LIMIT LAWS FOR THE NUMBER OF GROUPS FORMED BY SOCIAL ANIMALS UNDER THE EXTRA CLUSTERING MODEL (joint with Michael Drmota and Yi-Wen Lee)

Michael Fuchs

Institute of Applied Mathematics National Chiao Tung University

June 19th, 2014

Probabilistic Analysis of a Genealogical Model of Animal Group Patterns

J. Math. Biol. (2010) 60:451–468 DOI 10.1007/s00285-009-0270-y **Mathematical Biology**

Probabilistic analysis of a genealogical model of animal group patterns

Eric Durand · Olivier François

Received: 26 October 2007 / Revised: 5 March 2009 / Published online: 12 April 2009 © Springer-Verlag 2009

Phylogenetic Tree

Ordered, binary, rooted tree with leafs representing the animals.

Describes the genetic relatedness of animals.

Michael Fuchs (NCTU)

Fundamental random model in phylogenetics.

3

(日) (周) (三) (三)

Fundamental random model in phylogenetics.

Uniformly choose a pair of yellow nodes and let them coalesce.

3

(日) (周) (三) (三)

Fundamental random model in phylogenetics.

Uniformly choose a pair of yellow nodes and let them coalesce.

< 4 ₽ × <

Fundamental random model in phylogenetics.

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

3

(日) (同) (三) (三)

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \longrightarrow neutral model.

(日) (周) (三) (三)

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \rightarrow neutral model.

Clade of a leaf:

All leafs of the tree rooted at the parent.

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \rightarrow neutral model.

Clade of a leaf:

All leafs of the tree rooted at the parent.

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \rightarrow neutral model.

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \rightarrow neutral model.

6 / 30

Alternative description of Yule-Harding model:

(日) (周) (三) (三)

3

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.

A 🖓 h

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.

of Groups

 $X_n = \#$ of groups under the Yule Harding model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

of Groups

 $X_n=\#$ of groups under the Yule Harding model

We have,

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n-1, \\ X_{I_n} + X_{n-I_n}^*, & \text{otherwise,} \end{cases}$$

where $I_n = \text{Uniform}\{1, \dots, n-1\}$ is the # of animals in the left subtree and X_n^* is an independent copy of X_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

of Groups

 $X_n=\#$ of groups under the Yule Harding model

We have,

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n-1, \\ X_{I_n} + X_{n-I_n}^*, & \text{otherwise,} \end{cases}$$

where $I_n = \text{Uniform}\{1, \dots, n-1\}$ is the # of animals in the left subtree and X_n^* is an independent copy of X_n .

Michael Fuchs (NCTU)

Comparison with Real-life Data

Durand, Blum and François (2007) presented the following data:

Extra Clustering Model

Durand, Blum and François (2007):

Let $p \ge 0$.

We have,

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{with probability } p \\ \text{neutral model}, & \text{otherwise.} \end{cases}$$

Extra Clustering Model

Durand, Blum and François (2007):

Let $p \ge 0$.

We have,

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{with probability } p \\ \text{neutral model}, & \text{otherwise.} \end{cases}$$

Remark: p = 0 is neutral model.

イロト 不得 トイヨト イヨト 二日

Extra Clustering Model

Durand, Blum and François (2007):

Let $p \ge 0$.

We have,

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{with probability } p \\ \text{neutral model}, & \text{otherwise.} \end{cases}$$

Remark: p = 0 is neutral model.

Introduced to test whether or not genetic relatedness is the sole driving force behind the group formation process.

イロト 不得下 イヨト イヨト 二日

Average Number of Groups

Theorem (Durand and François; 2010)

We have,

$$\mathbb{E}(X_n) \sim \begin{cases} \frac{c(p)}{\Gamma(2(1-p))} n^{1-2p}, & \text{if } p < 1/2; \\ \frac{\log n}{2}, & \text{if } p = 1/2; \\ \frac{p}{2p-1}, & \text{if } p > 1/2, \end{cases}$$

where

$$c(p) := \frac{1}{e^{2(1-p)}} \int_0^1 (1-t)^{-2p} e^{2(1-p)t} \left(1 - (1-p)t^2\right) \mathrm{d}t.$$

