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Approximate Counting (Morris 1978)

Space needed for counting n objects: Θ(log n).

Problem: What if space is very limited?

Answer: Allow an error tolerance: approximate counting.

Counter Cn with C0 = 0 and (0 < q < 1)

Cn+1 =

{
Cn + 1, with probability qCn ;

Cn, with probability 1− qCn .

Easy to show:
E(q−Cn) = n

(
q−1 − 1

)
+ 1.

Now, only Θ(log log n) space is needed.
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Applications

Approximate counting has found many applications:

Analysis of the Webgraph.

Monitoring network traffic.

Finding patterns in protein and DNA sequencing.

Computing frequency moments of data streams.

Data storage in flash memory.

Etc.

Many refinements have been proposed.
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The Markov Chain Cn

Other problems leading to the same Markov chain:

Width of greedy decomposition of random acyclic digraphs into
node-disjoint paths.

Size of greedy independent set in random graphs.

Size of greedy clique in random graphs.

Length of leftmost path in random digital search trees.

Variations of this Markov chain were also studied:

Simon (1988); Crippa and Simon (1997); Bertoin, Biane and Yor (2003);
Guillemin, Robert and Zwart (2004); Louchard and Prodinger (2008)
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Analysis of Approximate Counting

Flajolet (1985):

E(Cn) ∼ log1/q n+ Cmean + F (log1/q n),

where F (z) is a 1-periodic function

and

Var(Cn) ∼ Cvar +G(log1/q n),

where G(z) is a 1-periodic function and

Cvar =
π2

6 log2(1/q)
− α− β +

1

12
− 1

log(1/q)

∑
l≥1

1

l sinh(2lπ2/ log(1/q))

with α =
∑

l≥1 q
l/(1− ql) and β =

∑
l≥1 q

2l/(1− ql)2.
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Methods

Many different methods have been used:

Mellin Transform: Flajolet (1985); Prodinger (1992)

Rice Method: Kirschenhofer and Prodinger (1991)

Euler Transform: Prodinger (1994)

Analysis of Extreme Value Distributions: Louchard and Prodinger
(2006)

Martingale Theory: Rosenkrantz (1987)

Probability Theory: Robert (2005)
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Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100
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Random Model and Leftmost Path

Random Model:

Bits are generated by independent Bernoulli random variables with mean p.

Two types of trees:

p = 1/2: symmetric digital search tree;

p 6= 1/2: asymmetric digital search tree.

Length of the Leftmost Path:

Xn: number of vertices on leftmost path.

Note that:
Xn

d
= Cn.
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Distributional Recurrence of Xn

Xn+1
d
= XIn + 1

In
d
= Binomial(n, q);

Xn, In independent.

Root

Size:

In

Size:

n−In

0 1

Recurrence of moments:

fn+1 =

n∑
j=0

(
n

j

)
qjpn−jfj + gn.
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Other Shape Parameters

Depth

Konheim, Newman, Knuth, Devroye, Louchard, Szpankowski

Total Path Length

Flajolet, Sedgewick, Prodinger, Kirschenhofer, Szpankowski, Hubalek

Peripheral Path Length

Drmota, Gittenberger, Panholzer, Prodinger, Ward

# of Occurrences of Patterns

Knuth, Flajolet, Sedgewick, Prodinger, Kirschenhofer

Colless Index

Fuchs, Hwang, Zacharovas
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Methods

Rice Method

Introduced by Flajolet and Sedgewick.

Approach of Flajolet and Richmond

Based on Euler transform, Mellin transform, and singularity analysis.

Approach via Analytic Depoissonization

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based
on saddle point method and Mellin transform.

Schachinger’s Approach

Largely elementary.
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Poisson-Laplace-Mellin Method

Poissonized mean and variance satisfy differential-function equations.

Due to Jacquet-Szpankowski’s theory of depoissonization only the
Poisson model has to be analyzed.

Laplace transform to get rid of the differential operator.

A normalization factor simplifies the functional equation satisfied by
Laplace transform.

Mellin transform is applied which can be computed explicitly.

We use inverse Mellin transform and inverse Laplace transform to
obtain asymptotic expansions in the Poisson model.
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Poissonization

Moments satisfy the recurrence:

fn+1 =

n∑
j=0

(
n

j

)
qjpn−jfj + gn.

Consider Poisson-generating function of fn and gn, i.e.,

f̃(z) := e−z
∑
n≥0

fn
zn

n!
, g̃(z) := e−z

∑
n≥0

gn
zn

n!
.

Then,

f̃(z) + f̃ ′(z) = f̃(qz) + g̃(z).

This is a differential-functional equation.
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Poisson Heuristic

Poisson Heuristic:

fn sufficiently smooth =⇒ fn ≈ f̃(n).

