Applications of Analytic Combinatorics in MATHEMATICAL BIOLOGY (joint with H. Chang, M. Drmota, E. Y. Jin, and Y.-W. Lee)

Michael Fuchs

Department of Applied Mathematics National Chiao Tung University

June 30th, 2015

Combinatorialists use recurrence, generating functions, and such transformations as the Vandermonde convolution; others, to my horror, use contour integrals, differential equations, and other resources of mathematical analysis.

- John Riordan (1968).

4 0 8

Analytic Combinatorics (ii)

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 3 / 45

目

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

4 Introduction

 ORO

イロト イ部 トイヨ トイヨト

4 Introduction

2 Patterns in Phylogenetic Trees

H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.

÷

 QQ

医阿里氏阿里

4 0 8

4 Introduction

2 Patterns in Phylogenetic Trees

H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.

3 Shapley Value and Fair Proportion Index

M. Fuchs and E. Y. Jin (2015). Equality of Shapley value and fair proportion index in phylogenetic trees, J. Math. Biol., in press.

4 日下

 QQ

母 ト イヨ ト イヨ ト

4 Introduction

2 Patterns in Phylogenetic Trees

H. Chang and M. Fuchs (2010). Limit theorems for patterns in phylogenetic trees, J. Math. Biol., 60:4, 481–512.

3 Shapley Value and Fair Proportion Index

M. Fuchs and E. Y. Jin (2015). Equality of Shapley value and fair proportion index in phylogenetic trees, J. Math. Biol., in press.

⁴ Number of Groups formed by Social Animals

M. Drmota, M. Fuchs, Y.-W. Lee $(2016+)$. Stochastic analysis of the extra clustering model for animal grouping, in revision.

 QQ

イロト イ押ト イヨト イヨト

Evolutionary Biology

Charles Darwin (1809-1882)

D.

 299

イロト イ部 トイヨ トイヨト

Evolutionary Biology

Charles Darwin (1809-1882)

First notebook on Transmutation of Species (1837)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 5 / 45

э

Phylogenetic trees $(=PTs)$

Bacteria Archaea **Eucarva Green Slime Filamentous** molds Animals bacteria **Entamosbae Spirochetes** Fungi **Methanosarcina** Gram **Halophiles** Methanobacterium positives **Plants** Proteobacteria Methanococcus Cyanobacteris T. celer **Ciliates Thermoproteus Planctomyces Flagellates Pyrodicticum Bacteroides Trichomonads** Cytophaga **Microsporidia Thermotoga Diplomonads Aquifex**

目

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Phylogenetic trees $(=PTs)$

Bacteria Archaea Eucarva Green Filamentous Slime Entamosbae molds Apimals bacteria **Spirochetes** Fungi **Methanosarcina** Gram **Halophiles** Methanobacterium positive: **Plants** Proteobacteria Methanococcus Cyanobacteris T. celer **Ciliates Thermoproteus Planctomvces Flagellates Pyrodicticum Bacteroides Trichomonads** Cytophaga **Microsporidia Thermotoga Diplomonads Aquifex**

Phylogenetic tree of size n: rooted, plane, unlabelled binary tree with n external nodes (and consequently $n-1$ internal nodes).

 QQ

メロメ メ都 メメ きょくきょ

• Understanding genetic relatedness of species

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

 2990

- Understanding genetic relatedness of species
- Understanding the underlying evolutionary process

4 日下

目

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

- Understanding genetic relatedness of species
- Understanding the underlying evolutionary process
- Predicting possible future outcomes

4 0 8

- Understanding genetic relatedness of species
- Understanding the underlying evolutionary process
- Predicting possible future outcomes
- **•** Testing appropriateness of random models

4 0 8

- Understanding genetic relatedness of species
- Understanding the underlying evolutionary process
- Predicting possible future outcomes
- **•** Testing appropriateness of random models
- Making conservation decisions in genetics

4 0 8

- Understanding genetic relatedness of species
- Understanding the underlying evolutionary process
- Predicting possible future outcomes
- **•** Testing appropriateness of random models
- Making conservation decisions in genetics
- Modeling the group formation process of social animals
- Etc.

4 0 8

Example:

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

イロト イ押ト イヨト イヨト

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 8 / 45

目

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

∋ »

 \rightarrow

4 日下

÷

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

4 0 8

э

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

4 0 8

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

4 0 8

Example:

Random Model 1:

At every time point, two yellow nodes uniformly coalescent.

 \leftarrow

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

目

 QQ

医前头面

4 0 8

∢ 何 ≯ →

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

4 0 8

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

4 0 8

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

4 0 8

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

4 0 8

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

4 0 8

Example:

Random Model 2:

At every time point, a yellow node is replaced by a cherry.

