Linear Complementarity for Regularized Policy
Evaluation and Improvement

Jeff Johns Christopher Painter-Wakefield Ronald Parr
Department of Computer Science
Duke University
Durham, NC 27708
{johns, paint007, parr }@cs.duke.edu

Abstract

Recent work in reinforcement learning has emphasized thepof L, regular-
ization to perform feature selection and prevent over{jttvve propose formulat-
ing theL; regularized linear fixed point problem as a linear compleianéy prob-
lem (LCP). This formulation offers several advantages dkierLARS-inspired
formulation, LARS-TD. The LCP formulation allows the usesadficient off-the-
shelf solvers, leads to a new uniqueness result, and caiitiaéized with starting
points from similar problems (warm starts). We demonstiiaé¢ warm starts, as
well as the efficiency of LCP solvers, can speed up policyatten. Moreover,
warm starts permit a form of modified policy iteration than ¢ee used to approxi-
mate a “greedy” homotopy path, a generalization of the LARBRomotopy path
that combines policy evaluation and optimization.

1 Introduction

L, regularization has become an important tool over the lashdie with a wide variety of ma-
chine learning applications. In the context of linear regien, its use helps prevent overfitting and
enforces sparsity in the problem’s solution. Recent woik d@monstrated how; regularization
can be applied to the value function approximation problemarkov decision processes (MDPs).
Kolter and Ng [1] included.; regularization within the least-squares temporal diffieeeslearning
[2] algorithm as LARS-TD, while Petrik et al. [3] adapted gpeoximate linear programming algo-
rithm. In both casesl; regularization automates the important task of selecttgyvant features,
thereby easing the design choices made by a practitioner.

LARS-TD provides a homotopy method for finding the regularized linear fixed point formulated
by Kolter and Ng. We reformulate thie, regularized linear fixed point as a linear complementarity
problem (LCP). This formulation offers several advantadfealows us to draw upon the rich theory
of LCPs and optimized solvers to provide strong theoreticgrantees and fast performance. In
addition, we can take advantage of the “warm start” capgglmfiLCP solvers to produce algorithms
that are better suited to the sequential nature of policyravgment than LARS-TD, which must
start from scratch for each new policy.

2 Background

First, we introduce MDPs and linear value function appraion. We then review.; regulariza-
tion and feature selection for regression problems. Binat introduce LCPs. We defer discussion
of L, regularization and feature selection for reinforcemeatrieng (RL) until section 3.

2.1 MDP and Value Function Approximation Framework

We aim to discover optimal, or near-optimal, policies forrktas decision processes (MDPs) defined
by the quintupleM = (S, A, P, R,~). Given a state € S, the probability of a transition to a state
s’ € S when actionu € A is taken is given byP(s|s,a). The reward function is a mapping from
states to real number? : S — R. A policy 7 for M is a mapping from states to actions s — a
and the transition matrix induced hyis denotedP™. Future rewards are discounted by [0, 1).

The value function at statefor policy 7 is the expected total-discounted reward for following
from s. In matrix-vector form, this is written:

VT=T"V"=R+~yP"VT",
whereT™ is theBellman operatofor policy 7 andV' ™ is the fixed point of this operator. An optimal
policy, 7*, maximizes state values, has value funcfioh and is the fixed point of th&* operator:

TV (s)=R P(s V(s).
(5) = R(s) + 7 max % (s']s, @)V (s)
Of the many algorithms that exist for finding, policy iterationis most relevant to the presentation
herein. For any policyr;, policy iteration compute$’”/, then determines;;, as the “greedy”
policy with respect td/™:
Tj+1(s) = argmax[R(s) + v Z P(s'|s,a)V™i(s"))].
a€A s’eS

This is repeated until some convergence condition is maetaR@xact representation of eakhis,
the algorithm will converge to an optimal policy and the wegoptimal value functiofy ™.

