the left

hand side of (v) by the multinomial theorem

(20) E

(

∑

k∈I

η
(i)
k,n

)4

=
∑

e1+...et=4

(

4

e1, . . . , et

)

E(η
(i)
k1,n

)e1 · · · (η(i)kt,n
)et ,

where I = {k1, . . . , kt}. We split the sum into several parts according to the
powers on the right hand side.

The part with the 4th-powers immediately gives the first sum on the right
hand side of (v).

Next, we consider the part where two 2nd-powers occur and take the

mixing property of η
(i)
k,n into account

∑

0 ≤ l1 < l2 ≤ n
l1, l2 ∈ I

(

4

2, 2

)

E(η
(i)
l1,n

)2(η
(i)
l2,n

)2 =

∑

0 ≤ l1 < l2 ≤ n

l1, l2 ∈ I

(

4

2, 2

)

E(η
(i)
l1,n

)2E(η
(i)
l2,n

)2(1 + O(ql2−l1))¿
(

∑

k∈I

E(η
(i)
k,n)

2

)2

.

Hence, we have the second sum on the right hand side of (v).
In order to finish the proof, we have to show that all other parts are

bounded by a function which tends to 0 as n tends to infinity. We use ideas
of [9]. First consider

∑

0 ≤ l1 < l2 < l3 < l4 ≤ n

l1, l2, l3, l4 ∈ I

Eη
(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n

.

We break the sum into two parts
∑

=
∑∗+

∑∗∗ according to whether

l2 − l1 ≤ [Fi(n)
1/2] and l3 − l2 ≤ [Fi(n)

1/2] or not. The first part can be
estimated as follows

∑∗
Eη

(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿
∑∗

E|η(i)l1,nη
(i)
l2,n

η
(i)
l3,n
|E|η(i)l4,n|q

l4−l3

¿
∑∗

E|η(i)l1,n|E|η
(i)
l2,n
|E|η(i)l3,n|E|η

(i)
l4,n
|ql4−l3

¿ 1

τ4i,n

∑∗
EZ

(i)
l1,n

EZ
(i)
l2,n

EZ
(i)
l3,n

EZ
(i)
l4,n

ql4−l3 .
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Using (10) and (14) yields

∑∗
Eη

(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿ Fi(n)

(Fi(n) logFi(n))2

n
∑

k=1

fi(k)

=
1

(logFi(n))2
.

In order to estimate the second part, we break the sum again into two

parts
∑∗∗ =

∑′

+
∑′′

according to which of the two condition is violated.
We consider the first part

∑′
Eη

(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿
∑′

E|η(i)l1,n|E|η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
|ql2−l1

¿ q(Fi(n))
1/2

τ4i,n

∑′
EZ

(i)
l1,n

EZ
(i)
l2,n

EZ
(i)
l3,n

EZ
(i)
l4,n

¿ q(Fi(n))
1/2

τ4i,n





∑

k≤n

EZ
(i)
k,n





4

.

Using (9) and (10) implies

∑′
Eη

(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿ Fi(n)

4q(Fi(n))
1/2

(Fi(n) logFi(n))2

=
Fi(n)

2q(Fi(n))
1/2

(logFi(n))2
,

which tends to 0 as n tends to ∞. The second part is treated similarly
∑′′

Eη
(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿
∑′′

Eη
(i)
l1,n

η
(i)
l2,n

Eη
(i)
l3,n

η
(i)
l4,n

+
∑′′

E|η(i)l1,nη
(i)
l2,n
|E|η(i)l3,nη

(i)
l4,n
|ql3−l2

¿
∑′′

E|η(i)l1,n|E|η
(i)
l1,n
|ql2−l1E|η(i)l3,n|E|η

(i)
l4,n
|ql4−l3

+ q(Fi(n))
1/2
∑′′

E|η(i)l1,n|E|η
(i)
l2,n
|E|η(i)l3,n|E|η

(i)
l4,n
|

¿ 1

τ4i,n





∑

k≤n

EZ
(i)
k,n





2

+
q(Fi(n))

1/2

τ4i,n





∑

k≤n

EZ
(i)
k,n





4

.

Using once more (9) and (10) yields

∑′′
Eη

(i)
l1,n

η
(i)
l2,n

η
(i)
l3,n

η
(i)
l4,n
¿ 1

(logFi(n))2
+
Fi(n)

2q(Fi(n))
1/2

(logFi(n))2
,

which again tends to 0 as n tends to ∞.
All remaining parts of the right hand side of (20), namely

∑

l1<l2
E(η

(i)
l1,n

)3η
(i)
l2,n

,
∑

l1<l2
Eη

(i)
l1,n

(η
(i)
l2,n

)3,
∑

l1<l2<l3
E(η

(i)
l1,n

)2η
(i)
l2,n

η
(i)
l3,n

,
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∑

l1<l2<l3
Eη

(i)
l1,n

(η
(i)
l2,n

)2η
(i)
l3,n

, and
∑

l1<l2<l3
Eη

(i)
l1,n

η
(i)
l2,n

(η
(i)
l3,n

)2 can be treated

in the same manner and therefore, we are done. ¤

In the next section, we shall use the properties of the last lemma together
with standard techniques in proving central limit theorems for weakly de-

pendent random variables to prove asymptotic normality of η
(i)
k,n.

