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-
Phylogenetic Tree

Ordered, binary, rooted tree with leafs representing the animals.

Describes the genetic relatedness of animals.
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Yule-Harding Model (Bottom-Up)

Fundamental random model in phylogenetics.
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Yule-Harding Model (Bottom-Up)

Fundamental random model in phylogenetics.

Uniformly choose a pair of yellow nodes and let them coalesce.
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-
Animal Groups under the Yule-Harding Model

Durand, Blum and Francois (2007):

Groups are formed more likely by animals which are genetically related.
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Animal Groups under the Yule-Harding Model

Durand, Blum and Francois (2007):
Groups are formed more likely by animals which are genetically related.

— neutral model.

Clade of a leaf:

All leafs of the
tree rooted at the
parent.
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Animal Groups under the Yule-Harding Model

Durand, Blum and Francois (2007):
Groups are formed more likely by animals which are genetically related.

— neutral model.

# of groups

0

# of maximal
clades
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Animal Groups under the Yule-Harding Model

Durand, Blum and Francois (2007):
Groups are formed more likely by animals which are genetically related.

— neutral model.

# of groups

0

# of maximal
clades
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Yule-Harding Model (Top-Down)

Alternative description of Yule-Harding model:
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Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.
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Yule-Harding Model (Top-Down)

Alternative description of Yule-Harding model:

Uniformly choose a yellow node and replace it by a cheery.
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# of Groups
X, = # of groups under the Yule Harding model
=] 5 = E DAy



|
# of Groups

X, = # of groups under the Yule Harding model
We have,

n

d J1, if ,=1orI,=n-—1,
N X, + X;’;_In, otherwise,

where I, = Uniform{1,...,n — 1} is the # of animals in the left subtree
and X is an independent copy of X,.
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|
# of Groups

X, = # of groups under the Yule Harding model

We have,
d |1, if ,=1orI,=n-—1,
Xn = .
X, + X;:_In, otherwise,
where I, = Uniform{1,...,n — 1} is the # of animals in the left subtree

and X is an independent copy of X,.

Theorem (Durand and Frangois; 2010)

We have,
| =g2
E(X,) ~an a=— .
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Comparison with Real-life Data

Durand, Blum and Frangois (2007) presented the following data:

lephants
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Extra Clustering Model

Durand, Blum and Francois (2007):

Let p > 0.

We have,

¥ 4 1, with probability p
" neutral model, otherwise.
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Extra Clustering Model

Durand, Blum and Francois (2007):

Let p > 0.

We have,
¥ 4 1, with probability p
" neutral model, otherwise.

Remark: p = 0 is neutral model.

Introduced to test whether or not genetic relatedness is the sole driving
force behind the group formation process.
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Average Number of Groups

Theorem (Durand and Frangois; 2010)
We have, )
c(p) 1-2p
n , ifp<1/2
(201 - ) /
ogn
E(Xn)N B ) pr—]./2
p
f 1/2
oy 1 ifp>1/
\
where
c(p) == 0= p)/ )220 p)t( (1—p)t2) dt.
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Testing for the Neutral Model

Durand, Blum and Frangois (2007):

Sample Number of Rate

size herds P
(A)
Springboks (browsers) 149 6 0.40
Springboks (graze) 1064 40 0.24
Fallow deers 349 22 0.23
Grant's gazelles 221 6 0.44
Wild camels 227 2 0.14
Kangaroos 348 41 0.12
African savannah 304 45 0.08
elephants

Sample Number of Rate

size packs/prides p
(B)
Yellowstone Wolves 2002 90 14 0.11
Yellowstone Wolves 2004 112 16 0.12
Alaska Wolves 15 30 0.02
Scandinavian wolf 76 12 0.11
Zambia Kafue lions 95 14 0.12
Sclous Game lions 51 13 0.00
Serengeti lions 100 16 0.10
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Yi-Wen's Thesis (2012)

Group Patterns of Social Animals under the

Neutral Model
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This thesis was supervised by Dr. Michael Fuchs
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Variance and SLLN

Theorem (Lee; 2012)
We have,

Var(x,) ~ L7 )

1 nlogn = 4a’*nlogn.
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N
Variance and SLLN

Theorem (Lee; 2012)

We have,
(1 —e2)2

Var(X,,) ~ 1

nlogn = 4a*nlogn.