Random model 1 and random model 2 are the same.

4 0 8

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

4 日下

4 母 8 4

目

正々 メラメ

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

4 0 8

 \rightarrow

目

舌

 \sim

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

 \sim

4 0 8

 \mathbb{R}^n

э

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

4 0 8

 \rightarrow

э

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

4 0 8

э

 299
Binary Search Trees

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

4 0 8

Þ

 299

Binary Search Trees

Example: Input $1, 4, 2, 5, 3$

Random Model 3:

All permutations of the input are equally equally.

Again the same as random model 1 and random model 2.

4 D F

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 10 / 45

э

Patterns in PTs

• k -pronged node (McKenzie and Steel 2000; Rosenberg 2006):

Node with an induced subtree of size k .

 \leftarrow \Box

G. Ω

→ 何 ト → ヨ ト → ヨ ト

Patterns in PTs

• k -pronged node (McKenzie and Steel 2000; Rosenberg 2006):

Node with an induced subtree of size k .

• k -caterpillar (Rosenberg 2006):

Induced subtree of size k with an internal node which is descendent of all other internal nodes.

• k -pronged node (McKenzie and Steel 2000; Rosenberg 2006):

Node with an induced subtree of size k .

• k -caterpillar (Rosenberg 2006):

Induced subtree of size k with an internal node which is descendent of all other internal nodes.

• Node with minimal clade size $k \geq 3$ (Blum and François (2005)):

Node with induced subtree of size k and either right or left subtree is an external node.

Mean and variance of k -pronged nodes

 $X_{n,k} = #$ of k-pronged nodes in random PT of size n.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Mean and variance of k -pronged nodes

 $X_{n,k} = #$ of k-pronged nodes in random PT of size n.

Rosenberg 2006: we have

$$
\mu_{n,k} := \mathbb{E}(X_{n,k}) = \frac{2n}{k(k+1)}, \qquad (n > k)
$$

and

$$
\sigma_{n,k}^2 := \text{Var}(X_{n,k}) = \begin{cases} \frac{2(4k^2 - 3k - 4)(k-1)n}{k(k+1)^2(2k-1)(2k+1)}, & \text{if } n > 2k; \\ \frac{2(5k-7)(k-1)}{(k+1)^2(2k-1)}, & \text{if } n = 2k; \\ \frac{2(k^2 + k - 2n)n}{k^2(k+1)^2}, & \text{if } 2k > n > k. \end{cases}
$$

 \equiv \cap α

イロト イ部 トイヨ トイヨト

Mean and variance of k -pronged nodes

 $X_{n,k} = #$ of k-pronged nodes in random PT of size n.

Rosenberg 2006: we have

$$
\mu_{n,k} := \mathbb{E}(X_{n,k}) = \frac{2n}{k(k+1)}, \qquad (n > k)
$$

and

$$
\sigma_{n,k}^2 := \text{Var}(X_{n,k}) = \begin{cases} \frac{2(4k^2 - 3k - 4)(k-1)n}{k(k+1)^2(2k-1)(2k+1)}, & \text{if } n > 2k; \\ \frac{2(5k-7)(k-1)}{(k+1)^2(2k-1)}, & \text{if } n = 2k; \\ \frac{2(k^2 + k - 2n)n}{k^2(k+1)^2}, & \text{if } 2k > n > k. \end{cases}
$$

This r[e](#page-41-0)sult $+$ central limit theorem also obtaine[d b](#page-42-0)[y](#page-44-0) [D](#page-40-0)e[v](#page-43-0)[r](#page-44-0)[oy](#page-0-0)[e i](#page-139-0)[n](#page-0-0) [1](#page-0-0)[99](#page-139-0)[1!](#page-0-0) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ ∴ ≊

"The phase change"

Question: What happens for $k \to \infty$ as $n \to \infty$?

 \equiv

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

 2990

"The phase change"

Question: What happens for $k \to \infty$ as $n \to \infty$?

Theorem (Feng, Mahmoud, Panholzer; 2008) (i) (Normal range) Let $k = o(\sqrt{n})$. Then, $X_{n,k}-\mu_{n,k}$ $\sigma_{n,k}$ $\stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$ (ii) (Poisson range) Let $k \sim c\sqrt{n}$. Then, $X_{n,k} \stackrel{d}{\longrightarrow} Po(2c^{-2}).$ (iii) (Degenerate range) Let $k < n$ and $\sqrt{n} = o(k)$. Then,

$$
X_{n,k} \xrightarrow{L_1} 0.
$$

그 그는 사

 QQ

イロト イ部 トイヨ トイヨト

A pattern of size k is a set of induced subtrees of size k .

G. Ω

イロト イ部 トイヨ トイヨト

A pattern of size k is a set of induced subtrees of size k .