The value function, transition model, and reward functiom@ften too large to permit an exact rep-
resentation. In such cases, an approximation architetwrsed for the value function. A common
choice isV = ®w, wherew is a vector of: scalar weights andt stores a set df features in am x k
matrix with one row per state. Sineeis often intractably largep can be thought of as populated
by k linearly independerthasis functionsy . . . ¢, implicitly defining the columns ob.

For the purposes of estimating, it is common to replac@ with &, which samples rows o,
though for conciseness of presentation we will @ger both, since algorithms for estimatingare
essentially identical ifb is substituted fob. Typical linear function approximation algorithms [2]
solve for thew which is a fixed point:

dw = II(R +v®"w) = [IT7 dw,
wherell is the Lo projection into the span @b and®’" is P™® in the explicit case and composed
of sampled next features in the sampled case. Likewise, edaad7’™ for the sampled case.

2.2 L, Regularization and Feature Selection in Regression

In regression, thé,; regularized least squares problem is defined as:

w:argminlﬂéx—yH%—i—ﬁHle, Q)
zERF 2
wherey € R" is the target function and € R is a regularization parameter. This penalized
regression problem is equivalent to thasso[4], which minimizes the squared residual subject to a
constraint on|z||;. The use of the; norm in the objective function prevents overfitting, butals
serves a secondary purpose of promoting sparse solutienscpefficientsy containing many 0s).
Therefore, we can think af; regularization as performinfgature selectionThe Lasso’s objective
function is convex, ensuring the existence of a global (¢fooot necessarily unique) minimum.

Even though the optimal solution to the Lasso can be compuatadairly straightforward manner
using convex programming, this approach is not very efficienlarge problems. This is a mo-
tivating factor for the least angle regression (LARS) aildpon [5], which can be thought of as a
homotopy method for solving the Lasso faf nonnegative values gf. We do not repeat the de-
tails of the algorithm here, but point out that this is ea#ii@n it might sound at first because the
homotopy path in3-space igpiecewise lineawith finitely many segments). Furthermore, there
exists a closed form solution for moving from one piecewisedr segment to the next segment.
An important benefit of LARS is that it provides solutions & values of$3 in a single run of the
algorithm. Cross-validation can then be performed to sele@ppropriate value.

2.3 LCPandBLCP

Given a square matrid/ and a vector, a linear complementarity problem (LCP) seeks vectors
w > 0andz > 0 with w” 2z = 0 and

w=q+ Mz.

The problem is thus parameterized by L@GPV/). Even though LCPs may appear to be simple
feasibility problems, the framework is rich enough to eggrany convex quadratic program.

Theboundedinear complementarity problem (BLCP) [6] includes box staints ornz. The BLCP
computesw andz wherew = ¢ + M z and each variable; meets one of the following conditions:

l; < zi < uy; - w; =0 (ZC)

with bounds—oo < I; < u; < co. The parameterization is written BLCR M, I, «). Notice that an
LCP is a special case of a BLCP with= 0 andu; = oo, Vi. Like the LCP, the BLCP has a unique
solution whenl/ is a P-matrix and there exist algorithms which are guaranteed to find thigion
[6, 7]. When the lower and upper bounds on the BLCP are finieeBttCP can in fact be formulated
as an equivalent LCP of twice the dimensionality of the odjiproblem. A full derivation of this
equivalence is shown in the appendix (supplementary nadggri

There are many algorithms for solving (B)LCPs. Since ouraagh is not tied to a particular algo-
rithm, we review some general properties of (B)LCP solveygtimized solvers can take advantage
of sparsity inz. A zero entry inz effectively cancels out a column it/. If M is large, efficient
solvers can avoid usindy/ directly, instead using a smallaf’ that is induced by the nonzero entries
of z. The columns ofl/’ can be thought of as the “active” columns and the procedusavapping
columns in and out of/’ can be thought of as a pivoting operation, analogous to pivathe sim-
plex algorithm. Another important property of some (B)LAgaaithms is their ability to start from
an initial guess at the solution (i.e., a “warm start”). Iétinitial guess is close to a solution, this can
significantly reduce the solver’s runtime.

