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Abstract
In a recent paper, McDiarmid, Semple, and Welsh (2015) showed that the number of tree-child

networks with n leaves has the factor n2n in its main asymptotic growth term. In this paper, we
improve this by completely identifying the main asymptotic growth term up to a constant. More
precisely, we show that the number of tree-child networks with n leaves grows like

Θ

(
n−2/3ea1(3n)

1/3

(
12

e2

)n

n2n
)
,

where a1 = −2.338107410 · · · is the largest root of the Airy function of the first kind. For the
proof, we bijectively map the underlying graph-theoretical problem onto a problem on words. For
the latter, we can find a recurrence to which a recent powerful asymptotic method of Elvey Price,
Fang, and Wallner (2019) can be applied.

1 Introduction

Over the last two decades, phylogenetic networks have become increasingly popular and have been
used more and more frequently in modeling horizontal genetic transfer events in evolutionary genomics.
Because of their now widespread usage, studying basic combinatorial properties such as counting them
has attracted some recent efforts; see, e.g., Bouvel et al. [1], Cardona and Zhang [2], Fuchs et al. [5],
Gunawan et al. [7], McDiarmid et al. [8], and Zhang [10]. While the counting of phylogenetic trees
goes back at least to Schröder [9] and we have a complete combinatorial understanding of it, still very
little is known about combinatorial counting questions for phylogenetic networks and their subclasses.

A (rooted, binary, leaf-labeled) phylogenetic network with n leaves is defined as a rooted directed
acyclic graph (or DAG for short) which is connected and has no parallel edges and whose vertices fall
into one of the following four categories:
∗MF was partially supported by grant MOST-107-2115-M-009- 010-MY2.
†GRY was partially supported by FWF SFB F50-10.
‡LZ was financially supported by Singapore MOE Tier-1 Research Fund R-146-000-318-114.
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(i) a root ρ of indegree 0 and outdegree 1;

(ii) n leaves of indegree 1 and outdegree 0 which are bijectively labeled by elements from the set
{1, . . . , n};

(iii) nodes of indegree 1 and outdegree 2 which are called tree nodes;

(iv) nodes of indegree 2 and outdegree 1 which are called reticulation nodes.

Many subclasses of phylogenetic networks have been considered. An important one arising from
phylogenetic applications is the class containing tree-child networks which we will define next.

Definition 1. A phylogenetic network is called a tree-child network if every node which is not a leaf has
at least one child which is not a reticulation node.

See Figure 1 for an example of a phylogenetic network which is not a tree-child network (a) and an
example which is a tree-child network (b).

We denote the set of tree-child networks with n leaves by T Cn and its cardinality by TCn throughout
this work. The first few terms of the latter sequence were computed, e.g., in [2]:

{TCn}n≥2 = {3, 66, 4059, 496710, 101833875, 31538916360, . . .}.

(a)

ρ

2

1
3

(b)

ρ

4
2

1
3

Figure 1: (a) A phylogenetic network which is not a tree-child network because its two reticulations
nodes (gray) are the children of the same tree node; (b) A tree-child network.

In order to understand the growth of this sequence, asymptotic counting results have been proved.
The first and in fact still best such result was obtained in [8], where the authors showed that there exist
constants 0 < c1 < c2 such that for all n:

(c1n)2n ≤ TCn ≤ (c2n)2n.

This result identifies n2n as the main term in the asymptotic growth of TCn. However, it does not yield
anything even for the exponential growth rate since no explicit values for c1, c2 were given in [8].

It is the purpose of this paper to improve upon this result. More precisely, we will find all terms in
the main asymptotic growth term of the above counting sequence.

Theorem 1. The number of tree-child networks with n leaves satisfies

TCn = Θ

(
n−2/3ea1(3n)

1/3

(
12

e2

)n
n2n
)
,

where a1 is the largest root of the Airy function Ai(x) of the first kind which is the unique solution with
limx→∞Ai(x) = 0 of the differential equation Ai′′(x) = xAi(x).
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Similar asymptotic results but for different combinatorial counting problems were obtained by Elvey
Price et al. in [3], where the (unusual) term exp{cnα} with c some constant and α ∈ (0, 1) was called a
stretched exponential. In fact, the method from [3] will also play a crucial role in the proof of our result.

As a consequence of our method of proof, we can also get an asymptotic result for the number of
tree-child networks where all nodes (except the root) are bijectively labeled. We denote this number by
T̂CN with N the number of non-root nodes. Then, we have the following result which we formulate as
corollary.

Corollary 1. The number of tree-child networks with N non-root nodes which are all labeled satisfies

T̂CN =

(
3

e5
+ o(1)

)N/4
N5N/4,

where N runs through all odd positive integers.

Recall that if N is even, then a tree-child network with N non-root nodes does not exist; see [8].

Remark 1. In [8], the number of tree-child networks with all non-root nodes labeled was also considered
and the authors showed that N5N/4 is the dominating term in the main asymptotic growth term. Our
above result shows that (3/e5)1/4 is the base of the exponential growth rate.

We next give a short sketch of the proof of Theorem 1. First, let T Cn,k denote the set of tree-child
networks with n leaves and k reticulation nodes and denote its cardinality by TCn,k. It is easy to see
that 0 ≤ k ≤ n− 1. For fixed values of k, the asymptotics of TCn,k were derived in [5]:

TCn,k ∼ ck
(

2

e

)n
nn+2k−1,

where ck > 0 is a computable constant.
However, in order to understand the asymptotics of TCn, it turns out that TCn,n−1 plays the most

crucial role. More precisely, we will first show that

TCn = Θ(TCn,n−1). (1)

Next, we will observe that TCn,n−1/n! is actually contained in the OEIS1 as entry A213863 (with a
shift). The latter sequence, say an, is defined as the number of words with letters {ω1, . . . , ωn} where
each letter can be used exactly three times and in each prefix of the words, the number of occurrences of
letter ωi is either zero or if it is non-zero, then the letter ωi must occur at least as often as the letter ωj
for all j > i. We give a bijective proof that TCn,n−1/n! is indeed equal to an−1. Finally, for an we will
be able to find a recurrence to which the method from [3] can be applied.