3. The Central Limit Theorem for the double sequence η
(i)
k,n

Throughout this section, we suppress the dependence on i. In order to
prove the central limit theorem for the sequence ηk,n, we closely follow the
proof of the main result in [7] and as in this paper, we proceed in several
steps.

3.1. Step 1: Blocking. Because of εn −→ 0, qn −→ 0, and ψi(n) −→ 0, i =
1, 2 as n −→ ∞ there exists a sequence cn with the following properties, as
n→∞,

cn −→ ∞,(21)

cnεn −→ 0,(22)

cnq
[ε−1n ] −→ 0,(23)

cnψ1(n) −→ 0,(24)

cnψ2(n) −→ 0.(25)

We fix n and define a sequence of integers by

m0,n := 0,

and for l = 0, 1, 2, . . . by

m2l+1,n := min{m > m2l|
m
∑

k=m2l+1

Vηk,n ≥ c−1n },(26)

m2l+2,n := m2l+1 + [ε−1n ].(27)

There are two possibilities how this inductive procedure can stop: on the one
hand if we have constructed (27) and there are no random variables for (26)
left or on the other hand if the sum of the variances of the remaining random
variables is too small to be at least c−1n . In the first case, we put m2l+2 := n
and in the second case, we increase m2l by the number of remaining random
variables.

Next define

Il,n = {k|m2l < k ≤ m2l+1},
Jl,n = {k|m2l+1 < k ≤ m2l+2},
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and finally

ξl,n =
∑

k∈Il,n

ηk,n,

ζl,n =
∑

k∈Jl,n

ηk,n,

where 0 ≤ l < wn and wn is the number of Il,n (resp. Jl,n) obtained from
the construction above.

We start with an easy observation. By Lemma 7 (iv) and the definition
of Il,n, we have

c−1n wn ≤
wn−1
∑

l=0

∑

k∈Il,n

Vηk,n ≤
∑

k≤n

Vηk,n ≤ K,

for a suitable constant K. Hence

(28) wn ≤ Kcn.
The next step is to show that it is sufficient to prove the central limit

theorem for the double sequence ξl,n.

3.2. Step 2: ζl,n is negligible. First observe, by Lemma 7 (iii),(iv), and the
definition of Jwn−1,n

Vζw(n)−1,n = V
∑

k∈Jwn−1,n

ηk,n =
∑

k∈Jwn−1,n

Vηk,n +O(ψ1(n))

≤ ε−1n max
k≤n

Eη2k,n + c−1n +O(ψ1(n))

= εn + c−1n +O(ψ1(n)),

(29)

which tends to 0 as n tends to∞. Taking once more Lemma 7 (iii),(iv), and
the definition of Jl,n together with (28) into account yields

V
∑

l<w(n)−1

ζl,n =
∑

l<w(n)−1

∑

k∈Jl,n

Vηl,n +O(ψ1(n))

≤ w(n)ε−1n max
k≤n

Eη2k,n +O(ψ1(n))

¿ cnεn +O(ψ1(n)),

(30)

which - because of (22) - also tends to 0 as n tends to ∞. Next, observe

V
∑

l<wn

ζl,n = Vζw(n)−1,n + V
∑

l<w(n)−1

ζl,n +O(ψ1(n)),

which together with (29) and (30) implies, as n→∞,

(31) V
∑

l<wn

ζl,n → 0.
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Therefore, as n→∞,

λ





∑

l<wn

ζl,n ≥ ε



 ≤



V
∑

l<wn

ζl,n



 /ε2 → 0,

and the second assertion is proved.
It follows that asymptotic normality of the double sequence ξl,n is suf-

ficient to imply the central limit theorem for ηl,n. In the next step we use
standard tools in order to approximate by independent random variables.

3.3. Step 3: Approximation by Independent Random Variables. First by
Lemma 7 (iv) and (31), it is plain that

(32) V
∑

l<wn

ξl,n −→ 1, as n −→∞.

Next consider

(33)
∑

l<wn

Vξl,n = V
∑

l<wn

ξl,n +O(cnψ1(n)),

where (28) and again Lemma 7 (iv) was used. Hence, by combining (32) and
(33) and taking (24) into account, we get

an :=
∑

l<wn

Vξl,n −→ 1, as n −→∞.

By a standard argument (see for instance [3]) and using (22) an approxi-
mation of the double sequence ξl,n by an independent double sequence ξ̄l,n
with the same distribution can be obtained. Therefore, we are left with
proving asymptotic normality of ξ̄l,n.

3.4. Step 4: Asymptotic Normality of ξ̄l,n. First, we normalize

ξ̃l,n := ξ̄l,n/an.