Recently, Kim and Park [8] derived a connection between th€Band the Karush-Kuhn-Tucker
(KKT) conditions for LARS. In particular, they noted the stibn to the minimization problem in
equation (1) has the form:

z_=(@'e) oy + (070) ! (—¢),
N ————e——
v a M z

where the vectorc follows the constraints in equation (2) with= —g andu; = 8. Although we
describe the equivalence between the BLCP and LARS optineanditions using// = (®7'®)~1,
the inverse can take place inside the BLCP algorithm andoiesation is feasible and efficient as
it is only done for the active columns @f. Kim and Park [8] used a block pivoting algorithm,
originally introduced by Udice and Pires [6], for solving the Lasso. Their experiraesitow the
block pivoting algorithm is significantly faster than botARS and Feature Sign Search [9].

3 Previous Work

Recent work has emphasized feature selection as an impgutallem in reinforcement learn-
ing [10, 11]. Farahmand et al. [12] considey regularized RL. Anl; regularized Bellman residual
minimization algorithm was proposed by Loth et al. [A3Johns and Mahadevan [14] investigate
the combination of least squares temporal difference legr(LSTD) [2] with different variants

of the matching pursuit algorithm [15, 16]. Petrik et al. f&nsiderL, regularization in the con-
text of approximate linear programming. Their approaclersfisome strong guarantees, but is not
well-suited to noisy, sampled data.

A P-matrix is a matrix for which all principal minors are positive.
2Loth et al. claim to adapt LSTD té, regularization, but in fact describe a Bellman residual minimization
algorithm and not a fixed point calculation.

The work most directly related to our own is that of Kolter a¥g [1]. They propose augmenting
the LSTD algorithm with arl,; regularization penalty. This results in the followihg regularized
linear fixed point(L, TD) problem:

1
w:argminﬁHq)x—(R—f—v@’”w)”%—f—ﬂ”x\\l. (3)
z€RF

Kolter and Ng derive a set of necessary and sufficient canditicharacterizing the above fixed
point® in terms of3, w, and a vector: of correlations between the features and the Bellman rabkidu

T™V — V. More specifically, the correlatiofy associated with featurg; is given by:

i =@l (T™V = V) = g (R+ 79w — dw). @)

Introducing the notatiof to denote the set of indices attivefeatures in the model (i.eZ, = {i :
w; # 0}), the fixed point optimality conditions can be summarizetbliews:

C;. All features in the active set share the same absolutelatia®, 5: Vi € Z, |¢;| = .
C,. Inactive features have less absolute correlation thavedfetaturesyi ¢ 7, |c;| < 5.

C;. Active features have correlations and weights agreeisggim Vi € Z,sgn(c;) = sgn(w;).

Kolter and Ng show that it is possible to find the fixed poiningsan iterative procedure adapted
from LARS. Their algorithm, LARS-TD, computes a sequencé@d points, each of which sat-
isfies the optimality conditions above for some intermexliat parameterd > 3. Successive
solutions decreasé and are computed in closed form by determining the point athva feature
must be added or removed in order to further decrgaséthout violating one of the fixed point
requirements. The algorithm (as applied to action-valumetion approximation) is a special case of
the algorithm presented in the appendix (see Fig. 2). Kalter Ng prove that it (& — v®'™) is

a P-matrix, then for any > 0, LARS-TD will find a solution to equation (3).

LARS-TD inherits many of the benefits and limitations of LARBhe fact that it traces an entire
homotopy path can be quite helpful because it does not egoimmitting to a particular value of
(. On the other hand, the incremental nature of LARS may ndbéenost efficient solution for any
single value of the regularization parameter, as shown leydtal. [9] and Kim and Park [8].