 $X_{n,k} = #$ of occurrence of a pattern of size k in random PT of size n.

 \equiv Ω

正々 メラメ

4 ロ ▶ 4 母 ▶ 4

A pattern of size k is a set of induced subtrees of size k .

 $X_{n,k} = #$ of occurrence of a pattern of size k in random PT of size n.

We have,

$$
X_{n,k} \stackrel{d}{=} X_{I_n,k} + X_{n-I_n,k}^*,
$$

where $X_{k,k} = \mathsf{Bernoulli}(p_k)$, $X_{I_n,k}$ and $X_{n-I_n,k}^*$ are conditionally independent given I_n , and $I_n = \text{Unif}\{1, \ldots, n-1\}$

A pattern of size k is a set of induced subtrees of size k .

 $X_{n,k} = #$ of occurrence of a pattern of size k in random PT of size n.

We have,

$$
X_{n,k} \stackrel{d}{=} X_{I_n,k} + X_{n-I_n,k}^*,
$$

where $X_{k,k} = \mathsf{Bernoulli}(p_k)$, $X_{I_n,k}$ and $X_{n-I_n,k}^*$ are conditionally independent given I_n , and $I_n = \text{Unif}\{1, \ldots, n-1\}$

Here,

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

Mean Value and Variance

We have

$$
\mu_{n,k} = \frac{2p_k n}{k(k+1)}, \qquad (n > k),
$$

and

$$
\sigma_{n,k}^2 = \frac{2(4k^3 + 4k^2 - k - 1 - (11k^2 - 5)p_k)p_k n}{k(k+1)^2(2k-1)(2k+1)}
$$

for $n > 2k$.

画 OQ

イロト イ部 トメ ヨ トメ ヨト

Mean Value and Variance

We have

$$
\mu_{n,k} = \frac{2p_k n}{k(k+1)}, \qquad (n > k),
$$

and

$$
\sigma_{n,k}^2 = \frac{2(4k^3 + 4k^2 - k - 1 - (11k^2 - 5)p_k)p_k n}{k(k+1)^2(2k-1)(2k+1)}
$$

for $n > 2k$.

Note that

$$
\mu_{n,k} \sim \sigma_{n,k}^2 \sim \frac{2p_k n}{k^2}
$$

for $n > 2k$ and $k \to \infty$.

画

メロメ メ都 メメ きょくきょ

 2990

Poisson Approximation

Theorem (Chang and F.; 2010) Let $k < n$ and $k \to \infty$. Then,

$$
d_{TV}(X_{n,k}, \mathrm{Po}(\mu_{n,k})) = \begin{cases} \mathcal{O}\left(p_k/k\right), & \text{if } \mu_{n,k} \ge 1; \\ \mathcal{O}\left(p_k/k \cdot \mu_{n,k}\right), & \text{if } \mu_{n,k} < 1. \end{cases}
$$

G.

 2980

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

Theorem (Chang and F.; 2010) Let $k < n$ and $k \to \infty$. Then,

$$
d_{TV}(X_{n,k}, \mathrm{Po}(\mu_{n,k})) = \begin{cases} \mathcal{O}\left(p_k/k\right), & \text{if } \mu_{n,k} \ge 1; \\ \mathcal{O}\left(p_k/k \cdot \mu_{n,k}\right), & \text{if } \mu_{n,k} < 1. \end{cases}
$$

Recently re-proved by Holmgren and Janson with Stein's method:

C. Holmgren and S. Janson (2015). Limit laws for functions of fringe trees for binary search trees and recursive trees, Electronic J. Probability, 20:4, 1–51.

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4 0 8

Berry-Esseen bound and LLT

Theorem (Chang and F.; 2010) For $\mu_{n,k}\to\infty$, sup $x\in\bar{\mathbb{R}}$ $\begin{array}{c} \hline \end{array}$ P $\int X_{n,k} - \mu_{n,k}$ $\sigma_{n,k}$ $\langle x \rangle - \Phi(x)$ $\begin{array}{c} \hline \end{array}$ $= \mathcal{O}\left(\frac{k}{\sqrt{p_kn}}\right)$ $\bigg)$.

 QQ

イロン イ部ン イヨン イヨン 一番

Berry-Esseen bound and LLT

Theorem (Chang and F.; 2010) For $\mu_{n,k}\to\infty$,

$$
\sup_{x\in\mathbb{R}}\left|P\left(\frac{X_{n,k}-\mu_{n,k}}{\sigma_{n,k}}
$$

Theorem (Chang and F.; 2010) For $\mu_{n,k}\to\infty$,

$$
P(X_{n,k} = \lfloor \mu_{n,k} + x \sigma_{n,k}^2 \rfloor) = \frac{e^{-x^2/2}}{\sqrt{2\pi} \sigma_{n,k}} \left(1 + \mathcal{O}\left((1+|x|^3) \frac{k}{\sqrt{p_k n}} \right) \right),
$$

uniformly in $x = o((p_k n)^{1/6}/k^{1/3})$.

