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Abstract

Approximate counting is an algorithm that provides a count of a huge number of objects within an
error tolerance. The first detailed analysis of this algorithm was given by Flajolet. In this paper, we
propose a new analysis via the Poisson-Laplace-Mellin approach, a method devised for analyzing shape
parameters of digital search trees in a recent paper of Hwang et al. Our approach yields a different and
more compact expression for the periodic function from the asymptotic expansion of the variance. We
show directly that our expression coincides with the one obtained by Flajolet. Moreover, we apply our
method to variations of approximate counting, too.

1 Introduction and Results

Approximate counting, an algorithm proposed by Morris [ 19] in 1978, is used for counting within a certain
error tolerance a huge amount of objects with very limited space. The algorithm has found many applica-
tions such as in the analysis of the Webgraph, monitoring network traffic, finding patterns in protein and
DNA sequencing, computing frequency moments of data streams, data storage in flash memory, and many
variants and improvements have been proposed; see Csiirds [7], Mitchell and Day [ 18], Gronemeier and
Sauerhoff [10], Aspnes and Censor [2], Cichofi and Macyna [4] and references therein.

Here, we are going to revisit the analysis of the classical algorithm which is described as follows: a
counter C,, is maintained with initial value Cy = 0. After “counting n objects”, a random decision based
only on the current content of the counter determines whether or not the counter should be increased when
“counting the n + 1-st object”. More precisely, the counter obeys the following rule

c C, + 1, with probability ¢“»; 3
o, with probability 1 — ¢, (
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where 0 < ¢ < 1 is fixed. Hence, (C,),>0 is a Markov chain describing a pure birth process. The
same chain was also encountered in a couple of other problems: width of greedy decomposition of random
acyclic digraphs into node-disjoint paths (see Simon [27]), size of greedy independent set and greedy clique
in random graphs (see Simon [27]) and length of the leftmost path in digital search trees (see below).

We mention in passing that many variants of the above Markov chain have been investigated as well;
e.g. see Crippa and Simon [6], Louchard and Prodinger [16], Bertoin, Biane and Yor [3] and Guillemin,
Robert and Zwart [11]. Applications range from Computer Science over Particle Physics to Molecular
Biology; see the detailed discussion in [6].

As for the classical chain C,,, the first detailed analysis was given by Flajolet in [8] who used Mellin
transform (see also Prodinger [27] for a similar analysis). Other approaches have been given by Kirschen-
hofer and Prodinger [14] via Rice method, Prodinger [21] via Euler transform, Louchard and Prodinger
[17] via analysis of extreme value distributions, Rosenkrantz [26] via martingale theory and Robert [25]
via probabilistic tools. In this paper, we are going to propose a new approach which will be based on the
connection with digital search trees and the new method (nicknamed Poisson-Laplace-Mellin method) for
analyzing shape parameters in digital search trees proposed in Hwang, Fuchs and Zacharovas [12].

We next explain the connection between approximate counting and digital search trees (DSTs). There-
fore, we start with the definition of DSTs which are a fundamental data structure in computer science and
were proposed by Coffman and Eve in [5]. Consider a set of n keys which are infinite 0-1 strings. The
digital search tree is built from these n keys as follows: the first key is placed in the root; all other keys are
directed to the left or right subtree according to whether the first bit is 0 or 1, respectively; finally, the first
bits are removed and the subtrees are built recursively according to the same principle; see Figure 1 for an
example.

010111 ---
101011 - - -
100001 - - -
011011---
111110 - - -
110111 ---
010011 - --
011110---
000100 - - -

Figure 1: A DST built from 9 keys with length of leftmost path equal to 3.

Shape parameters in random DSTs have been analyzed in many papers; see [ | 2] and references therein.
The standard random model used in such an analysis is the Bernoulli model. Here, the bits of the keys
are assumed to be 1.i.d. Bernoulli random variables with the probability of 0 being q. Shape parameters
of random DSTs of size n then become random variables. One example of such a shape parameter is the
length of the leftmost path which is defined as the number of vertices on the leftmost path from the root
to the leftmost leaf. We denote this length in a random digital search tree of size n by X,,. Obviously, X,
satisfies the following distributional recurrence

Xpp1 £ Xp, +1,  (n>0) )

with Xy =0 and B, 4 Binom(n, ¢). This recurrence just reflects the trivial fact that X,, can be computed
by starting from the root (which counts as 1) and then moving on to the left subtree (which has size B,,)
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where the same procedure is repeated. Now, a moment’s reflection reveals that C), is related to X, as
d
C,=X,.