æ

・ロン ・四 ・ ・ ヨン ・ ヨン

Testing for the Neutral Model

Durand, Blum and François (2007):

	size	herds	r ate <i>p</i>
(A)			
Springboks (browsers)	149	6	0.40
Springboks (graze)	1064	40	0.24
Fallow deers	349	22	0.23
Grant's gazelles	221	6	0.44
Wild camels	227	27	0.14
Kangaroos	348	41	0.12
African savannah	304	45	0.08
elephants			
	Sample	Number of	Rate
	Sample size	Number of packs/prides	Rate <i>p</i>
(B)	Sample size	Number of packs/prides	Rate <i>p</i>
(B) Yellowstone Wolves 2002	Sample size	Number of packs/prides	Rate <i>p</i> 0.11
(B) Yellowstone Wolves 2002 Yellowstone Wolves 2004	Sample size 90 112	Number of packs/prides 14 16	Rate \hat{p} 0.11 0.12
(B) Yellowstone Wolves 2002 Yellowstone Wolves 2004 Alaska Wolves	Sample size 90 112 151	Number of packs/prides 14 16 30	Rate \hat{p} 0.11 0.12 0.02
(B) Yellowstone Wolves 2002 Yellowstone Wolves 2004 Alaska Wolves Scandinavian wolf	Sample size 90 112 151 76	Number of packs/prides 14 16 30 12	Rate \hat{p} 0.11 0.12 0.02 0.11
(B) Yellowstone Wolves 2002 Yellowstone Wolves 2004 Alaska Wolves Scandinavian wolf Zambia Kafue lions	Sample size 90 112 151 76 95	Number of packs/prides 14 16 30 12 14	Rate \hat{p} 0.11 0.12 0.02 0.11 0.12
(B) Yellowstone Wolves 2002 Yellowstone Wolves 2004 Alaska Wolves Scandinavian wolf Zambia Kafue lions Selous Game lions	Sample size 90 112 151 76 95 51	Number of packs/prides 14 16 30 12 14 13	Rate \hat{p} 0.11 0.12 0.02 0.11 0.12 0.00

Yi-Wen's Thesis (2012)

Group Patterns of Social Animals under the Neutral Model

Yi-Wen Lee

Department of Applied Mathematics,

National Chiao Tung University

This thesis was supervised by Dr. Michael Fuchs

May 26, 2012

3

(日) (周) (三) (三)

Variance and SLLN

Theorem (Lee; 2012)

We have,

$$\operatorname{Var}(X_n) \sim \frac{(1-e^{-2})^2}{4} n \log n = 4a^2 n \log n.$$

イロト イポト イヨト イヨト

Variance and SLLN

Theorem (Lee; 2012)

We have,

$$\operatorname{Var}(X_n) \sim \frac{(1 - e^{-2})^2}{4} n \log n = 4a^2 n \log n.$$

Theorem (Lee; 2012)

We have,

$$P\left(\lim_{n \to \infty} \left| \frac{X_n}{\mathbb{E}(X_n)} - 1 \right| = 0 \right) = 1.$$

For SLLN, X_n is constructed on the same probability space via the tree evolution process underlying the Yule-Harding model.

Whichsel Fuchs (
Whenaci i ucho (11010

イロト 不得 トイヨト イヨト 二日

Higher Moments

Theorem (Lee; 2012)

For all $k \geq 3$,

$$\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k-2} a^k n^{k-1}$$

Higher Moments

Theorem (Lee; 2012)

For all $k \geq 3$,

$$\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k-2} a^k n^{k-1}$$

This implies that all moments larger than two of

$$\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\operatorname{Var}(X_n)}}$$

tend to infinity!

3

(日) (周) (三) (三)

Higher Moments

Theorem (Lee; 2012)

For all $k \geq 3$,

$$\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k-2} a^k n^{k-1}$$

This implies that all moments larger than two of

$$\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\operatorname{Var}(X_n)}}$$

tend to infinity!

Question: Is there a limit distribution?

Michael Fuchs (NCTU)

3

(日) (周) (三) (三)
Unordered, rooted trees.

(日) (四) (王) (王) (王)

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

\bigcirc

3

(日) (周) (三) (三)

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

3

(日) (周) (三) (三)

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

3

(日) (同) (三) (三)

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

3. 3

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

3

-

Image: A matrix of the second seco

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

-

A 🖓 h

3

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

A 🖓

3

Meir and Moon (1974):

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 $Y_n =$ number of steps until tree is destroyed = number of edges cut = 4.