The above will be done in the next three sections of the paper. Then, in Section 5, we will give the
proof of Corollary 1. In Section 6, we will derive the asymptotics of the number of 1-component tree-
child networks for which explicit formulas were recently given in [2]. Again, stretched exponentials will
occur in both the leaf-labeled and node-labeled case (even three of them in the latter). We will conclude
the paper in Section 7 with a summary and some open problems.

2 Tree-Child Networks with a Maximal Number of Reticulation Nodes

In this section, we prove (1). First, recall the following relation between n, k, and t of a phylogenetic
network with n leaves, k reticulation nodes, and t tree nodes:

n+ k = t+ 1. (2)
1http://www.oeis.org/
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Figure 2: The injective map f from Lemma 2. (The two free nodes are marked by an x and the picked
free edge is in green.)

This follows from the fact that the sum of the out-degrees of nodes is equal to the sum of in-degrees; see
[8] for details.

Next, we say that a tree node is free if each of its children is either a tree node or a leaf. Moreover,
we call an outgoing edge of a free tree node a free edge. Then, we have the following lemma.

Lemma 1. Every tree-child network in T Cn,k has n− k − 1 free tree nodes and thus 2(n− k − 1) free
edges.

Proof. From (2), we have that a tree-child network from T Cn,k has n + k − 1 tree nodes. The two
parents of every reticulation node are not free and due to the tree-child property, different reticulation
nodes have different parents. Thus, the number of tree nodes which are not free is 2k from which the
result follows.

Using the previous lemma, we can show the following result.

Lemma 2. For any 0 ≤ k ≤ n− 2, we have 2(n− k − 1)TCn,k ≤ TCn,k+1.

Proof. Define a map f from a pair of a network from T Cn,k and a free edge of that network into T Cn,k+1

as follows: insert a tree node between the root of the network and its child and add an edge from this
node to a reticulation node which is inserted into the free edge; see Figure 2. Note that each image of f
is indeed a tree-child network from T Cn,k+1 and that f is injective. Moreover, because of the previous
lemma, the range of f has cardinality 2(n− k − 1)TCn,k. From this the claim follows.

We also need the following lemma.

Lemma 3. For n ≥ 3, we have TCn,n−3 ≥ 1
8 × TCn,n−2.

Proof. First note that each network in T Cn,n−3 contains 4 free edges and 3n − 4 edges ending either
in a tree node or leaf. (Such edges are subsequently called tree edges.) By picking a free edge and
a (different) tree edge, then inserting a tree node u into the picked tree edge and connecting it to a
reticulation node v which is inserted into the picked free edge, we obtain a network of T Cn,n−2 if u is
not below v (see Figure 3). In this way, we get at most 4((3n − 4) − 1)TCn,n−3 networks with n − 2
reticulation nodes, as we discard those that are not DAGs. On the other hand, each tree-child network
of T Cn,n−2 is obtained by this construction exactly 2(n − 2) times. Thus, 4(3n − 5)TCn,n−3 ≥
2(n− 2)TCn,n−2. From this, since for n ≥ 3,

n− 2

3n− 5
=

1

3

(
1− 1

3n− 5

)
≥ 1

4
,

the inequality of the lemma follows.
Now, we can prove the following quantitative version of (1).
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Figure 3: Illustration of the proof of Lemma 3 with n = 4. In the top row, the leftmost tree-child network
has n − 3 (= 1) reticulation nodes and hence contains 4 free edges, one of which is colored green, and
7 other tree edges (black). Since the tree edges entering leaves 1 and 3 are below the green edge, we
could not add an edge from either to form a DAG. Thus, we obtain 5 tree-child networks with n − 2
reticulation nodes by adding an edge from each of the other 5 tree edges to the green free edge.

Proposition 1. For any n ≥ 3, we have 25
16 × TCn,n−1 ≤ TCn ≤

√
e× TCn,n−1.

Proof. The lower bound follows from

TCn =
n−1∑
k=0

TCn,k, (3)

the fact that TCn,n−1 = 2TCn,n−2 which was proved in [2], and Lemma 3.
For the upper bound, by Lemma 2 and iteration, we get

TCn,k ≤
1

2n−1−k(n− k − 1)!
TCn,n−1, (0 ≤ k ≤ n− 1). (4)

Thus, from (3),

TCn ≤

(
n−1∑
k=0

1

2n−1−k(n− k − 1)!

)
TCn,n−1 ≤

√
eTCn,n−1.

This proves the claim.
The above proposition reduces the problem of finding the main term of the asymptotics of TCn to

that of TCn,n−1 which is the number of tree-child networks with n leaves and a maximal number of
n− 1 reticulation nodes.

These networks have a special structure which we discuss next. Recall that by Definition 1, for every
node in the network there exists a path starting with that node and ending with a leaf whose intermediate
nodes are all tree nodes. For tree-child networks with a maximal number of reticulation nodes, we have
the following characterization.
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ρ

Figure 4: A tree-child network with maximal number of reticulation nodes. (The path-components are
highlighted and labels of leaves are removed; note that different labelings of the leaves lead to different
tree-child networks.)

Lemma 4. A tree-child network from T Cn has n−1 reticulation nodes if and only if the path from every
node to a leaf whose intermediate nodes are all tree nodes is unique.

Proof. First, assume that we have a tree-child network with n leaves and n− 1 reticulation nodes. Then,
for different reticulation nodes, the paths from these nodes to leaves with all intermediate nodes being
tree nodes end with different leaves. Moreover, the child of the root (which is a tree node) also has a path
with all intermediate nodes being tree nodes which ends with a yet another leaf. Thus, we have already
at least n leaves and consequently, no node can have two paths with the claimed property because then
the number of leaves would exceed n.

Next, assume that for every node there is a unique path to a leaf with all intermediate nodes being
tree nodes. Consider first this path for the child of the root. Clearly, all intermediate nodes must be
parents of reticulation nodes for otherwise an intermediate node would have two different paths to leaves
with all intermediate nodes being tree nodes. Moreover, any reticulation node which is the child of an
intermediate node on the path is followed by a tree node which again has a path to a leaf with all
intermediate nodes being parents of reticulation nodes, etc. Clearly, this gives a network with n leaves
and exactly n− 1 reticulation nodes.