It is natural to employ LARS-TD in an iterative manner withime least squares policy iteration
(LSPI) algorithm [17], as Kolter and Ng did. In this usagewewer, many of the benefits of LARS
are lost. When a new policy is selected in the policy iteratmop, LARS-TD must discard its
solution from the previous policy and start an entirely nesniotopy path, making the value of the
homotopy path in this context not entirely clear. One migbss-validate a choice of regularization
parameter by measuring the performance of the final poligytHis requires guessing a value®f
for all policies and then running LARS-TD up to this value &ach policy. If a new value of is
tried, all of the work done for the previous value must be aided.

4 The L, Regularized Fixed Point as an LCP

We show that the optimality conditions for thHg TD fixed point correspond to the solution of a
(B)LCP. This reformulation allows for (1) new algorithmsdompute the fixed point using (B)LCP
solvers, and (2) a new guarantee on the uniqueness of a fixed po

The L, regularized linear fixed point is described by a vector of@ationsc as defined in equation
(4). We introduce the following variables:

A=3T(® -0 b=a"R,

3For fixedw, the RHS of equation (3) is a convex optimization problem; a sufficierdition for optimality
of some vector:™ is that the zero vector is in the subdifferential of the RH% at The fixed point conditions
follow from the equality between the LHS and RHS.

that allow equation (4) to be simplified as= b — Aw. AssumingA is a P-matrix,A is invert-
ible* [18] and we can write:

w o =A"th+ AT (0.

~ = =

w q M 2
Consider a solutiom{ and z) to the equation above whereis bounded as in equation (2) with
| = —pB andu = 3 to specify a BLCP. It is easy to verify that coefficientssatisfying this BLCP
acheive thel,; TD optimality conditions as detailed in section 3. Thus, appropriate solver for
the BLCRA b, A1, —3, B) can be thought of as a linear complementarity approach tangpl
for the L, TD fixed point. We refer to this class of solverslas-TD algorithmsand parameterize
them as LC-TD®, &', R, v, ().

Proposition 1 If A is a P-matrix, then for anyR, the L; regularized linear fixed point exists, is
unique, and will be found by a basic-set BLCP algorithm s@\BLCR A~ 1b, A=, —13, B3).

This proposition follows immediately from some basic BLGRBults. We note that ifl is a P-
matrix, so isA~! [18], that BLCPs for P-matrices have a unique solution for @ig[7], Chp. 3),
and that the the basic-set algorithm aflice and Pires [19] is guaranteed to find a solution to any
BLCP with a P-matrix. This strengthens the theorem by Kadteat Ng [1], which guaranteed only
that the LARS-TD algorithm would converge &solution whenA is a P-matrix.

This connection to the LCP literature has practical benafitaell as theoretical ones. Decoupling
the problem from the solver allows a variety of algorithm&eéoexploited. For example, the ability
of many solvers to use a warm start during initializatiorecsfa significant computational advantage
over LARS-TD (which always begins with a null solution). hetexperimental section of this paper,
we demonstrate that the ability to use warm starts duringydkration can significantly improve
computational efficiency. We also find that (B)LCP solvens ba more robust than LARS-TD, an
issue we address further in the appendix.

5 Modified Policy Iteration using LARS-TD and LC-TD

As mentioned in section 3, the advantages of LARS-TD as a lapyonethod are less clear when
it is used in a policy iteration loop since the homotopy pattraced only for specific policies. It is
possible to incorporate greedy policy improvements ineoltARS-TD loop, leading to a homotopy
path for greedy policies. The greedy regularized fixed point equation is:

1
w = arg min §||<I)x — max(R + 9™ w)||2 + Bz (5)
r€RF ™

We propose a modification to LARS-TD called LARQ which, alomigh conditions G-Cs in sec-
tion 3, maintains an additional invariant:

C4. The current policyr is greedy with respect to the current solution.

It turns out that we can change policies and avoid violathgy tARS-TD invariants if we make
policy changes at points where applying the Bellman openrdtids the same value for both the
old policy (r) and the new policy#’): T™V = T~ V. The LARS-TD invariants all depend on
the correlation of features with the residi&fV — V of the current solution. When the above
equation is satisfied, the residual is equal for both pdici€hus, we can change policies at such
points without violating any of the LARS-TD invariants. Dtespace limitations, we defer a full
presentation of the LARQ algorithm to the appendix.