イロト 不得下 イヨト イヨト 二日

Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)
We have,

$$\mathbb{E}(Y_n) \sim \frac{n}{\log n}$$
and for $k \ge 2$

$$\mathbb{E}(Y_n - \mathbb{E}(Y_n))^k \sim \frac{(-1)^k}{k(k-1)} \cdot \frac{n^k}{\log^{k+1} n}.$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)
We have,

$$\mathbb{E}(Y_n) \sim \frac{n}{\log n}$$
and for $k \ge 2$

$$\mathbb{E}(Y_n - \mathbb{E}(Y_n))^k \sim \frac{(-1)^k}{k(k-1)} \cdot \frac{n^k}{\log^{k+1} n}.$$

Thus, again the limit law of

$$\frac{Y_n - \mathbb{E}(Y_n)}{\sqrt{\operatorname{Var}(Y_n)}}$$

cannot obtained from the method of moments!

Michael Fuchs (NCTU)

(日) (同) (三) (三)

Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009) *We have*,

$$\frac{\log^2 n}{n} Y_n - \log n - \log \log n \xrightarrow{d} Y$$

with

$$\mathbb{E}(e^{i\lambda Y}) = e^{i\lambda \log|\lambda| - \pi|\lambda|/2}.$$

The law of Y is spectrally negative stable with index of stability 1.

3

(日) (周) (三) (三)

Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009) *We have*,

$$\frac{\log^2 n}{n} Y_n - \log n - \log \log n \xrightarrow{d} Y$$

with

$$\mathbb{E}(e^{i\lambda Y}) = e^{i\lambda \log|\lambda| - \pi|\lambda|/2}.$$

The law of Y is spectrally negative stable with index of stability 1.

Different proofs of this result exist.

3

(日) (周) (三) (三)

Limit Law of X_n

Recall that

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n-1, \\ X_{I_n} + X_{n-I_n}^*, & \text{otherwise,} \end{cases}$$

where $I_n = \text{Uniform}\{1, \dots, n-1\}$ and X_n^* is an independent copy of X_n .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Limit Law of X_n

Recall that

$$X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n-1, \\ X_{I_n} + X_{n-I_n}^*, & \text{otherwise,} \end{cases}$$

where $I_n = \text{Uniform}\{1, \dots, n-1\}$ and X_n^* is an independent copy of X_n .

Theorem (Drmota, F., Lee; 2014) We have,

$$\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\operatorname{Var}(X_n)/2}} \xrightarrow{d} N(0, 1).$$

Whichsel Fuchs (
Whenaci i ucho (11010

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Some Ideas of the Proof (i)

Set

$$X(y,z) = \sum_{n \geq 2} \mathbb{E} \left(e^{y X_n} \right) z^n.$$

Then,

$$z\frac{\partial}{\partial z}X(y,z) = X(y,z) + X^2(y,z) + e^y z^2 \frac{2e^y z^3}{1-z}.$$

This is a Riccati DE.

æ

・ロン ・四 ・ ・ ヨン ・ ヨン

Some Ideas of the Proof (i)

Set

$$X(y,z) = \sum_{n \geq 2} \mathbb{E}\left(e^{yX_n}\right) z^n.$$

Then,

$$z\frac{\partial}{\partial z}X(y,z) = X(y,z) + X^2(y,z) + e^y z^2 \frac{2e^y z^3}{1-z}.$$

This is a Riccati DE.

Set

$$\tilde{X}(y,z) = \frac{X(y,z)}{z}.$$

Then,

$$\frac{\partial}{\partial z}\tilde{X}(y,z) = \tilde{X}^2(y,z) + e^y \frac{1+z}{1-z}.$$

3

イロト イヨト イヨト イヨト

Some Ideas of the Proof (ii)

Set

$$\tilde{X}(y,z) = -\frac{V'(y,z)}{V(y,z)}.$$

Then,

$$V''(y,z) + e^{y} \frac{1+z}{1-z} V(y,z) = 0.$$

This is Whittaker's DE.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Some Ideas of the Proof (ii)

Set

$$\tilde{X}(y,z) = -\frac{V'(y,z)}{V(y,z)}.$$

Then,

$$V''(y,z) + e^{y} \frac{1+z}{1-z} V(y,z) = 0.$$

This is Whittaker's DE.