The second part of the proof of the above lemma explains the structure of tree-child networks with
n leaves and n−1 reticulation nodes: they consist of path-components starting with either a reticulation
node or the child of the root. All other edges are between these components; see Figure 4. In particular,
note that these networks have no symmetry and thus, if we remove the labels of the leaves, the number
of all resulting (now unlabeled) networks is TCn,n−1/n!.

3 A Class of Words and Recurrences for Their Counting Sequence

We start with entry A213863 in the OEIS which is a counting sequence of certain words.

Definition 2. Let An denote the class of words on the n letters {ω1, . . . , ωn} such that in each word
every letter occurs exactly 3 times and in every prefix, the letter ωi either has not yet occurred or if it
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has occurred, then the number of occurrences is at least as large as the number of occurrences of ωj for
all j > i. Moreover, denote by an the cardinality of An.

In the OEIS, the first 16 terms of an were given together with a brute-force Maple program to
compute further terms (which becomes very slow beyond the 20-th term). We recall the first 7 terms:

{an}n≥1 = {1, 7, 106, 2575, 87595, 3864040, 210455470, . . .}.

In fact, it turns out that an−1 also counts the number of tree-child networks with n leaves and n − 1
reticulation nodes with the labels of leaves removed.

Proposition 2. There is a bijection from the set of tree-child networks T Cn,n−1 with labels removed to
An−1. Consequently, an−1 = TCn,n−1/n!.

Proof. We directly give the bijection. Therefore, start with an element from T Cn,n−1 with labels re-
moved; see Figure 4 for an example. Recall that these objects are counted by TCn,n−1/n! due to the
lack of symmetry of the networks from T Cn,n−1.

In the first step, we order the path-components of the chosen tree-child network. We do this in-
ductively. First, the path-component of the child of the root receives index 0. Assume that k path-
components have been indexed. Now, consider all un-indexed path-components whose first node (which
is a reticulation node) has its two parents already in indexed path-components. If both parents are in
the same path-component, then one is the descendant of the other; call that one the second parent; if
both parents are in different path-components, then the parent in the path-component with the higher
index is the second parent. Now order all the above chosen un-indexed path-components according to
the indices of the path-components where the second parents are located and in case indices coincide,
the ancestor relationship within the path-component of their second parents. Continue this until all path-
components are indexed which will eventually happen because our networks are connected; see the first
part of Figure 5.

Now, we label the first node of every path-component of index k > 0 together with its two parents
by k; see the second part of Figure 5.

Finally, we read the labels of each path-component starting with the 0-th one until we reach the
last one; see the third part of Figure 5, where the separation line separates the strings from different
path-components.

The resulting word is a word with letters {1, . . . , n−1}with each letter repeated exactly three times.
Moreover, if a letter of the resulting word occurs for the first timer when the word is read from the left
to right, then due to the above construction, no larger letter can have occurred already (at least) twice.
Likewise, if a letter occurs for the second time, again no larger letter can have occurred already three
times. Thus, the resulting words satisfy the property from Definition 2.

Finally, it is straightforward to see that the above construction can be reversed. Thus, the resulting
map is a bijection.

For the sequence an, we can give now a recurrence.

Proposition 3. Let (bn,m)n,m≥1 be defined recursively as

bn,m = (2n+m− 2)

m∑
k=1

bn−1,k, (n ≥ 2, 1 ≤ m ≤ n) (5)

with initial conditions bn,m = 0 for n < m and b1,1 = 1. Then,

an =
∑
m≥1

bn,m.
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Figure 5: The bijection between unlabeled elements from T Cn,n−1 and words from An−1 from Propo-
sition 2. (Here, n = 4.)

Proof. First, note that any word in An must end with the letter ωn. Moreover, if one considers the suffix
of a word from the second occurrence of ωn to the last occurrence of ωn, then this suffix must have the
form ωnωn−i · · ·ωn−1ωn for some 0 ≤ i ≤ n− 1 (where here and in the sequel, for i = 0 the suffix is
understood to be ωnωn).

Define nowAn,i as the set of all words inAn with suffix ωnωn−i · · ·ωn−1ωn for some 0 ≤ i ≤ n−1.
Then,

An = An,0 ∪ · · · ∪ An,n−1
and this union is disjoint. Let an,i be the cardinality of An,i.

First, consider An,0. Here, we can generate all words from words in An−1 by placing ωnωn at the
end and inserting a third ωn anywhere into the word. This gives,

an,0 = (3n− 2)an−1, (6)

since the third ωn has exactly 3n− 2 positions to choose from.
Next, consider An,i with 1 ≤ i ≤ n − 1. By definition, all words in this set have the suf-

fix ωnωn−i · · ·ωn−1ωn. Moreover, if we remove the three ωn’s, then the resulting word ends with
ωn−i · · ·ωn−1 and is thus contained in

An−1,i−1 ∪ · · · ∪ An−1,n−2.

Conversely, if we insert three ωn’s into a word of the above set by placing one at the beginning and one
at the end of the suffix ωn−i · · ·ωn−1 and inserting the third ωn anywhere before this, then we create all
words from An,i. This shows that

an,i = (3n− 2− i)
n−2∑
k=i−1

an−1,k (7)

because the third ωn has exactly 3n− 2− i positions to choose from.
Finally, by setting

bn,i := an,n−i
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we obtain the claimed recurrence from (6) and (7) with the claimed initial conditions (which are easily
verified).

Using this recurrence, the first, e.g., 1000 terms of an can be computed with Maple in a few seconds.
The recurrence for bn,m can also be written in the following equivalent form.

Corollary 2. We have,

bn,m =
2n+m− 2

2n+m− 3
bn,m−1 + (2n+m− 2)bn−1,m, (n ≥ 2, 0 ≤ m ≤ n)

with initial conditions bn,m = 0 for m > n, bn,−1 = 0 for n ≥ 1 and b1,m = 0 for m ≥ −1 except for
m = 1 where b1,1 = 1.