 299

イロト 不優 ト 不重 ト 不重 トー 重

Short Summary

We have proved:

- **•** Explicit expressions for mean and variance.
- \bullet Local limit theorem $+$ Berry-Esseen bound for the largest possible range of k .
- Poisson approximation + rate whenever $k \to \infty$.

4 日下

 QQ

Short Summary

We have proved:

- **•** Explicit expressions for mean and variance.
- \bullet Local limit theorem $+$ Berry-Esseen bound for the largest possible range of k .
- Poisson approximation + rate whenever $k \to \infty$.

So, for $k \ll n$ the number of occurrences of the pattern can be approximated by the normal distribution, whereas for the remaining range a Poisson random variable should be used.

Short Summary

We have proved:

- **•** Explicit expressions for mean and variance.
- \bullet Local limit theorem $+$ Berry-Esseen bound for the largest possible range of k .
- Poisson approximation + rate whenever $k \to \infty$.

So, for $k \ll n$ the number of occurrences of the pattern can be approximated by the normal distribution, whereas for the remaining range a Poisson random variable should be used.

In particular, the phase change occurs much earlier than predicted by Feng, Mahmoud, and Panholzer.

 Ω

イロト イ母 トイヨ トイヨト

Lloyd Shapley

Lloyd Shapley (1923-)

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 19 / 45

重

 298

 \mathbb{B} is a \mathbb{B} is

 \leftarrow \Box

4 母 8 4

Lloyd Shapley

Shapley value:

Measure of importance of each player in a cooperative game

4.0.3

Lloyd Shapley (1923-)

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 19 / 45

э

舌

 QQ

Lloyd Shapley

Lloyd Shapley (1923-)

Shapley value:

Measure of importance of each player in a cooperative game

 \rightarrow recently used as prioritization tool of taxa in phylogenetics

 \leftarrow

Shapley Value and Modified Shapley Value

 $T \ldots PT$;

 $a \ldots$ taxon (=leaf) of T .

 \equiv

 Ω

イロト イ部 トイヨ トイヨト

Shapley Value and Modified Shapley Value

 $T \dots P$ T:

 $a \ldots$ taxon (=leaf) of T.

Shapley value $SV_T(a)$:

$$
SV_T(a) = \frac{1}{n!} \sum_{S,a \in S} (|S| - 1)!(n - |S|)!(PD_T(S) - PD_T(S \setminus \{a\})).
$$

Modified Shapley value $SV_T(a)$:

$$
\widetilde{SV}_T(a) = \frac{1}{n!} \sum_{|S| \ge 2, a \in S} (|S| - 1)!(n - |S|)!(\text{PD}_T(S) - \text{PD}_T(S \setminus \{a\})).
$$

 $PD(S)$ is the size of the ancestor of S.

4 0 8

÷

Fair Proportion Index

Fair proportion index $FP_T(a)$:

$$
\text{FP}_T(a) = \sum_e \frac{1}{D_e}
$$

with D_e the number of taxa below e .

画

 QQ

イロト イ部 トメ ヨ トメ ヨト

Fair Proportion Index

Fair proportion index $FP_T(a)$:

$$
\text{FP}_T(a) = \sum_e \frac{1}{D_e}
$$

with D_e the number of taxa below e .

Selected (somehow arbitrarily) by Zoological Society of London for EDGE of Existence conservation program!

4 日下

 QQ

→ 何 ト → ヨ ト → ヨ ト

Fair Proportion Index

Fair proportion index $FP_T(a)$:

$$
\text{FP}_T(a) = \sum_e \frac{1}{D_e}
$$

with D_e the number of taxa below e .

Selected (somehow arbitrarily) by Zoological Society of London for EDGE of Existence conservation program!

 $FP_n =$ fair proportion index of random taxon in random PT of size n:

$$
FP_n|(I_n = j) = \begin{cases} \frac{1}{j} + FP_j, & \text{with probability } j/n; \\ \frac{1}{n-j} + FP_{n-j}, & \text{with probability } (n-j)/n, \end{cases}
$$

where $I_n = \text{Unif}\{1, ..., n-1\}$.

 Ω

4 ロト 4 何 ト 4

Strong Correlation between $\widetilde{\mathrm{SV}}$ and FP

Hartmann (2013):

4 D F

 \sim

×

Michael Fuchs (NCTU) [Phylogenetic Trees \(PTs\)](#page-0-0) June 30th, 2015 22 / 45

 QQ

Assume a is in left subtree T_l and $|T_l|=j.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

 $SV = FP$

Assume a is in left subtree T_l and $|T_l|=j.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

 $SV = FP$

Assume a is in left subtree T_l and $|T_l|=j.$

Theorem (F. and Jin; 2015)

We have.

$$
SV_T(a) = FP_T(a).
$$

G.