This relation will be the starting point of our analysis. We will use it to derive asymptotic expansions for
mean and variance of C,,.
Before stating our result, we explain what is known about C,,. Flajolet in [£] showed that, as n — oo,

E(Cy) ~ logy /,n + Fo(logy ,n),
where Fo(z) = Y, fre** ™ is a 1-periodic function with Fourier coefficients

1 I'(—xx)

f0:%+§—04, Je=— 7 (k#0).

Here, 7 is Euler’s constant, o = .-, ¢'/(1 — ¢'), L = log(1/q) and i = 2kmi/L. As for the variance,
he showed that, as n — oo, B

Var(C,,) ~ Ge(logy . n),

where Go(z) = >, g,e?*™* is again a 1-periodic function with computable Fourier coefficients. More-
over, he gave the following expression for the average value of Gc(z)

fo=gm—a—fto 7

Z [ sinh( 2[71’2/[/)

where 8 = >0, ¢ /(1 — ¢')%
In the next section, we will use the above connection to DSTs to re-derive these results. Our method
will in particular give a different and more compact expression for all Fourier coefficients of G'¢:(2).

Theorem 1. For the variance of approximate counting, we have, as n — oo,
Var(C,) ~ Ge(logy . n),
where Go(z) = Y, gx€®*™* is a 1-periodic function with

(—1) qh+l+( ) +(1—xk)i

Qo h+j I+j
= , +q77).
9 =TT+ x0) E ©(Xk, q q™)

h7>0 Qn@iQ;
Here, Q; = [[_ 1( ¢"), Qoo = lim;_,o Q; and
oy )@ =1)/(sin(mx)(z — 1)), fx#1,
e ) = {Wx/ sin(x), o1

Comparing with the above result, we obtain the following identity for which we will provide a direct
proof in Section 3.

Corollary 1. We have,

h+l+(”1) 2 1

Qoo h 1 ™ 1 1
Z QthQJ e e 7 e A Tl Z; I'sinh(2I72/L)’

h,l,5>0

where
_ flogaf@—1), i
¥lz) = {1, ife—=1.



Finally, in Section 4, we will discuss extensions and variations of approximate counting. One such
extension was proposed in [4] where instead of one counter m counters 07(11)’ ceey C’T(Lm) were used (m fixed).
Then, when “counting the 4 1-st object”, one of the counters is chosen uniformly at random and increased
according to the stochastic rule (1). In Prodinger [23], mean and variance of D,, := 07(11) + o+ C,Sm)
were derived. We will show that our approach greatly simplifies the analysis since the case of m counters
can be reduced to the case of one counter.

Theorem 2. For approximate counting with m counters, we have, as n — oo,

E(Dy) ~ mlog,,(n/m) +mFc(log, ,(n/m)),
Var(D,,) ~ mGc(logy ,(n/m)),

where F(2) and G (z) are the periodic functions above.

Moreover, again in Section 4, we will show that similar simplifications can also be achieved for shape
parameters in m-DSTs trees recently introduced by Prodinger in [24].

2 Analysis of Approximate Counting

Here, we are going to prove Theorem 1. Therefore, we will apply the Poisson-Laplace-Mellin method
from [12]. The starting point of our analysis will be (2).

Poissonization and depoissonization. First denote the Poisson generating function of E(eX"¥) by

- . . ik
P(y,z) =e ZE(eX y)ﬁ

n>0

Then, from (2), we obtain

o -~ .
P(y,z) + @P(y, z) = e'P(y,qz)

with P(y,0) = exp(—2).
From this, by differentiation with respect to y and setting y = 0, we obtain for the Poisson generating
functions of the first and second moment of X,, (denoted by f;(z) and f5(z), respectively)

ful2) + fi(z)
Fa(2) + f3(2)

with f1(0) = f2(0) = 0. Moreover, define the poissonized variance as V (z) := fo(z) — f2(z). Then, the
above two relations in turn yield

filgz) + 1, (3)
fg(qz) + 2f1(qz) +1,

V(z)+V'(2) = V(g2) + fi(2)? 4)

with V(0) = 0.