Proof. We have,
bn,m

2n+m− 2
=

m∑
k=1

bn−1,k.

Thus,
bn,m

2n+m− 2
− bn,m−1

2n+m− 3
= bn−1,m

which can be re-arranged to the claimed recurrence. Finally, the initial conditions are easily adjusted to
the current recurrence.

4 Asymptotic Analysis and Proof of Theorem 1

In this section, we will do the asymptotic analysis of an. As a warm-up, we first start with an upper
bound which follows from (5).

Lemma 5. We have,

an = O
(
n−1

(
12

e

)n
nn
)
.

Proof. Define a sequence gn,m recursively by

gn,m =
m∑
k=1

gn−1,k, (n ≥ 2, 1 ≤ m ≤ n)

with initial conditions gn,m = 0 for n < m and g1,1 = 1. Then, by induction and using (5), we get that

3nn!gn,m ≥ bn,m, (n,m ≥ 1). (8)

Next, note that gn,m are the ballot numbers which are found in the OEIS as entry A009766 and admit
the closed form expression

gn,m =
n−m+ 1

n

(
n+m− 2

n− 1

)
Thus, ∑

m≥1
gn,m = gn+1,n+1 =

1

n+ 1

(
2n

n

)
= Cn,

where Cn denotes the n-th Catalan number, which by Stirling’s formula has the asymptotics

Cn ∼
4n√
πn3

.
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Finally, from (8), we obtain that

an =
∑
m≥1

bn,m ≤ 3nn!
∑
m≥1

gn,m = 3nn!Cn ∼
√

2

n

(
12

e

)n
nn.

This gives the claimed result.
Note that by using (1) and Proposition 2, this upper bound implies that

TCn = O
(
n−3/2

(
12

e2

)n
n2n
)
.

This already captures the right exponential growth order; compare with Theorem 1. However, we are
still missing the stretched exponential (and the polynomial term) which requires a much more subtle
method. We will explain this method next.

The method we are going to use was introduced in [3], where it was first applied (amongst other
things) to another problem on DAGs, namely, the counting of relaxed binary trees. (Despite our problem
being also a counting problem on DAGs, it came as a surprise to us that the the same method applies
to both problems.) The heuristic for the method from [3] comes from lattice path theory and is well-
explained in Section 3 in [3].

The main reason why the method from [3] applies in our context is that our recurrence from Corol-
lary 2 has the same shape as the one for relaxed binary trees which was given in Proposition 2.6 in
[3]. The only difference is that the coefficients on the right-hand side are slightly different: in the re-
currence for relaxed binary trees in [3], the coefficients are 1 and m + 1, whereas our coefficients are
(2n+m− 2)/(2n+m− 3) and 2n+m− 2. However, note that we are interested in the asymptotics
of bn,n since by (5) and initial conditions:

bn,n = (3n− 2)an−1. (9)

Now, form ≈ n, our coefficients become (2n+m−2)/(2n+m−3) ≈ 1 and 2n+m−2 ≈ 3n compared
to the above coefficients for the recurrence of relaxed binary trees which become 1 andm+1 ≈ n. Thus,
we have good reason to believe that the method from [3] will apply to our sequence when divided by 3n.
This will turn out to be indeed the case.

We will now use the steps from [3]. The first step was to define

dn,m :=
1

3(n+m)/2
(
n+m
2

)
!
b(n+m)/2,(n−m)/2, (n ≥ 4, 0 ≤ m ≤ n, n−m even)

and dn,m := 0 if n−m is odd. Note that bn,n = 3nn!d2n,0. Moreover, from Corollary 2,

dn,m =
3n+m− 4

3n+m− 6
dn−1,m+1 +

3n+m− 4

3n+ 3m
dn−1,m−1, (n ≥ 3,m ≥ 0) (10)

with initial conditions dn,−1 = 0 for n ≥ 2, d2,m = 0 for m ≥ 1 and d2,0 = 1/3.
The next step is to assume that

dn,m ≈ h(n)f
(

(m+ 1)n−1/3
)
,

where h(n) ≈ 2nµn
1/3

with a (so far unknown) constant µ. We repeat some of the heuristic arguments
from Section 3 in [3] which show how to choose µ and f(·). The reason why we do this (instead of just
referring to [3]) is because these arguments (i) show how the Airy function shows up and (ii) make it
easier to understand the two propositions below. First, set s(n) = h(n)/h(n− 1) which satisfies

s(n) = 2 +
2 logµ

3
n−2/3 +O(n−1). (11)
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Now, plugging everything into (10), we obtain that

s(n)f
(

(m+ 1)n−1/3
)

=
3n+m− 4

3n+m− 6
f
(

(m+ 2)(n− 1)−1/3
)

+
3n+m− 4

3n+ 3m
f
(
m(n− 1)−1/3

)
. (12)

Pick m = κn1/3 − 1. Then, 3n+m−4
3n+m−6 = 1 +O(n−1) and 3n+m−4

3n+3m = 1− 2
3κn

−2/3 +O(n−1). Since

f
(

(m+ 2)(n− 1)−1/3
)

= f(κ) + f ′(κ)n−1/3 + f ′′(κ)
n−2/3

2
+O(n−1)

and

f
(
m(n− 1)−1/3

)
= f(κ)− f ′(κ)n−1/3 + f ′′(κ)

n−2/3

2
+O(n−1),

we obtain by plugging the above into (12) and rearranging(
f ′′(κ)− 2

3
(logµ+ κ)f(κ)

)
n−2/3 +O(n−1) = 0.

Thus,

f ′′(κ) =
2

3
(logµ+ κ)f(κ)

which under some regularity conditions on f(·) has the solution

f(κ) = bAi (c(logµ+ κ)) ,

where b is a suitable constant and c = (2/3)1/3. If we further impose f(0) = 0, then c logµ = a1 and
thus our function f(·) should be chosen as

f(κ) ≈ Ai (a1 + cκ) . (13)

Now, the main idea of the approach in [3] is to choose f(·) of the form (13) with suitable multiplica-
tive factors and suitable versions of (11) such that (12) holds as an inequality with both ≤ and ≥. Then,
this gives lower and upper bounds for dn,m and thus d2n,0 which then yields the desired upper and lower
bound for bn,n and thus an via (9).