Theorem (Lee; 2012)

We have,
Xn
Pl LI — 1= = 1.
<n520’151(xn) ‘ )

For SLLN, X, is constructed on the same probability space via the tree
evolution process underlying the Yule-Harding model.
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Higher Moments

Theorem (Lee; 2012)

For all k > 3,

E(X, — E(Xn))* ~ (—1)f 2%

=2
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Higher Moments

Theorem (Lee; 2012)
For all k > 3,

2k _
E(X, — E(X,))* ~ (—1)’€]~C — 2aknk L

This implies that all moments larger than two of

X, —E(X,)
Var(X,,)

tend to infinity!
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Higher Moments

Theorem (Lee; 2012)
For all k > 3,

2k _
E(X, — E(X,))* ~ (—1)’€]~c — 2aknk L

This implies that all moments larger than two of

X, —E(X,)
Var(X,,)

tend to infinity!

Question: Is there a limit distribution?
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Random Recursive Trees
Unordered, rooted trees.
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Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

O

Michael Fuchs (NCTU)

o F
Animal Group Patterns



B
Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU)

o F
Animal Group Patterns



Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 16 / 30



Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 16 / 30



Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 16 / 30



Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 16 / 30



Random Recursive Trees

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 16 / 30



Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.
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Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.
ﬁ ) A\I ) ) o
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Cutting Down Random Recursive Trees

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

At

Y,, = number of steps until tree is destroyed

= number of edges cut = 4.
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Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)

We have, n
Y,) ~
(Ya) logn
and fork > 2
E(Y, — E(Y,))F ~ ( - .
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Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)

We have, n
Y,) ~
(Yz) logn
and fork > 2
1 k k
E(Y, — E(Y,))* ~ (=1) n

k(k—1) ’ logh+1

Thus, again the limit law of

Y, —E(Y,)
Var(Y;,)
cannot obtained from the method of moments!

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014

18 / 30




Limit Law

Theorem (Drmota, lksanov, Moehle, Roessler; 2009)

We have,

log? n

Y, —logn — loglogn Ay

with
E(ei)\Y) _ ei)\ log |A|—m|A|/2

The law of Y is spectrally negative stable with index of stability 1.
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Limit Law

Theorem (Drmota, lksanov, Moehle, Roessler; 2009)

We have,

log? n

Y, —logn — loglogn Ay

with
E(ei)\Y) _ ei)\ log |A|—m|A|/2

The law of Y is spectrally negative stable with index of stability 1.

Different proofs of this result exist.
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|
Limit Law of X,

Recall that

d |1, ifI,=1orI,=n-—1,
" X, + X;;_In, otherwise,

where I, = Uniform{1,...,n — 1} and X is an independent copy of X,.
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Limit Law of X,

Recall that

d |1, ifI,=1orI,=n-—1,
" X, + X;;_In, otherwise,

where I, = Uniform{1,...,n — 1} and X is an independent copy of X,.

Theorem (Drmota, F., Lee; 2014)

We have,
X, —E(X,) 4q

Var (X2 — N(0,1).
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N
Some ldeas of the Proof (i)

Set

X(y,z) = ZE (eyX") 2"

n>2

Then,

2e¥ 23
Z%X(y, 2) = X(y,2) + X2y, 2) + V22
This is a Riccati DE.

_z.
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|
Some ldeas of the Proof (i)

Set
X(y,2z) = ZE (eyX") 2"
n>2
Then, 5
2¢Y
s X(,2) = X(5,2) + X2(y,2) 4 V2200

This is a Riccati DE.

—Z

Set

Then,
1+ 2
1—2z

o -~ -
- — X2 Y
5,5 W, %) (y,2) +e
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N
Some ldeas of the Proof (ii)
Set

Then,

V'(y, 2)
X(y,z) =
v.2) V(y,2)
Viy,2) + e/ —V(y,2) = 0.
This is Whittaker's DE.
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Some ldeas of the Proof (ii)

Set

Then,

V(y,z) =0.

1
V//(:% 2:) Loy . +z

This is Whittaker's DE.

Solution is given by

V(. 2) = M_pua s (2672(2 = 1) + c)W_ura 1o (2622 = 1) |
where
(ey/2 - 1) M_cys2q11)0 (_2ey/2)

cly) = —
) W_curzin1)0 (—2¢9/2)

Michael Fuchs (NCTU) Animal Group Patterns June 19th, 2014 22 /30



|
Some Ideas of the Proof (iii)

Lemma
V(y, z) is analytic in
A={zeC : |z| <1+,
arg(z) 7 m}
for all |y| <n.

Moreover, V (y, z) has only one
(simple) zero with

zo(y) =1—ay
+ 2a*y%logy + O(y?).

4
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N
Some ldeas of the Proof (iv)
Let y = it/(2ay/nlogn). Then,

E () = -

X
1 / v.2) 4.
2ri Jo 2ntl
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Some ldeas of the Proof (iv)

Let y = it/(2av/nlogn). Then,
1 X
E (ean) — _/ (y’z)dz

2ri Jo 2ntl

Lemma

We have,
log3 n

E (e¥X") = 2(y) "+ O (—) :

n
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Some ldeas of the Proof (iv)
Let y = it/(2av/nlogn). Then,
E (ean) — L/ X(y’z)dz

2ri Jo 2ntl

Lemma
We have,

E (¢¥Xr) = 2o(y) " + O (lof”) .

