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Probabilistic Analysis of a Genealogical Model of Animal
Group Patterns

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 2 / 30



Phylogenetic Tree

Ordered, binary, rooted tree with leafs representing the animals.

Describes the genetic relatedness of animals.
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Yule-Harding Model (Bottom-Up)

Fundamental random model in phylogenetics.

Uniformly choose a pair of yellow nodes and let them coalesce.
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Animal Groups under the Yule-Harding Model

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

Clade of a leaf:

All leafs of the
tree rooted at the
parent.
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# of groups

m
# of maximal
clades

m
2
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Yule-Harding Model (Top-Down)

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.
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# of Groups

Xn = # of groups under the Yule Harding model

We have,

Xn
d
=

{
1, if In = 1 or In = n− 1,

XIn +X∗n−In , otherwise,

where In = Uniform{1, . . . , n− 1} is the # of animals in the left subtree
and X∗n is an independent copy of Xn.

Theorem (Durand and François; 2010)

We have,

E(Xn) ∼ an
(
a :=

1− e−2

4

)
.
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Comparison with Real-life Data

Durand, Blum and François (2007) presented the following data:
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Extra Clustering Model

Durand, Blum and François (2007):

Let p ≥ 0.

We have,

Xn
d
=

{
1, with probability p

neutral model, otherwise.

Remark: p = 0 is neutral model.

Introduced to test whether or not genetic relatedness is the sole driving
force behind the group formation process.
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Average Number of Groups

Theorem (Durand and François; 2010)

We have,

E(Xn) ∼



c(p)

Γ(2(1− p))
n1−2p, if p < 1/2;

log n

2
, if p = 1/2;

p

2p− 1
, if p > 1/2,

where

c(p) :=
1

e2(1−p)

∫ 1

0
(1− t)−2pe2(1−p)t

(
1− (1− p)t2

)
dt.
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Testing for the Neutral Model

Durand, Blum and François (2007):
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Yi-Wen’s Thesis (2012)
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Variance and SLLN

Theorem (Lee; 2012)

We have,

Var(Xn) ∼ (1− e−2)2

4
n log n = 4a2n log n.

Theorem (Lee; 2012)

We have,

P

(
lim
n→∞

∣∣∣∣ Xn

E(Xn)
− 1

∣∣∣∣ = 0

)
= 1.

For SLLN, Xn is constructed on the same probability space via the tree
evolution process underlying the Yule-Harding model.
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Higher Moments

Theorem (Lee; 2012)

For all k ≥ 3,

E(Xn − E(Xn))k ∼ (−1)k
2k

k − 2
aknk−1.

This implies that all moments larger than two of

Xn − E(Xn)√
Var(Xn)

tend to infinity!

Question: Is there a limit distribution?
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Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.
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Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒

⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒

⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒

⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒

⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒

⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒

⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

⇒ ⇒ ⇒ ⇒

Yn = number of steps until tree is destroyed

= number of edges cut = 4.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 17 / 30



Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)

We have,
E(Yn) ∼ n

log n

and for k ≥ 2

E(Yn − E(Yn))k ∼ (−1)k

k(k − 1)
· nk

logk+1 n
.

Thus, again the limit law of

Yn − E(Yn)√
Var(Yn)

cannot obtained from the method of moments!

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 18 / 30



Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)

We have,
E(Yn) ∼ n

log n

and for k ≥ 2

E(Yn − E(Yn))k ∼ (−1)k

k(k − 1)
· nk

logk+1 n
.

Thus, again the limit law of

Yn − E(Yn)√
Var(Yn)

cannot obtained from the method of moments!

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 18 / 30



Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009)

We have,
log2 n

n
Yn − log n− log logn

d−→ Y

with
E(eiλY ) = eiλ log |λ|−π|λ|/2.

The law of Y is spectrally negative stable with index of stability 1.

Different proofs of this result exist.
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Limit Law of Xn

Recall that

Xn
d
=

{
1, if In = 1 or In = n− 1,

XIn +X∗n−In , otherwise,

where In = Uniform{1, . . . , n− 1} and X∗n is an independent copy of Xn.

Theorem (Drmota, F., Lee; 2014)

We have,
Xn − E(Xn)√

Var(Xn)/2

d−→ N(0, 1).
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Some Ideas of the Proof (i)

Set
X(y, z) =

∑
n≥2

E
(
eyXn

)
zn.

Then,

z
∂

∂z
X(y, z) = X(y, z) +X2(y, z) + eyz2

2eyz3

1− z
.

This is a Riccati DE.

Set

X̃(y, z) =
X(y, z)

z
.

Then,
∂

∂z
X̃(y, z) = X̃2(y, z) + ey

1 + z

1− z
.
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Some Ideas of the Proof (ii)

Set

X̃(y, z) = −V
′(y, z)

V (y, z)
.

Then,

V ′′(y, z) + ey
1 + z

1− z
V (y, z) = 0.

This is Whittaker’s DE.