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

$\widetilde{\mathrm{SV}}$ and FP (i)

$$
D_T(a) = \text{depth of } a \text{ in } T:
$$

$$
FP_T(a) = SV_T(a) = \widetilde{SV}_T(a) + \frac{D_T(a)}{n}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900
$\widetilde{\mathrm{SV}}$ and FP (i)

$$
D_T(a) = \text{depth of } a \text{ in } T:
$$

$$
FP_T(a) = SV_T(a) = \widetilde{SV}_T(a) + \frac{D_T(a)}{n}.
$$

 $D_n =$ depth of random taxon in random PT of size n.

Lemma

We have,

$$
Var(FP_n) = 10 - 6H_{n-1}^{(2)} - \frac{6}{n} - \frac{4}{n^2} \sim 10 - \pi^2
$$

$$
Var(D_n) = 2H_n - 4H_n^{(2)} + 2 \sim 2 \log n,
$$

where
$$
H_n = \sum_{1 \le j \le n} 1/j
$$
 and $H_n^{(2)} = \sum_{1 \le j \le n} 1/j^2$.

重

 299

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁

Lemma

We have,

$$
Cov(\text{FP}_n, D_n) = 4H_{n-1}^{(2)} - 6 + \frac{2}{n} + \frac{4}{n^2} \sim \frac{2\pi^2}{6} - 6.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Lemma

We have,

$$
Cov(\text{FP}_n, D_n) = 4H_{n-1}^{(2)} - 6 + \frac{2}{n} + \frac{4}{n^2} \sim \frac{2\pi^2}{6} - 6.
$$

Theorem (F. and Jin; 2015)

The correlation coefficient $\rho(SV_n, FP_n)$ of modified Shapley value and fair proportion index tends to 1, i.e.,

$$
\lim_{n \to \infty} \rho(\widetilde{SV}_n, FP_n) = 1.
$$

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• Shapley value was introduced for the purpose of making conservation decisions in genetics.

 \leftarrow \Box

目

 QQ

医前头面

n → n → n

- Shapley value was introduced for the purpose of making conservation decisions in genetics.
- Fair proportion index was used by Zoological Society of London but its biodiversity value was unclear.

4 0 8

- Shapley value was introduced for the purpose of making conservation decisions in genetics.
- Fair proportion index was used by Zoological Society of London but its biodiversity value was unclear.
- **•** Strong correlation between modified Shapley value and fair proportion index was observed by Hartmann and others.

- Shapley value was introduced for the purpose of making conservation decisions in genetics.
- Fair proportion index was used by Zoological Society of London but its biodiversity value was unclear.
- Strong correlation between modified Shapley value and fair proportion index was observed by Hartmann and others.
- We proved that Shapley value equals fair proportion index.

- Shapley value was introduced for the purpose of making conservation decisions in genetics.
- Fair proportion index was used by Zoological Society of London but its biodiversity value was unclear.
- Strong correlation between modified Shapley value and fair proportion index was observed by Hartmann and others.
- We proved that Shapley value equals fair proportion index.
- We showed that correlation coefficient of modified Shapley value and fair proportion index tends to 1 in Yule-Harding model and other random models.

 QQQ

イロト イ押 トイヨト イヨ

Social Animals

Consider n animals of a class of social animals. Construct a random PT with leaves representing the animals.

4 0 8

э

Social Animals

Consider n animals of a class of social animals. Construct a random PT with leaves representing the animals.

Describes the genetic relatedness of the animals.

4 D F

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

目

 QQQ

正々 メラメ

4 0 8

∢ 何 ≯ →

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

 \longrightarrow neutral model.

目 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

Clade of a leaf:

All leafs of the tree rooted at the parent.

4 **D** F

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

Clade of a leaf:

All leafs of the tree rooted at the parent.

4 **D** F

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

Durand, Blum and François (2007):

Groups are formed more likely by animals which are genetically related.

−→ neutral model.

$#$ of Groups

 $X_n = #$ of groups under the Yule Harding model

 $E = 990$

イロト イ部 トメ ヨ トメ ヨト

$#$ of Groups

 $X_n = #$ of groups under the Yule Harding model

We have,

$$
X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n - 1, \\ X_{I_n} + X_{n - I_n}^*, & \text{otherwise,} \end{cases}
$$

where $I_n = \text{Uniform}\{1,\ldots,n-1\}$ is the $\#$ of animals in the left subtree and X_n^* is an independent copy of X_n .