More precisely: if fn is smooth enough,

fn ∼
∑
j≥0

f̃ (j)(n)

n!
τj(n) = f̃(n)− n

2
f̃
′′
(n) + . . . ,

where τj(n) := n![zn](z − n)jez

This is called Poisson-Charlier expansion (can be already found in
Ramanujan’s notebooks).
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Jacquet-Szpankowski-admissibility (JS-admissibility)

f̃(z) is called JS-admissible if

(I) Uniformly for | arg(z)| ≤ ε,

f̃(z) = O
(
|z|α logβ |z|

)
,

(O) Uniformly for ε < | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε)|z|

)
.

Theorem (Jacquet and Szpankowski)

If f̃(z) is JS-admissible, then

fn ∼ f̃(n)− n

2
f̃
′′
(n) + · · · .
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Depoissonization

JS-admissibility satisfies closure properties:

(i) f̃ , g̃ JS-admissible, then f̃ + g̃ JS-admissible.

(ii) f̃ JS-admissible, then f̃ ′ JS-admissible. Etc.

Proposition

Consider
f̃(z) + f̃ ′(z) = f̃(qz) + g̃(z).

We have,

g̃(z) JS-admissible ⇐⇒ f̃(z) JS-admissible.
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Poissonized Mean and Second Moment

Define

f̃1(z) = e−z
∑
n≥0

E(Xn)
zn

n!
, f̃2(z)e

−z
∑
n≥0

E(X2
n)
zn

n!

which are poissonized mean and second moment.

Then,

f̃1(z) + f̃ ′1(z) = f̃1(qz) + 1

f̃2(z) + f̃ ′2(z) = f̃2(qz) + 2f̃1(qz) + 1

Previous results show that f̃1(z), f̃2(z) are JS admissible.
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Poissonized Variance

Important in order to avoid having to cope with cancelations!

Mean, Variance = Θ(logβ n):

Ṽ (z) = f̃2(z)− f̃1(z)2.

Mean, Variance = Θ(n logβ n):

Ṽ (z) = f̃2(z)− f̃1(z)2 − zf̃ ′1(z)2.

More general:

Ṽ (z) = f̃2(z)−
∑
n≥0

f̃
(n)
1 (z)2

zn

n!
.

Then one obtains even identities!
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Ṽ (z) = f̃2(z)− f̃1(z)2.

Mean, Variance = Θ(n logβ n):
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Laplace and Mellin Transform (i)

We start from,
f̃(z) + f̃ ′(z) = f̃(qz) + g̃(z).

Applying Laplace transform,

(s+ 1)L [f̃(z); s] =
1

q
L

[
f̃(z);

1

q

]
+ L [g̃(z); s].

Define,

Q(s) :=
∑
l≥1

(
1− qls

)
and Q∞ := Q(1).
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Laplace and Mellin Transform (ii)

Set

f̄(s) :=
L [f̃(z); s]

Q(−s)
, ḡ(s) :=

L [g̃(z); s]

Q(−s/q)
.

Then,

f̄(s) =
1

q
f̄

(
s

q

)
+ ḡ(s).

Applying Mellin transform,

M [f̄(s);ω] =
M [ḡ(s);ω]

1− qω−1
.

From this, an asymptotic expansion of f̃(z) as z →∞ is obtained via
inverse Mellin transform and inverse Laplace transform.
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Inverse Laplace Transform

Theorem (F., Hwang, Zacharovas)

Let the Laplace transform of f̃(z) exist and be analytic in C \ (−∞, 0].

Assume that
L [f̃ ; s] = O

(
|s|−α

)
uniformly for |s| → 0 and | arg(s)| ≤ π − ε.

Then,
f̃(z) = O

(
|z|α−1

)
uniformly for |z| → ∞ and | arg(z)| ≤ π/2− ε.
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Our Approach vs. Flajolet-Richmond

asymptotics

of f̃(z) as

|z| → ∞

asymptotics

of Laplace
Q(−s)

Laplace
Q(−s)

Euler
Q(−s)

asymptotics

of Euler
Q(−s)

asymptotics

of A(z)

as z ∼ 1

EGF

f(z)

Laplace

transform

of e−zf(z)

Euler

transform

of A(z)

OGF

A(z)

de-Poi by

saddle-point

Mellin

transform

singularity

analysis

=
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Main Result

Theorem (F., Lee, Prodinger)

We have,
Var(Cn) ∼

∑
k

gkn
χk ,

where

gk =
Q∞

LΓ(1 + χk)

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ϕ(χk; q

h+j + ql+j).

Here, χk = 2kπi/L, L = log(1/q), Qj =
∏j
l=1(1− q

l) and

ϕ(χ;x) =

{
π(xχ − 1)/(sin(πχ)(x− 1)), if x 6= 1;

πχ/ sin(πχ), if x = 1.
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An Identity

Corollary (F., Lee, Prodinger)

We have,

Q∞
L

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ψ(qh+j + ql+j)

=
π2

6L2
− α− β +

1

12
− 1

L

∑
l≥1

1

l sinh(2lπ2/L)
,

where

ψ(x) =

{
log x/(x− 1), if x 6= 1;

1, if x = 1.

We have a direct proof for this using tools from q-analysis.
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Total Path Length (i)

Tn: total path length in symmetric digital search tree.