Solution is given by

$$V(y,z) = M_{-e^{y/2},1/2} \left(2e^{y/2}(z-1) \right) + c(y) W_{-e^{y/2},1/2} \left(2e^{y/2}(z-1) \right),$$

where

$$c(y) = -\frac{\left(e^{y/2} - 1\right) M_{-e^{y/2} + 1, 1/2} \left(-2e^{y/2}\right)}{W_{-e^{y/2} + 1, 1/2} \left(-2e^{y/2}\right)}.$$

3

Some Ideas of the Proof (iii)

Lemma

V(y,z) is analytic in $\Delta = \{ z \in \mathbb{C} : |z| < 1 + \delta,$ $\arg(z) \neq \pi$ for all $|y| < \eta$. Moreover, V(y, z) has only one (simple) zero with $z_0(y) = 1 - ay$

$$+ 2a^2y^2\log y + \mathcal{O}(y^2).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Some Ideas of the Proof (iii)

Lemma

V(y,z) is analytic in $\Delta = \{ z \in \mathbb{C} : |z| < 1 + \delta,$ $\arg(z) \neq \pi$ for all $|y| < \eta$. Moreover, V(y,z) has only one (simple) zero with $z_0(y) = 1 - ay$ $+ 2a^2y^2\log y + \mathcal{O}(y^2).$

- 4 目 ト - 4 日 ト - 4 日 ト

Some Ideas of the Proof (iv)

Let $y = it/(2a\sqrt{n\log n})$. Then,

$$\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Some Ideas of the Proof (iv)

Let $y = it/(2a\sqrt{n\log n})$. Then,

$$\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.$$

Lemma

We have,

$$\mathbb{E}\left(e^{yX_n}\right) = z_0(y)^{-n} + \mathcal{O}\left(\frac{\log^3 n}{n}\right).$$

Michael Fuchs (NCTU)

(日) (四) (王) (王) (王)

Some Ideas of the Proof (iv)

Let $y = it/(2a\sqrt{n\log n})$. Then,

$$\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.$$

Lemma

We have,

$$\mathbb{E}\left(e^{yX_n}\right) = z_0(y)^{-n} + \mathcal{O}\left(\frac{\log^3 n}{n}\right).$$

This together with the expansion of $z_0(y)$ yields

$$\mathbb{E}\left(e^{yX_n}\right) = \exp\left(\frac{it\sqrt{n}}{2\sqrt{\log n}} - \frac{t^2}{4}\right)\left(1 + \mathcal{O}\left(\frac{\log\log n}{\log n}\right)\right).$$

Michael Fuchs (NCTU)

- 32

(日) (周) (三) (三)

Extra Clustering Model: 0 (i)

Theorem (Drmota, F., Lee; 2014)

We have,

$$\frac{X_n}{n^{1-2p}} \stackrel{d}{\longrightarrow} X,$$

where the distribution of X is the sum of a discrete distribution with mass p/(1-p) at 0 and a continuous distribution on $[0,\infty)$ with density

$$f(x) = \frac{4(1-2p)^3}{1-p} \sum_{k \ge 0} \frac{(-\delta(p))^k}{k! \Gamma(2(k+1)p-k)} x^k,$$

where

$$\delta(p) = \frac{(1-2p)^2 W_{p,(1-2p)/p} \left(-2(1-p)\right)}{4^{p-1} (1-p)^{2p} M_{p,(1-2p)/p} \left(-2(1-p)\right)}.$$

3

(日) (周) (三) (三)

Extra Clustering Model: 0 (ii)

We have
$$\mathbb{E}(X^k) = d_k / \Gamma(k(1-2p)+1)$$
 with

$$d_1 = \frac{1}{e^{2(1-p)}} \int_0^1 (1-t)^{-2p} e^{2(1-p)t} \left(1 - (1-p)t^2\right) \mathrm{d}t$$

and for $k\geq 2$

$$d_k = \frac{2(1-p)}{(k-1)(1-2p)} \sum_{j=0}^{k-2} \binom{k-1}{j} d_{k-1-j} d_{j+1}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Extra Clustering Model: 0 (ii)

We have
$$\mathbb{E}(X^k) = d_k / \Gamma(k(1-2p)+1)$$
 with

$$d_1 = \frac{1}{e^{2(1-p)}} \int_0^1 (1-t)^{-2p} e^{2(1-p)t} \left(1 - (1-p)t^2\right) dt$$

and for $k\geq 2$

$$d_k = \frac{2(1-p)}{(k-1)(1-2p)} \sum_{j=0}^{k-2} \binom{k-1}{j} d_{k-1-j} d_{j+1}.$$