KED KARD KED KED E VOOR

$#$ of Groups

 $X_n = #$ of groups under the Yule Harding model

We have,

$$
X_n \stackrel{d}{=} \begin{cases} 1, & \text{if } I_n = 1 \text{ or } I_n = n - 1, \\ X_{I_n} + X_{n - I_n}^*, & \text{otherwise,} \end{cases}
$$

where $I_n =$ Uniform $\{1, \ldots, n-1\}$ is the $\#$ of animals in the left subtree and X_n^* is an independent copy of X_n .

Comparison with Real-life Data

Durand, Blum and François (2007) presented the following data:

 \leftarrow

Yi-Wen's Thesis (2012)

Group Patterns of Social Animals under the **Neutral Model**

Yi-Wen Lee

Department of Applied Mathematics,

National Chiao Tung University

This thesis was supervised by Dr. Michael Fuchs

May 26, 2012

÷

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

4 0 8

Variance and SLLN

Theorem (Lee; 2012)

We have,

$$
Var(X_n) \sim \frac{(1 - e^{-2})^2}{4} n \log n = 4a^2 n \log n.
$$

画

 QQ

イロト イ部 トメ ヨ トメ ヨト

Variance and SLLN

Theorem (Lee; 2012)

We have.

$$
Var(X_n) \sim \frac{(1 - e^{-2})^2}{4} n \log n = 4a^2 n \log n.
$$

Theorem (Lee; 2012)

We have,

$$
P\left(\lim_{n\to\infty}\left|\frac{X_n}{\mathbb{E}(X_n)}-1\right|=0\right)=1.
$$

For SLLN, X_n is constructed on the same probability space via the tree evolution process underlying the Yule-Harding model.

- 30

 QQQ

イロト イ押ト イヨト イヨト

Method of Moments

Theorem

Assume that $\mathbb{E}(X_n^k) \longrightarrow \mathbb{E}(X^k)$ for all $k \geq 1$ and that X is uniquely characterised by its sequence of moments. Then,

$$
X_n \xrightarrow{d} X.
$$

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

4 D F

Method of Moments

Theorem

Assume that $\mathbb{E}(X_n^k) \longrightarrow \mathbb{E}(X^k)$ for all $k \geq 1$ and that X is uniquely characterised by its sequence of moments. Then,

$$
X_n \xrightarrow{d} X.
$$

Many sufficient conditions for X being uniquely characterized by its moments are known, e.g.,

$$
\sum_{k\geq 1} \mathbb{E}(X^k) \frac{z^k}{k!}
$$

has a positive radius of convergence.

 QQQ

Higher Moments

Theorem (Lee; 2012)

For all $k \geq 3$,

$$
\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k-2} a^k n^{k-1}.
$$

 2990

イロト イ部 トメ ヨ トメ ヨト

Higher Moments

Theorem (Lee; 2012) For all $k \geq 3$, $\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k}$ $\frac{2k}{k-2}a^kn^{k-1}.$

This implies that all moments larger than two of

$$
\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\text{Var}(X_n)}}
$$

tend to infinity!

目

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

Higher Moments

Theorem (Lee; 2012) For all $k \geq 3$, $\mathbb{E}(X_n - \mathbb{E}(X_n))^k \sim (-1)^k \frac{2k}{k}$ $\frac{2k}{k-2}a^kn^{k-1}.$

This implies that all moments larger than two of

$$
\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\text{Var}(X_n)}}
$$

tend to infinity!

Question: Is there a limit distribution?

目

 Ω

イロト イ押ト イヨト イヨト

Unordered, rooted trees.

 \equiv 990

イロト イ部 トメ ヨ トメ ヨト

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

 \equiv Ω

正々 メラメ

4 ロ ▶ 4 母 ▶ 4

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

目

 QQ

 \triangleright \rightarrow \equiv

K ロ ▶ K 何 ▶

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

4 0 8 1

∢ ←

目

 QQ

 \equiv

 \rightarrow -4

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

4 日下

同→

 \sim

目

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

 \leftarrow \Box

 \rightarrow

÷

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

 \leftarrow \Box

÷

Unordered, rooted trees.

Uniformly choose one of the nodes and attach a child.

4 日下

э
Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

4 0 8

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

4 0 8

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 \leftarrow

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 \leftarrow

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 \leftarrow

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 \leftarrow

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

∢ ⊡

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

∢ ⊡

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

Meir and Moon (1974):

Randomly pick an edge and remove it; retain the tree containing the root.

 $Y_n =$ number of steps until tree is destroyed $=$ number of edges cut $= 4$.

Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)
\nWe have,
\n
$$
\mathbb{E}(Y_n) \sim \frac{n}{\log n}
$$
\nand for $k \ge 2$
\n
$$
\mathbb{E}(Y_n - \mathbb{E}(Y_n))^k \sim \frac{(-1)^k}{k(k-1)} \cdot \frac{n^k}{\log^{k+1} n}.
$$

造

正々 メラメ

4 ロ ▶ 4 母 ▶ 4

Mean, Variance and Higher Moments

Theorem (Panholzer; 2004)
\nWe have,
\n
$$
\mathbb{E}(Y_n) \sim \frac{n}{\log n}
$$
\nand for $k \ge 2$
\n
$$
\mathbb{E}(Y_n - \mathbb{E}(Y_n))^k \sim \frac{(-1)^k}{k(k-1)} \cdot \frac{n^k}{\log^{k+1} n}.
$$

Thus, again the limit law of

$$
\frac{Y_n - \mathbb{E}(Y_n)}{\sqrt{\text{Var}(Y_n)}}
$$

cannot obtained from the method of moments!

4 日下

÷

 \sim

 QQ

Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009) We have,

$$
\frac{\log^2 n}{n} Y_n - \log n - \log \log n \stackrel{d}{\longrightarrow} Y
$$

with

$$
\mathbb{E}(e^{i\lambda Y}) = e^{i\lambda \log |\lambda| - \pi |\lambda|/2}.
$$

The law of Y is spectrally negative stable with index of stability 1.

目

 QQ

イロト イ押ト イヨト イヨト

Limit Law

Theorem (Drmota, Iksanov, Moehle, Roessler; 2009) We have.

$$
\frac{\log^2 n}{n} Y_n - \log n - \log \log n \stackrel{d}{\longrightarrow} Y
$$

with

$$
\mathbb{E}(e^{i\lambda Y}) = e^{i\lambda \log |\lambda| - \pi |\lambda|/2}.
$$

The law of Y is spectrally negative stable with index of stability 1.

Different proofs of this result exist.

4 日下

目

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Limit Law of X_n

Theorem (Drmota, F., Lee; 2014)

We have,

$$
\frac{X_n - \mathbb{E}(X_n)}{\sqrt{\text{Var}(X_n)/2}} \xrightarrow{d} N(0, 1).
$$

造

 2990

イロト イ部 トメ ヨ トメ ヨト

Limit Law of X_n

Theorem (Drmota, F., Lee; 2014) We have, $X_n - \mathbb{E}(X_n)$ $\sqrt{\text{Var}(X_n)/2}$ $\stackrel{d}{\longrightarrow} N(0,1).$

For the proof, we use singularity perturbation analysis.

 QQ

KONKAPIK KENYEN E

Limit Law of X_n

Theorem (Drmota, F., Lee; 2014) We have, $X_n - \mathbb{E}(X_n)$ $\sqrt{\text{Var}(X_n)/2}$ $\stackrel{d}{\longrightarrow} N(0,1).$

For the proof, we use singularity perturbation analysis.

A probabilistic proof explaining the curious normalization was given recently.

S. Janson (2015). Maximal clades in random binary search trees, Electronic J. Combinatorics, 22:1, paper 31.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Some Ideas of the Proof (i)

Set

$$
X(y, z) = \sum_{n \ge 2} \mathbb{E} \left(e^{yX_n} \right) z^n.
$$

Then,

$$
z\frac{\partial}{\partial z}X(y,z) = X(y,z) + X^2(y,z) + e^y z^2 \frac{2e^y z^3}{1-z}.
$$

This is a Riccati DE.

造

メロメ メ都 メメ きょくきょ

Some Ideas of the Proof (i)

Set

$$
X(y, z) = \sum_{n \ge 2} \mathbb{E} \left(e^{yX_n} \right) z^n.
$$

Then,

$$
z\frac{\partial}{\partial z}X(y,z) = X(y,z) + X^2(y,z) + e^y z^2 \frac{2e^y z^3}{1-z}.
$$

This is a Riccati DE.

Set

$$
\tilde{X}(y,z) = \frac{X(y,z)}{z}.
$$

Then,

$$
\frac{\partial}{\partial z}\tilde{X}(y,z) = \tilde{X}^2(y,z) + e^y \frac{1+z}{1-z}.
$$

活

正々 メラメ

K ロ ト K 伊 ト K

Some Ideas of the Proof (ii)

Set

$$
\tilde{X}(y, z) = -\frac{V'(y, z)}{V(y, z)}.
$$

Then,

$$
V''(y, z) + e^y \frac{1+z}{1-z} V(y, z) = 0.
$$

This is Whittaker's DE.

造

メロメ メ都 メメ きょくきょ

Some Ideas of the Proof (ii)

Set

$$
\tilde{X}(y,z) = -\frac{V'(y,z)}{V(y,z)}.
$$

Then,

$$
V''(y, z) + e^y \frac{1+z}{1-z} V(y, z) = 0.
$$

This is Whittaker's DE.