We give the two results containing these inequalities next; compare with Lemma 4.2 and Lemma 4.4
in [3] for the corresponding results for relaxed binary trees.

Proposition 4. Define

X̃n,m :=

(
1− m2

3n
− 25m

18n

)
Ai
(
a1 + c(m+ 1)n−1/3

)
,

where c = (2/3)1/3 and

s̃(n) := 2 +
22/3a1

32/3n2/3
− 2

3n
− 1

n7/6
.

Then, for fixed ε > 0 and n large enough, we have

s̃(n)X̃n,m ≤
3n+m− 4

3n+m− 6
X̃n−1,m+1 +

3n+m− 4

3n+ 3m
X̃n−1,m−1 (14)

for all 0 ≤ m < n2/3−ε.
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Proposition 5. Let η > 1/18 and define

X̂n,m :=

(
1− m2

3n
− 25m

18n
+ η

m4

n2

)
Ai
(
a1 + c(m+ 1)n−1/3

)
,

where c = (2/3)1/3 and

ŝ(n) := 2 +
22/3a1

32/3n2/3
− 2

3n
+

1

n7/6
.

Then, for fixed ε > 0 and n large enough, we have

ŝ(n)X̂n,m ≥
3n+m− 4

3n+m− 6
X̂n−1,m+1 +

3n+m− 4

3n+ 3m
X̂n−1,m−1 (15)

for all 0 ≤ m < n1−ε.

Proof of Proposition 4 and Proposition 5. For the proof, we use the Maple worksheet which was cited
in [3] (item [26] in the list of references) and which the authors made available online. We only have to
modify it to our situation; see the first autor’s personal webpage for the modified version2.

First, for the claim in Proposition 4, we set

Pn,m := −s̃(n)X̃n,m +
3n+m− 4

3n+m− 6
X̃n−1,m+1 +

3n+m− 4

3n+ 3m
X̃n−1,m−1.

Using the above mentioned Maple worksheet, by series expansion and the differential equation of the
Airy function, this double-sequence can be written as

Pn,m =Ai(α)

(
1

n7/6
− 25/3a1m

38/3n5/3
− 23m2

27n2
− 25/3 · 5a1m3

311/3n8/3
− 37m4

81n3
+

449m5

3645n4
+ · · ·

)
+

Ai′(α)

(
21/3

31/3n3/2
− 2813m

22/3 · 310/3 · 5n7/3
− 53 · 24/3m2

310/3n7/3

− 27/3m3

37/3n7/3
− 21/3m4

37/3n10/3
− 163 · 21/3m5

316/3 · 5n13/3
+ · · ·

)
,

where α := a1 + c(m + 1)n−1/3. This has exactly the same shape as the expansion in the proof of
Lemma 4.2 in [3] with the sole exception that the second term in the bracket behind Ai′ is different but
since this term is (i) now slightly smaller and (ii) was shown to be asymptotically not relevant in the
proof of Lemma 4.2 in [3], this does not matter. Thus, we can use the arguments from Lemma 4.2 in [3]
to show that Pn,m ≥ 0 for all large enough n and 0 ≤ m < n2/3−ε.

Similarly, Proposition 5 is proved with the Maple worksheet and the arguments from the proof of
Lemma 4.4 in [3].

Now, equipped with the above two propositions, we can prove Theorem 1, where the first part of the
proof again heavily borrows from Section 4 in [3].

Proof of Theorem 1. First, define h̃(n) = s̃(n)h̃(n− 1) with h̃(1) := 1. Then, (14) becomes

h̃(n)X̃n,m ≤
3n+m− 4

3n+m− 6
h̃(n− 1)X̃n−1,m+1 +

3n+m− 4

3n+ 3m
h̃(n− 1)X̃n−1,m−1

2http://web.math.nctu.edu.tw/mfuchs
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for n large and 0 ≤ m < n2/3−ε. Note also that for n large, X̃n,m is negative for n2/3−ε ≤ m ≤ n.
Using this and induction, we obtain that

dn,m = Ω
(
h̃(n) max{X̃n,m, 0}

)
for n large and 0 ≤ m ≤ n. Thus,

bn,n = 3nn!d2n,0 = Ω
(

3nn!h̃(2n)Ai
(
a1 + c2−1/3n−1/3

))
= Ω

(
3nn!

(
2n∏
`=2

s̃(`)

)
Ai
(
a1 + c2−1/3n−1/3

))
,

where the last step follows by iteration. Now, straightforward asymptotic expansion yields
2n∏
`=2

s̃(`) =

2n∏
`=2

(
2 +

22/3a1

32/3`2/3
− 2

3`
− 1

`7/6

)

= 4n exp

{
a1

21/3 · 32/3
2n∑
`=2

`−2/3 − 3−1
2n∑
`=2

`−1 +O(1)

}
= Ω

(
n−1/3ea1(3n)

1/3
4n
)

and
Ai
(
a1 + c2−1/3n−1/3

)
= c2−1/3Ai′(a1)n

−1/3 +O
(
n−2/3

)
.

Consequently,
bn,n = Ω

(
n!n−2/3ea1(3n)

1/3
12n
)
. (16)

Next, we use Proposition 5 to show a matching upper bound. Therefore, we again define ĥ(n) =
ŝ(n)ĥ(n− 1) with ĥ(1) = 1. Then, from (15),

ĥ(n)X̂n,m ≥
3n+m− 4

3n+m− 6
ĥ(n− 1)X̂n−1,m+1 +

3n+m− 4

3n+ 3m
ĥ(n− 1)X̂n−1,m−1,

for n large enough and 0 ≤ m < n1−ε. Now, define a new sequence d̂n,m which satisfies (10) for
0 ≤ m < n1−ε and d̂n,m := 0 otherwise. Then, by induction

d̂n,m = O
(
ĥ(n)X̂n,m

)
for n large and 0 ≤ m ≤ n. Thus, with the same arguments as above, we obtain that

d̂2n,0 = O
(
n−2/3ea1(3n)

1/3
4n
)
.