Moreover,

$$\mathbb{E}\left(e^{yX}\right) = \frac{1}{2\pi i} \int_{\mathcal{H}} \Phi(y,t) e^{-t} \mathrm{d}t,$$

where $\ensuremath{\mathcal{H}}$ is the Hankel contour and

$$\Phi(y,t) = \frac{4(1-2p)^2 - ypm(p)4^p(1-p)^{2p-1}t^{2p-1}}{4(1-2p)^2t - ym(p)4^p(1-p)^{2p}t^{2p}}$$
 and $m(p) = M_{p,(1-2p)/2}(-2(1-p))/W_{p,(1-2p)/2}(-2(1-p))$.

Michael Fuchs (NCTU)
Extra Clustering Model: p = 1/2

Theorem (Drmota, F., Lee; 2014)

We have,

$$\mathbb{E}(X_n^k) \sim \frac{k! J_{2k-1}}{(2k-1)! 2^{2k-1}} \log^{2k-1} n,$$

where J_{2k-1} are the tangent numbers (or Euler numbers of odd index).

(日) (四) (王) (王) (王)

Extra Clustering Model: p = 1/2

Theorem (Drmota, F., Lee; 2014)

We have,

$$\mathbb{E}(X_n^k) \sim \frac{k! J_{2k-1}}{(2k-1)! 2^{2k-1}} \log^{2k-1} n,$$

where J_{2k-1} are the tangent numbers (or Euler numbers of odd index).

Theorem (Drmota, F., Lee; 2014)

We have,

$$X_n \xrightarrow{d} X,$$

where X is the discrete distribution with

$$\mathbb{E}\left(u^X\right) = 1 - \sqrt{1 - u}.$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Extra Clustering Model: 1/2

$$X_n \xrightarrow{d} X,$$

where \boldsymbol{X} is the discrete distribution with

$$\mathbb{E}(u^{X}) = \frac{1 - \sqrt{1 - 4p(1 - p)u}}{2(1 - p)}$$

イロト イポト イヨト イヨト 二日

Extra Clustering Model: 1/2

$$X_n \xrightarrow{d} X,$$

where \boldsymbol{X} is the discrete distribution with

$$\mathbb{E}(u^X) = \frac{1 - \sqrt{1 - 4p(1 - p)u}}{2(1 - p)}.$$

For the moments, we have $\mathbb{E}(X^k)=e_k$ with $e_1=p/(2p-1)$ and for $k\geq 2$

$$e_k = \frac{2(1-p)}{2p-1} \sum_{j=0}^{k-2} \binom{k-1}{j} e_{k-1-j} e_{j+1} + \frac{p}{2p-1}.$$

Michael Fuchs (NCTU)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Complete analysis of the extra clustering model.

2

・ロン ・四 ・ ・ ヨン ・ ヨン

- Complete analysis of the extra clustering model.
- Surprising central limit law for p = 0.

3

イロト イポト イヨト イヨト

- Complete analysis of the extra clustering model.
- Surprising central limit law for p = 0.
- Only for 0 and <math display="inline">1/2 the method of moments applies.

- Complete analysis of the extra clustering model.
- Surprising central limit law for p = 0.
- Only for 0 and <math display="inline">1/2 the method of moments applies.
- Analytic proof in all cases via singularity perturbation theory.

イロト 不得下 イヨト イヨト 二日

Michael Fuchs (NCTU)

• Better explanation of the curious central limit law.

3

イロト イポト イヨト イヨト

- Better explanation of the curious central limit law.
- Probabilistic proof?

3

(日) (周) (三) (三)

- Better explanation of the curious central limit law.
- Probabilistic proof?
- Similar curious central limit law for the total length of external branches in Kingman's coalescent:

Janson and Kersting (2011). On the total external length of the Kingman coalescent, Electronic J. Probability, 16, 2203-2218.

Any relationship?

12 N 4 12 N

- Better explanation of the curious central limit law.
- Probabilistic proof?
- Similar curious central limit law for the total length of external branches in Kingman's coalescent:

Janson and Kersting (2011). On the total external length of the Kingman coalescent, Electronic J. Probability, 16, 2203-2218.

Any relationship?

• How about limit laws for X_n for other random tree models?

4 AR & 4 E & 4 E &