We first show that in order to derive asymptotics of E(X,,) and Var(X,,), it suffices to analyze fi(2)
and V() as z — oo, respectively. Therefore, we use the theory of analytic depoissonization due to Jacquet
and Szpankowski [ 3]. Recall that a function f(z) is called JS-admissible if:



(I) There exist «v, 8 € R such that uniformly for |arg(z)| < e
F(2) = O (21*(10g, 121)°)
where log, = = log(1 + ).
(O) Uniformly for e < arg(z) <

f(z)=€f(2)=0 (6(176)‘4) :

(Here and throughout the work, € denotes a small constant whose value might be different from one occur-
rence to another).

JS-admissibility of given functions is easily checked due to closure properties; see Lemma 2.3 in [12].
Moreover, JS-admissibility of functions which are given by differential-functional equations of the type
above is also easily checked due to the following result.

Proposition 1. Let f(z) and §(z) be entire functions with
F) + F'(2) = flgz) + 3(2),
where f(0) = 0. Then,
f(2) is JS-admissible = 9(z) is JS-admissible.

Proof. Similar to the proof of Proposition 2.4 in [12]. 1
Consequently, f1(z) and f2(z) are both JS-admissible. Depoissonization (see Proposition 2.2 in [12]
and the discussion in the introduction) then yields, as n — oo,

E(X,) ~ fi(n) and  Var(X,)~ V(n).

Thus, we only have to find asymptotics of f(z) and V(z).

Analysis of the Mean. Here, we analyze the mean, where we start from (3). Since fl (z) is JS-admissible,
we may apply Laplace transform to get rid of the differential operator. This yields

(s+1)$[f1;s]zég[ﬁ;—s/q]—l—l/s. (5)

Next, we derive an exact expression for the mean. By iterating the above functional equation, we get
. 1 1

ZLlfi;s] = - A

i S.Zl<s+1><q—1s+1>---<q—as+1>

1)
__Z Z _l5+1 )QiQ;5—1

>0 0<1<J
_ (~17q"?)
s ; Qiq IS + 1) Z Q;
_ O
; Qilq lS +1)



where (); and (), have been defined in the introduction and we used the well-known identity

.7'-;1)

(—1)ig(s")
% o %

Now, by inverse Laplace transform,

f QOOZQll_e_qz)

>0

and hence

( QOOZQ 1_ 1_Q))

>0

We record this result for future reference.

Proposition 2. We have

( QOOZQ 1_ 1_Q))

>0

Next, we derive an asymptotic expansion. This will be done by using the Mellin transform which is a
standard tool in this context (see the excellent survey of Flajolet, Gourdon and Dumas [9]). Therefore, set

Zf1;s] = ZL1f1;5]/Q(—s), where

H 1—|—qs
=1

Then, by dividing (5) by Q(—s/q),

v
sQ(—s/q)

Now, from the fact that f;(z) is JS-admissible and well-known growth properties of Q(—s/q) (see page
127 in [12]), we obtain suitable polynomial bounds for .Z| fl, s| as s tends both to zero and co. This
ensures the existence of the Mellin transform of .Z| fi; s] in a non-trivial strip. Thus, we may apply Mellin
transform and obtain

ZLlfi;s) = ~ZLlfr;s/q] +

1
q

5 . Mi(w)

///[f;w]—l_—qw_l, (R(w) > 1),

where

Y S_Q(qw) N .
w)—/o G = La— T+ T,

Note that the latter function is meromorphic for $(w) > 0 with a simple pole at w = 1. Moreover, due to
rapid decay of the I" function along vertical lines, we have M, (c + it) = O(e~™) for ¢ > 0 and |¢| large.
Hence, inverse Mellin transform implies for | arg(s)| < 7 — e and |s| — 0,

_ 1 1 1/1 1 _
g[fl;s]’”;10g1/qg+g(§_O‘+ZZM1(1+Xk)S Xk),
k#0



where notations are as in the introduction. Since Q(—s/q) = 1 + O(s) for |arg(s)| < 7 — e and |s| — 0,
the above in turn yields

~ 1 1 1/1 1
g[th] ~ glogl/qg -+ 5(5 — o+ ZZMl(l —f—Xk)SXk)

k£0
By Proposition 2.6 of [12], we may apply inverse Laplace transform and obtain for | arg(z)| < 7 — ¢ and
|z| = oo,
- v o1 1 Mi(1+ xx)
~ 1 — - — — N AN Xk
hi(z) Byt Ty OHLL;#O (1 + xx)

v 1 1
zlogl/qz—f—z —1—5 —a— Z%F(_Xk)zm.