Next, using similar arguments as in [3] (which were based on lattice paths theory), one can show that
for large n, we have d2n,0 ≤ 2d̂2n,0; see the Appendix for details. Thus,

bn,n = n!3nd2n,0 = O
(
n!n−2/3ea1(3n)

1/3
12n
)
. (17)

Combining (16) and (17) now yields

bn,n = Θ
(
n!n−2/3ea1(3n)

1/3
12n
)
.

Next, from (9),
an−1 = Θ

(
n!n−5/3ea1(3n)

1/3
12n
)

(18)

and finally by Proposition 1 and Proposition 2,

TCn = Θ
(
n!2n−5/3ea1(3n)

1/3
12n
)

from which the claimed result follows by Stirling’s formula.
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5 Proof of Corollary 1

In this section, we consider tree-child networks with N non-root nodes which are bijectively labeled,
where N is odd (see the remark below Corollary 1).

We start with the following relationship between their number T̂CN and TCn,k.

Lemma 6. We have,

T̂CN =

(N+1)/2∑
n=d(N+3)/4e

N !

n!
× TCn,(N+1)/2−n. (19)

Proof. This is proved with the following two results from [8].

(i) The number n of leaves, the number k of reticulation nodes, and the number N of non-root nodes
satisfy:

n+ k =
N + 1

2
;

see equation (5) in [8].

(ii) The descendant sets of any two non-root nodes in a tree-child network are distinct; see Lemma
5.1 in [8]. (Here, the descendant set of a node is the set of leaves which are descendant from the
node.)

More precisely, it follows from (ii) that in order to generate all tree-child networks with N labeled
non-root nodes, we can take a tree-child network with n labeled leaves and N non-root nodes, choose
n of the N labels and use them to relabel the leaves such that the order between labels is preserved,
and finally distribute the remaining N − n labels arbitrarily to the non-leaf and non-root nodes. Here,
because of (i), n ranges from d(N+3)/4e to (N+1)/2. Moreover, again by (i), the number of tree-child
networks with n labeled leaves and N non-root nodes is given by TCn,(N+1)/2−n.

This shows the claimed result.
Corollary 1 is now a consequence of the following two propositions.

Proposition 6. We have,

T̂CN = Ω

(
N1/12ea1(3N/4)

1/3

(
3

e5

)N/4
N5N/4

)
.

Proof. Set

ñ =

⌈
N + 3

4

⌉
.

Clearly, we have

T̂CN ≥
N !

ñ!
TCñ,(N+1)/2−ñ.

Note that

TCñ,(N+1)/2−ñ =

{
TCñ,ñ−1, if N ≡ 1 mod 4;

TCñ,ñ−1/2, if N ≡ 3 mod 4,

where the second case follows from 2TCn,n−2 = TCn,n−1 which was proved in [2]. Thus, by Proposi-
tion 2,

T̂CN = Ω (N !añ−1) .

Now using (18), Stirling’s formula and straightforward computation gives the claim.
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Proposition 7. We have,

T̂CN = O

(
N2e

√
3N/2

(
3

e5

)N/4
N5N/4

)
.

Proof. By plugging (4) into (19), we have

T̂CN ≤ N !

(N+1)/2∑
n=d(N+3)/4e

TCn,n−1

n!22n−1−(N+1)/2(2n− 1− (N + 1)/2)!

= N !2(N+3)/2

(N+1)/2∑
n=d(N+3)/4e

an−1
4n(2n− 1− (N + 1)/2)!

,

where the last step follows from Proposition 2. Now, from Lemma 5, we have

an−1 = O(n!n−5/212n) (20)

and plugging this into the estimate for T̂CN above, we get

T̂CN = O

N !2N/2N−5/2
(N+1)/2∑

n=d(N+3)/4e

n!3n

(2n− 1− (N + 1)/2)!

 .

The terms inside the sum are maximal at

ñ =

⌊
N

4
+

11

8
+

√
12N + 61

8

⌋
.

Thus,

T̂CN = O
(
N !2N/2N−3/2

ñ!3ñ

(2ñ− 1− (N + 1)/2)!

)
from which the claim follows by straightforward computation.
Remark 2. When using (18) instead of (20) and applying the Laplace method (see the next section), the
upper bound in the last lemma can be improved. However, the subexponential large gap between the
bounds in the last two propositions still remains even with such an improved upper bound.

6 Asymptotic Count of 1-Component Tree-Child Networks

In this section, we consider 1-component tree-child networks which were defined in [2] as follows.

Definition 3. A tree-child network is called 1-component tree-child network if every reticulation node
is directly followed by a leaf.

Denote by 1-TCn,k the number of 1-component tree-child networks with n leaves and k reticulation
nodes and by 1-TCn the number of all 1-component tree-child networks with n leaves. These numbers
have easy, explicit formulas as was shown in Section 4.1 in [2].

Theorem 2 ([2]). The number of 1-component tree-child networks with n leaves and k reticulation
nodes is given by

1-TCn,k =

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!
, (0 ≤ k ≤ n− 1). (21)

Consequently,

1-TCn =

n−1∑
k=0

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!
.
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From the above formula for 1-TCn, we can get the first order asymptotics for this number with the
Laplace method (which is the real-analytic version of the saddle point method); see, e.g., Chapter 9 in
Graham et al. [6].

Theorem 3. The number of 1-component tree-child networks with n leaves satisfies

1-TCn ∼
1

2
√
e
n−5/4e2

√
n

(
2

e2

)n
n2n.

Remark 3. Comparing with the result for the total number of tree-child networks with n leaves from
Theorem 1, we see that the main term n2n is the same but the above exponential growth term is much
smaller. Moreover, note that there is again a stretched exponential in the asymptotics.

Proof. By Theorem 2,

1-TCn =
n!(2n− 2)!