When run to completion, LARQ provides a set of action-valled &re the greedy fixed point for
all settings of3. In principle, this is more flexible than LARS-TD with polidgieration because it
produces these results in a single run of the algorithm. actme, LARQ suffers two limitations.

“Even whenA is not invertible, we can still use a BLCP solver as long as the principal atrbnof A
associated with the active features is invertible. As with LARS-TD, the ireverdy occurs for this principal
submatrix. In fact, we discuss in the appendix how one need neveridymmmputeA. Alternatively, we can
convert the BLCP to an LCP (appendix A.1) thereby avoiding' in the parameterization of the problem.

The first is that it can be slow. LARS-TD enumerates every tpatinvhich the active set of features
might change, a calculation that must be redone every timadthive set changes. LARQ must
do this as well, but it must also enumerate all points at whiiehgreedy policy can change. Hor
features ane, samples, LARS-TD must check(k) points, but LARQ must chea(k+n) points.
Even though LARS-TD will run multiple times within a policyerration loop, the number of such
iterations will typically be far fewer than the number ofitiag data points. In practice, we have
observed that LARQ runs several times slower than LARS-T{ wolicy iteration.

A second limitation of LARQ is that it can get “stuck.” This@as when the greedy policy for a
particular G is not well defined. In such cases, the algorithm attemptsitcls to a new policy

immediately following a policy change. This problem is noique to LARQ. Looping is possible
with most approximate policy iteration algorithms. What meskt particularly troublesome for
LARQ is that there are few satisfying ways of addressingisisisge without sacrificing the invariants.

To address these limitations, we present a compromise batlw&RQ and LARS-TD with policy
iteration. The algorithm, LC-MPI, is presented as Algaritii. It avoids the cost of continually
checking for policy changes by updating the policy only akadiset of values3(") ... 5(™). Note
that the values are in decreasing order wjt') set to the maximum value (i.e., the point such
thatw(!) is the zero vector). At eagh?), the algorithm uses a policy iteration loop to (1) determine
the current policy (greedy with respect to paramet&#¥s), and (2) compute an approximate value
function ®w() using LC-TD. The policy iteration loop terminates whe®’) ~ @) or some
predefined number of iterations is exceeded. This use of DGwithin a policy iteration loop will
typically be quite fast because we can use the current feagtras a warm start. The warm start is
indicated in Algorithm 1 bysupp (), where the functiosupp determines the support, or active
elements, inb); many (B)LCP solvers can use this information for initialion.

Once the policy iteration loop terminates for poi#t), LC-MPI simply begins at the next point
BU+D py initializing the weights with the previous solutio;V) — (), This was found
to be a very effective technique. As an alternative, we testitializing @+ with the result of
running LARS-TD with the greedy policy implicit in?) from the point (), w(?)) to g4+, This
initialization method performed worse experimentallyrthiae simple approach described above.
We can view LC-MPI as approximating LARQ’s homotopy paticsithe two algorithms agree for

any3\%) reachable by LARQ. However, LC-MPI is more efficient and eedhe problem of getting
stuck. By compromising between the greedy updates of LAR@tar pure policy evaluation
methods of LARS-TD and LC-TD, LC-MPI can be thought of as fafimodified policy iteration
[20]. The following table summarizes the properties of tlgwathms described in this paper.

LARS-TD Policy lteration | LC-TD Policy Iteration | LARQ LC-MPI
Warm start for each ney N N Y Y
Warm start for each new policy N Y Y Y
Greedy policy homotopy path N N Y Approximate
Robust to policy cycles Y Y N Y

6 Experiments

We performed two types of experiments to highlight the ptg¢menefits of (B)LCP algorithms.
First, we used both LARS-TD and LC-TD within policy iteratioThese experiments, which were
run using a single value of the; regularization parameter, show the benefit of warm starts fo
LC-TD. The second set of experiments demonstrates the behafing the LC-MPI algorithm. A
single run of LC-MPI results in greedy policies fowltiple values ofj3, allowing the use of cross-
validation to pick the best policy. We show this is signifitgmore efficient than running policy
iteration with either LARS-TD or LC-TD multiple times for ffierent values of3. We discuss the
details of the specific LCP solver we used in the appendix.