This together with the expansion of zy(y) yields

. 2
yXn) _ ityn - t* loglogn
B () = exp (2\/1ogn 4 1+0o logn '
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Extra Clustering Model: 0 < p < 1/2 (i)

Theorem (Drmota, F., Lee; 2014)

We have,

X d
= — X,
ni—4p

where the distribution of X is the sum of a discrete distribution with mass
p/(1 —p) at 0 and a continuous distribution on [0, c0) with density

41 -2p)3 (—5(p))*
@) = 1-p kz>0 ET(2(k+ 1)p — k) $k»
where ,
5(p) (1 —2p) Wy, 1-2p)/p (=2(1 — p))

= T DMy 1y (20— )
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|
Extra Clustering Model: 0 < p < 1/2 (ii)

We have E(X*) = d;,/T\(k(1 — 2p) + 1) with
2 p)/ )~pe2p)t (1—(1—p)t?)dt

and for k > 2

k—2
dy = —i————— dip_1_;d;iq.
k (k 1_2p ( )klj]—l—l

“M
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Extra Clustering Model: 0 < p < 1/2 (ii)

We have E(X*) = d;,/T\(k(1 — 2p) + 1) with

2 p)/ )~pe2p)t (1—(1—p)t?)dt

( )dk—1—jdj+1.

1
yX - —t
E (e!*) 57 /H O(y,t)e "dt,
where H is the Hankel contour and
By, 1) = 41— 2p)* — ypm(p)4P(1 — p)?P~ 112!
DU T4 = 2p)2t — ym(p) 4 (1 — p)2e
and m(p) = My, (1—9p)/2(=2(1 = p)) /W), (1—2p) 2(=2(1 — p)).
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di. =
k (k 1—2p

“Mk
no

Moreover,
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Extra Clustering Model: p = 1/2

Theorem (Drmota, F., Lee; 2014)
We have,

k!JQk_]_ 2k—1
2k — 1)i22F-1 18

where Jop_1 are the tangent numbers (or Euler numbers of odd index).
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Extra Clustering Model: p = 1/2

Theorem (Drmota, F., Lee; 2014)

We have, "
*J2k—1 2k—1
2k — 1)i22F-1 18

where Jop_1 are the tangent numbers (or Euler numbers of odd index).

v

Theorem (Drmota, F., Lee; 2014)
We have,
X, % x,

where X s the discrete distribution with

E(uX)zl—\/l—u.
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Extra Clustering Model: 1/2 <p <1

Theorem (Drmota, F., Lee; 2014)
We have,

d
X, — X,
where X s the discrete distribution with

E(UX) _ 1—v/1 —417(1_]’)“.

2(1-p)
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Extra Clustering Model: 1/2 <p <1

Theorem (Drmota, F., Lee; 2014)
We have,

X, % x,
where X s the discrete distribution with

E(UX) _ 1—v/1 —417(1_]’)“.

2(1-p)

v

For the moments, we have E(X*) = ¢;, with e; = p/(2p— 1) and for k > 2

k—2

2(1—p) k—1 p
e = ———— . CL_1_:€: 1 + P
k 2 — 1 Z ] k—1—35€5+ 2p—1
J=0
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Summary

@ Complete analysis of the extra clustering model.
@ Surprising central limit law for p = 0.

@ Only for 0 < p<1/2and 1/2 < p <1 the method of moments
applies.
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Summary

Complete analysis of the extra clustering model.

Surprising central limit law for p = 0.

Only for 0 < p < 1/2 and 1/2 < p < 1 the method of moments
applies.

Analytic proof in all cases via singularity perturbation theory.
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Open Problems
@ Better explanation of the curious central limit law.
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Open Problems

@ Better explanation of the curious central limit law.
@ Probabilistic proof?

@ Similar curious central limit law for the total length of external
branches in Kingman's coalescent:

Janson and Kersting (2011). On the total external length of the
Kingman coalescent, Electronic J. Probability, 16, 2203-2218.

Any relationship?
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Open Problems

@ Better explanation of the curious central limit law.
@ Probabilistic proof?

@ Similar curious central limit law for the total length of external
branches in Kingman's coalescent:

Janson and Kersting (2011). On the total external length of the
Kingman coalescent, Electronic J. Probability, 16, 2203-2218.

Any relationship?

@ How about limit laws for X, for other random tree models?
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