2n−1

n−1∑
k=0

1

k!(n− k)!(n− k − 1)!
.

Stirling’s formula gives
n!(2n− 2)!

2n−1
∼
√

2πn−1
(

2

e3

)n
n3n. (22)

Thus, we only need the asymptotics of

S :=

n−1∑
k=0

1

k!(n− k)!(n− k − 1)!

which follows by a standard application of the Laplace method.
First observe that 1/(k!(n− k)!(n− k − 1)!) is increasing for k ≤ n−

√
n+ 1 and decreasing for

k > n−
√
n+ 1. Moreover, by straightforward expansion,

1

k!(n− k)!(n− k − 1)!
=

1

2π
√

2eπ
n−1/2e2

√
n
( e
n

)n
e−x

2/
√
n

(
1 +O

(
1 + |x|√

n

))
,

uniformly for |x| ≤ n3/8 where k = n−
√
n+ x. Thus,

S ∼ 1

2π
√

2eπ
n−1/2e2

√
n
( e
n

)n ∑
−n3/8≤x≤n3/8

e−x
2/
√
n

(
1 +O

(
1 + |x|√

n

))

∼ 1

2π
√

2eπ
n−1/2e2

√
n
( e
n

)n ∫ ∞
−∞

e−x
2/
√
n

(
1 +O

(
1 + |x|√

n

))
dx

∼ 1

2π
√

2e
n−1/4e2

√
n
( e
n

)n(
1 +O

(
1√
n

))
,

where we used here standard arguments to justify tail-pruning and attachment; see [6].
Combining this with (22) gives the claimed result.
Next, we consider 1-component tree-child networks with all non-root nodes bijectively labeled.

Denote by 1-T̂CN their number, where N is the number of non-root nodes. Then, with the same proof
method as in Lemma 6, we have

1-T̂CN =

(N+1)/2∑
n=d(N+3)/4e

(
N

n

)
(N − n)!×

(
1-TCn,(N+1)/2−n

)
. (23)

From this, by another application of the Laplace method, we obtain the following result.
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Theorem 4. The number of 1-component tree-child networks with all non-root nodes labeled satisfies

1-T̂CN ∼ 29/8e−1/(32)N−7/8e(2N)3/4/2+
√
2N/(16)−3(2N)1/4/(64)

(
1

2e5

)N/4
N5N/4.

Remark 4. Again the main term N5N/4 is the same as in Corollary 1 but the exponential growth term is
different. Also, note that now there are three stretched exponentials in the asymptotics.

Proof. Plugging (21) into (23), we obtain that

1-T̂CN = 2N !

(N+1)/2∑
n=d(N+3)/4e

(2n− 2)!

((N + 1)/2− n)!(2n− (N + 1)/2)!(2n− (N + 3)/2)!2n
.

Thus, the asymptotics will follow from that of

S :=

(N+1)/2∑
n=d(N+3)/4e

(2n− 2)!

((N + 1)/2− n)!(2n− (N + 1)/2)!(2n− (N + 3)/2)!2n

which will be deduced by another application of the Laplace method.
First, observe that the terms of S become maximal at ñ+ 1 where ñ is the largest integer such that

8(N + 1− 2ñ)(2ñ− 1)ñ

(N − 4ñ+ 1)(N − 4ñ− 1)2(N − 4ñ− 3)
≤ 1.

From this, by bootstrapping,

ñ =
N

4
+

(2N)3/4

8
+

√
2N

32
− 9(2N)1/4

256
+O(1).

Now, by a long computation (which is best done with the help of, e.g., Maple):

(2n− 2)!

((N + 1)/2− n)!(2n− (N + 1)/2)!(2n− (N + 3)/2)!2n

= 2−3/8π−1e−1/(32)N−7/4q(N)

(
1

2e

)N/4
NN/4e−x

2N−3/4

(
1 +O

(
1

N1/4
+
x2

N

))
uniformly for |x| ≤ n2/5, where

k =
N

4
+

(2N)3/4

8
+

√
2N

32
− 9(2N)1/4

256
+ x

and
q(N) := e(2N)3/4/2+

√
2N/(16)−3(2N)1/4/(64).

Thus,

S ∼ q(N)

23/8πe1/(32)
N−7/4

(
1

2e

)N/4
NN/4

∫ ∞
−∞

e−x
2N−3/4

(
1 +O

(
1

N1/4
+
x2

N

))
dx

∼ q(N)

23/8
√
πe1/(32)

N−11/8
(

1

2e

)N/4
NN/4,

where we again used standard arguments.
The claimed result follows now from the above asymptotic of S multiplied with the asymptotic of

2N !.
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7 Conclusion

In [8], the authors proved that n2n resp. N5N/4 are the dominating terms in the main asymptotic growth
term of the number of tree-child networks with n labeled leaves resp. N labeled non-root nodes. More-
over, they asked to find in both cases the exponential growth terms.

In this paper, we answered these questions. Moreover, in the leaf-labeled case, our answer gives
all terms of the main asymptotic growth term up to a constant. Interestingly, this growth term con-
tains a stretched exponential. Furthermore, we showed that stretched exponentials are also present in
the asymptotics of the number of 1-component tree-child networks for both the leaf-labeled and node-
labeled case. These numbers were considerably easier to analyze due to explicit formulas from [2].
Using these formulas, we even obtained the first-order asymptotics (and the method used in this paper
would be capable of giving further terms in the asymptotic expansion, too).

Several interesting questions remain open. First, can Theorem 1 be improved to a first-order asymp-
totic result, e.g., is there a constant γ such that

TCn ∼ γn−2/3ea1(3n)
1/3

(
12

e2

)n
n2n? (24)

In fact, this was also discussed by the authors from [3] for the combinatorial counting problems in their
paper. However, as pointed out in Section 3.4 in [3], the approach from that paper (which played also
a crucial role in the proof of Theorem 1) is incapable of providing such a refinement. Thus, one needs
to come up with a new approach to be able to prove such results. However, note that such an improved
approach, in our situation would “only” give the first-order asymptotics of an, which is still not enough
for a proof of (24) because one in addition would also need to improve Proposition 1 to a first-order
asymptotic result. (Note that the bound in Proposition 1 is already quite tight since the constant in the
upper bound is

√
e = 1.64872 . . . compared to the constant 25/16 = 1.5625 in the lower bound.)