Solution is given by

V (y, z) = M−ey/2,1/2

(
2ey/2(z − 1)

)
+ c(y)W−ey/2,1/2

(
2ey/2(z − 1)

)
,

where

c(y) = −
(
ey/2 − 1

)
M−ey/2+1,1/2

(
−2ey/2

)
W−ey/2+1,1/2

(
−2ey/2

) .
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Some Ideas of the Proof (iii)

Lemma

V (y, z) is analytic in

∆ = {z ∈ C : |z| < 1 + δ,

arg(z) 6= π}

for all |y| < η.

Moreover, V (y, z) has only one
(simple) zero with

z0(y) = 1− ay
+ 2a2y2 log y +O(y2).

δ z0(y)

1

∆
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Some Ideas of the Proof (iv)

Let y = it/(2a
√
n log n). Then,

E
(
eyXn

)
=

1

2πi

∫
C

X(y, z)

zn+1
dz.

Lemma

We have,

E
(
eyXn

)
= z0(y)−n +O

(
log3 n

n

)
.

This together with the expansion of z0(y) yields

E
(
eyXn

)
= exp

(
it
√
n

2
√

log n
− t2

4

)(
1 +O

(
log log n

log n

))
.
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Extra Clustering Model: 0 < p < 1/2 (i)

Theorem (Drmota, F., Lee; 2014)

We have,
Xn

n1−2p
d−→ X,

where the distribution of X is the sum of a discrete distribution with mass
p/(1− p) at 0 and a continuous distribution on [0,∞) with density

f(x) =
4(1− 2p)3

1− p
∑
k≥0

(−δ(p))k

k!Γ(2(k + 1)p− k)
xk,

where

δ(p) =
(1− 2p)2Wp,(1−2p)/p (−2(1− p))

4p−1(1− p)2pMp,(1−2p)/p (−2(1− p))
.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 25 / 30



Extra Clustering Model: 0 < p < 1/2 (ii)

We have E(Xk) = dk/Γ(k(1− 2p) + 1) with

d1 =
1

e2(1−p)

∫ 1

0
(1− t)−2pe2(1−p)t

(
1− (1− p)t2

)
dt

and for k ≥ 2

dk =
2(1− p)

(k − 1)(1− 2p)

k−2∑
j=0

(
k − 1

j

)
dk−1−jdj+1.

Moreover,

E
(
eyX

)
=

1

2πi

∫
H

Φ(y, t)e−tdt,

where H is the Hankel contour and

Φ(y, t) =
4(1− 2p)2 − ypm(p)4p(1− p)2p−1t2p−1

4(1− 2p)2t− ym(p)4p(1− p)2pt2p

and m(p) = Mp,(1−2p)/2(−2(1− p))/Wp,(1−2p)/2(−2(1− p)).
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Extra Clustering Model: 0 < p < 1/2 (ii)

We have E(Xk) = dk/Γ(k(1− 2p) + 1) with

d1 =
1

e2(1−p)

∫ 1

0
(1− t)−2pe2(1−p)t

(
1− (1− p)t2

)
dt

and for k ≥ 2

dk =
2(1− p)

(k − 1)(1− 2p)

k−2∑
j=0

(
k − 1

j

)
dk−1−jdj+1.

Moreover,

E
(
eyX

)
=

1

2πi

∫
H

Φ(y, t)e−tdt,

where H is the Hankel contour and

Φ(y, t) =
4(1− 2p)2 − ypm(p)4p(1− p)2p−1t2p−1
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Extra Clustering Model: p = 1/2

Theorem (Drmota, F., Lee; 2014)

We have,

E(Xk
n) ∼ k!J2k−1

(2k − 1)!22k−1
log2k−1 n,

where J2k−1 are the tangent numbers (or Euler numbers of odd index).

Theorem (Drmota, F., Lee; 2014)

We have,

Xn
d−→ X,

where X is the discrete distribution with

E
(
uX
)

= 1−
√

1− u.
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Extra Clustering Model: 1/2 < p < 1

Theorem (Drmota, F., Lee; 2014)

We have,

Xn
d−→ X,

where X is the discrete distribution with

E
(
uX
)

=
1−

√
1− 4p(1− p)u
2(1− p)

.

For the moments, we have E(Xk) = ek with e1 = p/(2p− 1) and for k ≥ 2

ek =
2(1− p)
2p− 1

k−2∑
j=0

(
k − 1

j

)
ek−1−jej+1 +

p

2p− 1
.
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Summary

Complete analysis of the extra clustering model.

Surprising central limit law for p = 0.

Only for 0 < p < 1/2 and 1/2 < p ≤ 1 the method of moments
applies.

Analytic proof in all cases via singularity perturbation theory.
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Open Problems

Better explanation of the curious central limit law.

Probabilistic proof?

Similar curious central limit law for the total length of external
branches in Kingman’s coalescent:

Janson and Kersting (2011). On the total external length of the
Kingman coalescent, Electronic J. Probability, 16, 2203-2218.

Any relationship?

How about limit laws for Xn for other random tree models?
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