Solution is given by

$$
V(y,z) = M_{-e^{y/2},1/2} \left(2e^{y/2}(z-1) \right) + c(y)W_{-e^{y/2},1/2} \left(2e^{y/2}(z-1) \right),
$$

where

$$
c(y) = -\frac{\left(e^{y/2} - 1\right) M_{-e^{y/2} + 1, 1/2} \left(-2e^{y/2}\right)}{W_{-e^{y/2} + 1, 1/2} \left(-2e^{y/2}\right)}.
$$

目

 \equiv

Some Ideas of the Proof (iii)

Lemma

 $V(y, z)$ is analytic in $\Delta = \{z \in \mathbb{C} : |z| < 1 + \delta\}$ {branch cut from 1 to ∞ } for all $|y| < \eta$. Moreover, $V(y, z)$ has only one (simple) zero with $z_0(y) = 1 - ay$ $+ 2a^2y^2 \log y + \mathcal{O}(y^2).$

 QQ

 \triangleright \rightarrow \exists \rightarrow

4 0 8

Some Ideas of the Proof (iii)

Lemma

 $V(y, z)$ is analytic in $\Delta = \{z \in \mathbb{C} : |z| < 1 + \delta\}$ {branch cut from 1 to ∞ } for all $|y| < \eta$. Moreover, $V(y, z)$ has only one (simple) zero with $z_0(y) = 1 - ay$ $+ 2a^2y^2 \log y + \mathcal{O}(y^2).$

4 D F

Some Ideas of the Proof (iv)

Let $y=it/(2a$ √ $n \log n$). Then,

$$
\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.
$$

 -990

イロン イ部ン イヨン イヨン 一番

Some Ideas of the Proof (iv)

Let $y=it/(2a$ √ $n \log n$). Then,

$$
\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.
$$

Lemma

We have,

$$
\mathbb{E}\left(e^{yX_n}\right) = z_0(y)^{-n} + \mathcal{O}\left(\frac{\log^3 n}{n}\right).
$$

 2980

メロメ メ都 メメ きょくきょ

Some Ideas of the Proof (iv)

Let $y=it/(2a$ √ $n \log n$). Then,

$$
\mathbb{E}\left(e^{yX_n}\right) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{X(y,z)}{z^{n+1}} \mathrm{d}z.
$$

Lemma

We have,

$$
\mathbb{E}\left(e^{yX_n}\right) = z_0(y)^{-n} + \mathcal{O}\left(\frac{\log^3 n}{n}\right).
$$

This together with the expansion of $z_0(y)$ yields

$$
\mathbb{E}\left(e^{yX_n}\right) = \exp\left(\frac{it\sqrt{n}}{2\sqrt{\log n}} - \frac{t^2}{4}\right)\left(1 + \mathcal{O}\left(\frac{\log\log n}{\log n}\right)\right).
$$

目

 QQ

イロト イ押ト イヨト イヨト

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

We gave a comprehensive study of pattern occurrences in random phylogenetic trees.

 OQ 造

イロト イ部 トメ ヨ トメ ヨト

- We gave a comprehensive study of pattern occurrences in random phylogenetic trees.
- We explained the strong correlation between Shapley value and fair proportion index in phylogenetic trees. This is of great interest for people working in biodiversity.

4 日下

 QQ

- We gave a comprehensive study of pattern occurrences in random phylogenetic trees.
- We explained the strong correlation between Shapley value and fair proportion index in phylogenetic trees. This is of great interest for people working in biodiversity.
- We found a curious central limit theorem for the number of groups formed by social animals under the neutral model.

 QQQ

- We gave a comprehensive study of pattern occurrences in random phylogenetic trees.
- We explained the strong correlation between Shapley value and fair proportion index in phylogenetic trees. This is of great interest for people working in biodiversity.
- We found a curious central limit theorem for the number of groups formed by social animals under the neutral model.
- Analytic combinatorics is useful in studying mathematical problems for random phylogenetic trees. We expect many more applications.

 QQQ

The South Book

∢ ロ ▶ - ィ _ロ ▶ - ィ

- We gave a comprehensive study of pattern occurrences in random phylogenetic trees.
- We explained the strong correlation between Shapley value and fair proportion index in phylogenetic trees. This is of great interest for people working in biodiversity.
- We found a curious central limit theorem for the number of groups formed by social animals under the neutral model.
- Analytic combinatorics is useful in studying mathematical problems for random phylogenetic trees. We expect many more applications.
- More input from biologists is needed to make our results more relevant from the point of view of applications.

 QQ

イロト イ押ト イヨト イヨト