A second interesting question is whether the statement from Corollary 1 for tree-child networks with
all non-root nodes labeled can be improved? Is it possible to find further terms of the main asymptotic
growth term? Are again stretched exponential(s) present?

A final interesting question is whether similar asymptotic results as those from Theorem 1 and
Corollary 1 can also be proved for other classes of phylogenetic networks, in particular for normal
networks? Here, a tree-child network is normal if for each reticulation node neither of its parents is a
child of the other. In fact, in [8], the authors showed that the number of normal networks in the leaf-
labeled resp. node-labeled case has also the terms n2n resp. N5n/4 in their main asymptotic growth
terms. Moreover, they also showed that the number of normal networks in both cases is a small-o of
the number of tree-child networks. Again, they asked for the exponential growth rates (in particular
whether or not they coincide with the ones for tree-child networks) and we can now go one step further
and ask whether there are also stretched exponentials in the main asymptotic growth term of the number
of normal networks in the leaf-labeled and node-labeled case? Note that our method, rather surprisingly,
does not work for the number of normal networks since something similar to Proposition 1 does not
seem to hold. In fact, the data from [10] suggests that for fixed n, the number of normal networks with n
leaves and k reticulation nodes is unimodal in contrast to tree-child networks where this sequence grows
at least exponentially; compare with Lemma 2.
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Appendix

The goal of this appendix is to prove the claimed inequality d2n,0 ≤ 2d̂2n,0 which was stated at the end
of Section 4. As mentioned there, the proof will use lattice paths theory and proceeds as in Section 4.2
in [3]. In order to avoid repetition, we will only point out differences.

First, from (10), we see that dn,m is the number of weighted lattice paths starting at (0, 0) and ending
at (n,m) with up-steps of the form (1, 1) starting at (a, b) having weight (3a + b)/(3a + 3b + 6) and
down-steps of the form (1,−1) also starting at (a, b) having weight (3a + b − 2)/(3a + b − 4). Each
lattice path is counted with its weight which is the product of all weights of its up-steps and down-steps.

Define p`,m,2n to be the number of lattice paths of the above type which start at (`,m) and end at
(2n, 0). Note that this number satisfies the recurrence

p`,m,2n =
3`+m

3`+ 3m+ 6
p`+1,m+1,2n +

3`+m− 2

3`+m− 4
p`+1,m−1,2n (`,m ≥ 0) (25)

with initial conditions p`,−1,2n = 0 and p2n,m,2n = 0 for m ≥ 1 and p2n,0,2n = 1.
A crucial step in the proof of the corresponding inequality to the one above in Section 4.2 of [3] was

Lemma 4.5 which in our situation reads as follows.
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Lemma 7. We have,
p`,j,2n

(j + 1)2
≥

p`,k,2n
(k + 1)2

,

where 0 ≤ j < k ≤ ` ≤ 2n and 2|k − j.

Proof. First note that it is sufficient to prove that
p`,m−1,2n
m2

−
p`,m+1,2n

(m+ 2)2
≥ 0 (26)

for all 1 ≤ m ≤ `− 1 ≤ 2n− 1. We do this by reverse induction on ` and using (25).
For ` = 2n the claim is trivial. So, assume that it holds for `+ 1 and all m. We are going to prove it

for ` and all m.
In order to do so, we plug (25) into (26) which gives

L :=
(3`+m− 1)p`+1,m,2n

(3`+ 3m+ 3)m2
+

(3`+m− 3)p`+1,m−2,2n
(3`+m− 5)m2

−
(3`+m+ 1)p`+1,m+2,2n

(3`+ 3m+ 9)(m+ 2)2
−

(3`+m− 1)p`+1,m,2n

(3`+m− 3)(m+ 2)2
.

Now, from the induction hypothesis, we have

p`+1,m−2,2n ≥
(m− 1)2p`+1,m,2n

(m+ 1)2
and p`+1,m+2,2n ≤

(m+ 3)2p`+1,m,2n

(m+ 1)2
.

Plugging this into L and re-arranging the obtained expression gives

L ≥
4(p1(m)`4 + p2(m)`3 + p3(m)`2 + p4(m)`+ p5(m))p`+1,m,2n

3(`+m+ 3)(`+m+ 1)(3`+m− 3)(3`+m− 5)(m+ 2)2(m+ 1)2m2
,

where

p1(m) = 54m+ 54;

p2(m) = 9m4 + 36m3 + 117m2 + 72m+ 54;

p3(m) = 6m5 − 24m4 − 204m3 − 474m2 − 414m− 282;

p4(m) = m6 − 16m5 − 36m4 + 180m3 + 537m2 + 380m+ 138

p5(m) = 20m5 + 84m4 + 24m3 − 184m2 − 108m+ 36.

By computing all roots of these five polynomials (for instance with Maple), we see that pi(m) ≥ 0 for
1 ≤ i ≤ 5 and all m ≥ 18 and consequently, L ≥ 0 for 18 ≤ m ≤ `− 1. As for the remaining 17 cases
of m, again it can be checked by Maple that

p1(m)`4 + p2(m)`3 + p3(m)`2 + p4(m)`+ p5(m) ≥ 0

for m = 1, . . . , 17 and ` ≥ m+ 1.
Overall, we have L ≥ 0 for 1 ≤ m ≤ `− 1 which is the desired result.
The rest of the proof of the inequality dn,m ≤ 2d̂n,m proceeds now exactly as in Section 4.2 in [3]

with the only difference that the bound

d2n,2m ≤
(

2n

n+m

)
,

which was used in the proof in Section 4.2 of [3] where it followed from the fact that all weights are
≤ 1, holds here despite the weight of down-steps being slightly larger than 1. Indeed, by combining
corresponding up-steps and down-steps, it is easy to see that the multiplied weight of such pairs of steps
is ≤ 1. We leave the (easy) computation to the reader.
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