Notice that it is sufficient to verify Lyapunov’s condition for ξ̃l,n, that is

∑

l<wn

Eξ̃2+τl,n −→ 0, as n −→∞,

where τ > 0 is a real constant. Therefore, observe

(34)
∑

k∈Il

Vηk,n ≤ c−1n +max
k≤n

Eη2k,n ≤ c−1n + ε2n,

by the definition of Il and Lemma 7 (iii). Next, we have

(35) Eη4k,n ≤ ε2nEη2k,n,
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where again Lemma 7 (iii) was used. Hence Lemma 7 (v), (34), and (35)
implies

Eξ4l,n = E





∑

k∈Il

ηk,n





4

¿
∑

k∈Il

Eη4k,n +





∑

k∈Il

Eη2k,n





2

+O(ψ2(n))

¿ (εn + c−1n )2 +O(ψ2(n)).

Furthermore notice

∑

l<wn

Eξ̃4l,n =
1

a4n

∑

l<wn

Eξ4l,n ¿ wn(εn + c−1n )2 +O(wnψ2(n)),

and together with (24),(25), and (28), we get

∑

l<wn

Eξ̃4l,n −→ 0, as n −→∞,

which proves the asymptotic normality of ξ̃l,n

∑

l<wn

ξ̃l,n ⇀ N (0,1), as n→∞.

Since an −→ 1, as n −→∞, and because of step 2 and step 3, we obtain

∑

k≤n

ηk,n ⇀ N (0,1), as n→∞,

so that the proof of the central limit theorem for the double sequence ηk,n
is finished.

4. Proof of Theorem 1

We finish the proof by showing that the central limit theorem for η
(i)
k,n

entails the asymptotic normality of Xn (indeed, suitable normalized). In
order to do this, we need

Lemma 8. We have

E

∣

∣

∣

∣

∣

∣

∑

k≤n

Z
(i)
k −

∑

k≤n

Z
(i)
k,n

∣

∣

∣

∣

∣

∣

¿ (Fi(n))
1/2

(logFi(n))1/2−ρ
.
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Proof. First observe

E

∣

∣

∣

∣

∣

∣

∑

k≤n

Z
(i)
k −

∑

k≤n

Z
(i)
k,n

∣

∣

∣

∣

∣

∣

=
∑

k≤n

E(Z
(i)
k − Z

(i)
k,n)

≤
∑

k≤n

E#{φn < c|c2 ≤ (ak+1 + 2δi,2)fi(k)}

=
∑

k≤n

∑

φn<c

Eξ
(c,i)
k ,

(36)

where

ξ
(c,i)
k (x) :=

{

1 if c2 ≤ (ak+1 + 2δi,2)fi(k)
0 otherwise.

Using Lemma 2 yields

Eξ
(c,i)
k ¿ fi(k)

c2
,

and together with (36)

E

∣

∣

∣

∣

∣

∣

∑

k≤n

Z
(i)
k −

∑

k≤n

Z
(i)
k,n

∣

∣

∣

∣

∣

∣

¿ Fi(n)
∑

φn<c

1

c2
¿ Fi(n)

Fi(n)1/2(logFi(n))1/2−ρ
,

which proves the assertion. ¤

The above Lemma together with (10) implies

λ

[





∑

k≤n

Z
(i)
k −EZ

(i)
k,n



/τi,n −
∑

k≤n

η
(i)
k,n ≥ ε

]

≤



E

∣

∣

∣

∣

∣

∣

∑

k≤n

Z
(i)
k −

∑

k≤n

Z
(i)
k,n

∣

∣

∣

∣

∣

∣



 /(ετi,n)

¿ 1

(logFi(n))1−ρ
,

and hence, as n −→∞,

(37)





∑

k≤n

Z
(i)
k −

π2

6r log 2
Fi(n)



 /(σFi(n) logFi(n))
1/2 ⇀ N (0, 1),

where (9) and (10) were used.
Finally, we need the following technical Lemma due to Philipp (see [8]).

Lemma 9. Let g1 (resp. g2) be the inverse function of γ(k+1) exp(κ(k +
1)1−δ) (resp. γkexp(−κk1−δ)). Then, we have

Fi(gi(n)) =
1

log γ
F (n) +O(F (n)1/2).
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By (5),(6),(7), and the definition of gi, we have
∑

k≤g1(n)

Z
(1)
k (x) ≤

∑

k≤g1(n)

Yk(x) ≤
∑

qk+1≤n

Yk(x) ≤ Xn(x),

and
Xn(x) ≤

∑

qk≤n

Yk(x) ≤
∑

k≤g2(n)

Yk(x) ≤
∑

k≤g2(n)

Z
(2)
k (x),

for x ∈ F .
A standard argument together with (37) and Lemma 9 gives our result.

Acknowledgement. The author is indebted to the anonymous ref-
eree for many valuable suggestions that lead to an improvement of the
presentation of the paper.
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