The same asymptotic expansion also holds for E(X,,) by depoissonization.

Analysis of the Variance. For an asymptotic expansion of the variance, we start from (4) and proceed
by the same method as above. First note that due to the above analysis and Ritt’s Theorem (Theorem 4.2
of [20]), we have uniformly for | arg(z)| < § — €

, o) if |z] — 0;
/ 2 — ) ) 6
fitz) {0(\42), if 2] = oo. ©
This in turn yields the following rough bounds for V(z)
~ O(z), ifz— 0+,
V()= Ok )
O(z9), if z — oc.

Therefore, we may apply Laplace transform. Hence,
- 1 -
(s + D21V s] = = Z1Vis/a] +5(s),

where j(s) = Z[f?; s]. Next, set Z[V; s] = Z[V;5]/Q(—s). Dividing by Q(—s/q) yields

—_

ZWV;s] = =2V;s/d) +§(s)/Q(~s/q).

LS

Now, from (7) and growth properties of )(—s), we have

PV = O(1/s'F9), if s = 0+;
U o@/sh),  ifs — oo,

where b > 0 is an arbitrary large constant. Hence, the Mellin transform of .Z[V; 5] exists for R(w) > 1.

Consequently,
7 Ms(w)

///[g;w]—l_—qw,p (R(w) > 1),
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where

/ Q s/q/ e f1(2)%dzds.

Next, we have to study properties of Ms(w). Therefore, observe that from (6) and growth properties of
Q(—s), we have uniformly for |arg(s)| < m —€

g(s) ] O(s), if s — 0+;
Q(=s/q) | O(1/s), ifs— oo,
where b > 0 is again an arbitrary large constant. Hence, M(w) is analytic for #(w) > —1. Moreover,

from Proposition 5 in [9], we have My(c + it) = O(e~ "9l for ¢ > —1 and |¢| large. Consequently, we
can proceed as for the mean and obtain as z — oo,

~ 1 M2(1+Xk) Xk
V&~ T2 Ty o

The same then holds for Var(X,,) as well by depoissonization.
We conclude by simplifying Ms(1 + x;). For that, we use

= Qs —
;qu

and .
1 _ 1 ( _1)j q@
Q(=s/q) Qo5 Qi(s+q7)
Plugging this into the above integral yields

)]q<2) S gXk
M( +Xk QOO Z QthQ q (I+h) /O (8+q—])(8+qh+ql)d8

hil,j>0
Denote by
m(xX —1)/(sin(mx)(z — 1)), ifx#1,
o z) = ( . )/ (sin(mx)(z — 1)) |
X/ sin(my), ifz=1.
Then,

(_1)jq(g>+(1_Xk)j

h+j I4+j
Qthqu*(lJrh) ok, ¢ +q¢).

MQ(l + Xk) = Qoo Z

h,1,j>0

3 Average Value of G(z)

Here, we are going to prove Corollary 1. We will use the abbreviation () = 1/q. Furthermore, in order to
be closer to the g-hypergeometric world and the identities of relevance (see the book of Andrews-Askey-
Roy [1]), we use the classical notation (q),, instead of Q.

In [14], the alternative expression

P .=

log 2 2 (—1)k-1
—a—pf+—-7 with 7:= ——
L L kZZI k(QF —1)



was given for the constant in the variance, and we will show now the equality of this and

2=y &

3,L,h>0

( )+l+h log(q"+ + ¢'*+)

h h+j + qH-] _ 1

In this expression, we have replaced the ¢ function by what it is; in some exceptional cases a limit has to
be taken.