Theorem (F., Hwang, Zacharovas)

We have
Var(Tn) ∼ n(Cvar +G(log2 n)),

where G(z) is a 1-periodic function with zero average value and

Cvar =
Q∞
L

∑
j,h,l≥0

(−1)j2−(j+1
2 )

QjQhQl2h+l
δ(2−j−h + 2−j−l),

where

δ(x) :=

{
(x− log x− 1)/(x− 1)2, if x 6= 1;

1/2, if x = 1.
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Total Path Length (ii)

Variance of total path length was also derived by Kirschenhofer, Prodinger
and Szpankowski with different expression for Cvar.

To describe their expression we need:

Let [FG]0 denote the 0-th Fourier coefficient of the product of the
two Fourier series F (z) and G(z).

Put

F (z) =
1

L

∑
l 6=0

Γ(−1− χl)e2lπiz

and

H(z) = − 1

L

∑
l 6=0

(
1− χl

2

)
Γ(−χl)e2lπiz.
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Cvar =−
28

3L
−

39

4
− 2

∑
l≥1

l2l

(2l − 1)2
+

2

L

∑
l≥1

1

2l − 1
+

π2

2L2
+

2

L2

−
2

L

∑
l≥3

(−1)l+1(l − 5)

(l + 1)l(l − 1)(2l − 1)

+
2

L

∑
l≥1

(−1)l2−
(
l+1
2

)L(1− 2−l+1)/2− 1

1− 2−l
−
∑
r≥2

(−1)r+1

r(r − 1)(2r+l − 1)


−

2Q(1)

L
+
∑
l≥2

1

2lQl

∑
r≥0

(−1)r2−
(
r+1
2

)
Qr

Qr+l−2·

·
(
−
∑
j≥1

1

2j+r+l+2 − 1

(
2l+1 − 2l − 4 + 2

l−1∑
i=2

(l + 1

i

) 1

2r+i−1 − 1

)

+
2

(1− 2−l−r)2
+

2l + 2

(1− 21−l−r)2
−

2

L

1

1− 21−l−r
+

2

L

l+1∑
j=1

(l + 1

j

) 1

2r+j − 1

− 2

l+1∑
j=2

(l + 1

j

) 1

2r+j−1 − 1
+

2

L

l+1∑
j=0

(l + 1

j

)∑
i≥1

(−1)i

(i+ 1)(2r+j+i − 1)

)

+
∑
l≥3

l−1∑
r=2

(l + 1

r

)Qr−2Ql−r−1

2lQl

∑
j≥l+1

1

2j − 1
− 2[FH]0 − [F 2]0.
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Approximate Counting with m Counters (i)

Cichoń and Macyna:

Consider m counters. When counting the n-th object choose one uniform
at random.

Dn: sum of all counters after counting n objects.

Then,

Dn
d
= C

(1)
I1

+ · · ·+ C
(m)
Im

,

where

P (I1 = n1, . . . , Im = nm) =
1

mn

(
n

n1, . . . , nm

)
.

Let f̃D, f̃C denote Poisson mean of Dn and Cn. Similar, let ṼD and ṼC
denote Poisson variance of Dn and Cn.
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Approximate Counting with m Counters (ii)

Poisson model:

f̃D(z) = mf̃C(z/m),

ṼD(z) = mṼC(z/m).

From this, we obtain the following result.

Theorem (F., Lee, Prodinger)

We have,

E(Dn) ∼ m log1/q(n/m) +mCmean +mF (log1/q(n/m)),

Var(Dn) ∼ mCvar +mG(log1/q(n/m)),

where Cmean, Cvar and F (z), G(z) are as before.
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Approximate Counting with m Counters (iii)

Another variant of approximate counting with m counters:

Consider m counters. Use a counter until it is increased; then cyclically
move on to the next.

Dn: sum of all counters after counting n objects.

Then,

Dn
d
= Xn,

where
Xn+m

d
= XIn +m.

Xn is the length of the leftmost path in random bucket digital search tree
with bucket size m.
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Approximate Counting with m Counters (iv)

Recurrence of moments:

fn+m =

n∑
j=0

(
n

j

)
qjpn−jfj + gn.

Poissonized variance Ṽ (z) satisfies the differential function equation:

m∑
i=0

(
m

i

)
Ṽ (i)(z) = Ṽ (qz) + g̃(z),

where

g̃(z) =

(
m∑
i=0

(
m

i

)
f̃
(i)
1 (z)

)2

−
m∑
i=0

(
m

i

)(
f̃1(z)

2
)(i)

.
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Approximate Counting with m Counters (v)

Theorem (F., Lee, Prodinger)

We have,
Var(Dn) ∼

∑
k

gkn
χk ,

where

gk =
1

LΓ(1 + χk)

∫ ∞
0

sχk

Q(−s/q)m

(
p(s) +

∫ ∞
0

e−sz g̃(z)dz

)
ds

and

p(s) =
(s+ 1)m − 1−ms

s2
.
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