We use the symmetry in [ and h and set [ = h + d with d > 0; then we have to take the sum over
h,d > 0 twice, and subtract the sum for 4 > 0 and d = 0. Therefore

F=2 Z e Z
J:h,d>0 4,h>0, d=0
We think about d as being fixed, set h = N — j and fix N as well: This leads to

(9)ol LN + log(1 + ¢%)] i (—1)igUE =i
- j=0 (Di(@)v—jral@)n—j ¢V + N+t =1

By automatic summation (g-Zeilberger’s algorithm) we have the simplification

. Jj+1 2
]( )+2N—j)+d . NI

QMZ

Noj(@)Nya—j ¢V + gV —1 B (ON(@)N+a

Consequently,

N2+dN

—NL +1og(1+4¢%) ¢ NL —1log2 ¢
Yy U+ 7) Y

P 2 L Wv@vea T 2L (Own

We will soon show that

1 1 d N24+dN log 2
(@)oo Y LChl W =245 8)
N.d>0 L (@)n(@)Nta L L
which leaves us to prove that
NgN*+aN (N —1082)oN* 1569
2(q)oo N /N (q)oo L = +O-/+/B
N%;O (DN(@D)N+a szzo (@)n (@) L
Because of the identity [, p. 567]
¢ 1
Z (% (@
this leaves us with Ny v
NgV+ Ngq
2(¢) oo () ) T =atp 9)
N%;O (@) (@) N+a sz:o (@)~ (g)n

Now, expanding log(1 + ¢¢), (8) is proved once we can prove that

2
C]N +dN+dk 1

=
N>0, d>1 (On(@)n+a @ 1

(0)oo

9



But this follows from

1 N24+dN-+dk dk 1 1 1

q ¢ B
NZ%Zl (@a(@n(e™x & (@a (@ (@ QF =1

We have used here the classical identity (Cauchy’s identity) [ 1, p. 568]

x”q” 1
2 (g B

= (@On(r)n (1¢)e

In order to prove (9), we will show that

r+1)

N2 _ 1\ (2
—(@)os Z (L — Z %7 (10)

o (@n(a)v = -7

(@)oo Z (

N0 C])N(q N+d

r+1)

—Z 1_q e (11)

N qN2+dN

Since in [15, (3.16)], it was proved that

rJ2r1) rJ2r1)

(—1)7q( (-1)rgl2)
2oy L gy th

r>1 r>1

that would finish the proof. We start from

IR < S e
2 (@)n(2q)n 2 (Q)n(w'Q)oo( 7 )es ’

which is equivalent to

=1.
Now differentiate this, and then set x = 1
ng 1 qn2 (_1)kq(2)kq(n+1)k B
2 e W @ -
n>0q” qoonZankEO q)k

Rearranging,

N —n (Non n -n
ann 1 Z qv (—1)Y q( 2 )(N—”)q( OV =n)

+ = =0,

2
and again by a mechanical proof,
> ng” 1 g~ (0N
2 Y



This is (10). Now let us plug in x = qd after differentiation (instead of x = 1, as before):

Z”q"”q Z )q q
(@)n

n>0 k>0 n>

(n+1)k q(k 1)d q(n—l-l)k

Z%qq Z )k —0.

" k>0

After some simplifications (using Rothe’s identity [, p. 490]), this leads to

ng®q” V()N
(q)mz(qq +z:(l)q _

_ N
S Dn(Dnra = 14

Now sum this on d:
N;—l)

ng™q" (—=1)Vql
W= 2 Gl T 2 T "

which is (11).

Remark 1. A direct proof that the Fourier coefficients, as computed here, agree with the ones given in [&],

can be done in the same style.

4 Approximate Counting with m Counters and m-DSTs

Approximate Counting with m Counters. I. Here, we consider approximate counting with m counters
as discussed in the introduction. Recall that D,, denotes the sum of the counters after “counting n objects”.
Then, we have

D, L2+ o,
where C’,(ll), ce O™ are independent copies of C,, and
1
P(I =n1s... Ly = ny) = ( " )—
Ny, ey Ny ) MM

with n; + - - - + n,, = n. Now, set
. . 2" ~ . P
D= T EEN D, By — e B
n>0 ’ n>0

Then, by a straight-forward computation

Qy,z) = Py, z/m)™

From this, we can derive the following relations for the Poisson generating functions of the first and second
moment of D,, and C,, (denoted by §;(2), §2(z) for the former and as above for the latter)

gi(2) = mfi(z/m),
G2(2) = m(m — 1) fi(z/m)* + mfo(z/m).
Moreover, again consider the poissonized variance W (z) := §(2) — §1(2)2. Then,

Now, it follows from the closure properties of JS-admissibility (see Lemma 2.3 in [12]) that both g, (z) and
G2(2) are JS-admissible. Hence, we only have to concentrate on the §;(z) and W (z) whose asymptotic
expansions, due to the above formulas, follow from the case m = 1.

11



m-DSTs. m-DSTs have been introduced in [24]. They are defined as follows: again we start with n
keys, but they are now stored in m DSTs. For every key, one of the m DSTs is chosen uniformly and at
random and the key is then stored in the chosen tree.

Clearly, the previous analysis also gives the sum of the lengths of the leftmost paths in m-DSTs.
Similarly, one can consider other shape parameters in DST and extend them linearly to m-DSTs. Our
method above can then be applied to such parameters as well and again the analysis will be reduced to the
case m = 1.

We give two examples. The first example is the depth of a random node which was discussed in [24].
As a second example, consider the total path length 7}, in a random digital search tree of size n which is the
sum over all distances of nodes to the root. For this quantity, it was proved for ¢ = 1/2 (see Kirschenhofer,
Prodinger and Szpankowski [15] and [!2]) that, as n — oo,

E(T,,) ~ nlog,n + nkr(log,n)

and
Var(T},) ~ nGr(logyn),

where Fr(z) and Gp(z) are 1-periodic functions with computable Fourier coefficients (see end of this
paragraph for a remark concerning the average value of G(z)). Similar results are known for the case
q # 1/2 as well. Now, denote by U,, the sum of all total path lengths in an m-DST. Then, with the same
approach as above, we have the following result.

Theorem 3. For the total path length in m-DSTs, we have, as n — o0,

E(Un) ~ (n/m)logy(n/m) + (n/m)Fr(logy(n/m)),
Var(Uy) ~ (n/m)Gr(logy(n/m)),

where Fr(z) and Gp(z) are the periodic functions above.

The variance of the path-length. The constant in

Var(T,,) ~ nGr(logyn)
was given in [12] as
o (75 )+het

(@) (—1)q
L 2 (@);(

JhI>0 q); Q)h(Q)z

ith m . ~x—1—logx
e(@™ +¢™) with p(z) = TS

(In some cases, limits have to be taken, and the notation (q),, is again used for ),,.) This form is a huge
improvement over the form provided in [15]. However, with the methods used earlier, even this form can
be further improved, in the sense that no triple sums occur anymore. This is beneficial for the numerical
evaluation of this constant. The result is

20 (@) 3 gV TN NL —log(1 +¢%)
(q

L L N>1, d>1 )N(q)N+d qN + qN—i-d 1
N2 n (n+1) N
Noo N Y 2 o~ >

Note that ¢ = % here. Details might appear elsewhere.
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Approximate Counting with m Counters. II. Here, we again consider approximate counting with m
counters, but this time we label them from 1 to m. Now, we proceed as follows: first, we use the first
counter until it will be increased, then we use the second one until it will be increased, etc. until the last
counter is increased then we return to the first one and repeat this procedure.

Let again D,, denote the sum of the m counters after “counting n objects”. This clearly corresponds
to the length of the leftmost path in random digital search trees, where every node can hold up to m keys
(here, the length is the sum of all nodes on the leftmost path weighted by the number of keys contained in

the nodes). Consequently, D, 2 X,,, where X, satisfies
Xoim = Xp, +m,  (n>0)

with X; = ¢,0 < ¢ < m — 1. The Poisson-Laplace-Mellin approach can be applied to this sequence as
well. We only sketch some details.

First, for the Poisson generating functions of the mean and the poissonized variance (again denoted by
fi(z) and V(z), respectively), we have

i( )fll = filgz) +m

=0

and

> ()P0 = ez +g00)

=0

where §(2) is of the form
i = (3 (7)i0) =30 (7) ()

Applying the Poisson-Laplace-Mellin method then yields asymptotic expansion of mean and variance.
We content ourself with stating the result for the variance.

Theorem 4. For approximate counting with m-counters, where counters are chosen cyclically, we have,
asmn — oo,

Var(D,,) ~ GD(logl/q)

where Gp(z) =, gre®*™ is a 1-periodic function with Fourier coefficients

"= T ) aCa <p(3) v e (z)dz) o

(s+1)™"—=1—ms

and
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