Both types of experiments were conducted on the 20-state [1d and mountain car [21] domains,
the same problems tested by Kolter and Ng [1]. The chain MDBists of two stochastic actions,
left and right, a reward of one at each end of the chain,sapd 0.9. One thousand samples were
generated using 100 episodes, each consisting of 10 rantkus. sFor features, we used 1000
Gaussian random noise features along with five equally speial basis functions (RBFs) and
a constant function. The goal in the mountain car MDP is teedan underpowered car up a hill

Algorithm 1 LC-MPI
Inputs:
{si,a:,mi, 5,)i, state transition and reward samples
©:Sx A—RF state-action features
~v €10,1), discount factor
{8}, whereB™ =max; |1, ¢i(si, ai)rs|, 9 < B forj € {2,...,m}, and3™ >0
e € Ry and T € N, termination conditions for policy iteration

Initialization:

P — [(,0(81,(11) w(sn,an)]T, R «— [r1 rn]T

, wh —0

for j = 2tom do
/I Initialize with the previous solution
W) — -1
/Il Policy iteration loop
Loop:
/I Select greedy actions and fordd
Vi : a} — argmax, ¢(s;, a)Tw®
O —[ip(s1,ah) ... p(sh,an)]”
/I Solve the LC-TD problem using a (B)LCP solver with a warm start
w9 — LC-TD(®, ®', R, ~, 8)) with warm startsupp(w?))
/I Check for termination
it (Jw? — @Yy <e) or (#iterations> T)
then break loop
else) — w®

Return {w@)}m,

by building up momentum. The domain is continuous, two disi@mal, and has three actions. We
usedy = 0.99 and 155 radial basis functions (apportioned as a two direasgrid of 1, 2, 3, 4, 5,

6, and 8 RBFs) and one constant function for features. Samyee generated using 75 episodes
where each episode started in a random start state, too&maactions, and lasted at most 20 steps.

6.1 Policy Iteration

To compare LARS-TD and LC-TD when employed within policyé&on, we recorded theumber

of stepaused during each round of policy iteration, whemgepcorresponds to a change in the active
feature set. The computational complexity per step of ebgdrithm is similar; therefore, we used
the average number of steps per policy as a metric for comgaine algorithms. Policy iteration
was run either until the solution converged or 15 rounds wegoeeded. This process was repeated
10 times for 11 different values @f. We present the results from these experiments in the fist tw
columns of Table 1. The two algorithms performed similady the chain MDP, but LC-TD used
significantly fewer steps for the mountain car MDP. Figurehives plots for the number of steps
used for each round of policy iteration for a single (typjdaial. Notice the declining trend for
LC-TD; this is due to the warm starts requiring fewer stepsro a solution. The plot for the chain
MDP shows that LC-TD uses many more steps in the first roundlafypiteration than does LARS-
TD. Lastly, in the trials shown in Figure 1, policy iteratioging LC-TD converged in six iterations
whereas it did not converge at all when using LARS-TD. Thiswae to LARS-TD producing
solutions that violate thé; TD optimality conditions. We discuss this in detail in apgenA.5.

6.2 LC-MPI

When LARS-TD and LC-TD are used as subroutines within polieyation, the process ends at a
single value of the.; regularization parametét. The policy iteration loop must be rerun to consider
different values of3. In this section, we show how much computation can be savedifnying
LC-MPI once (to producen greedy policies, each at a different value®fversus running policy
iterationm separate times. The third column in Table 1 shows the avenagéer of algorithm steps
per policy for LC-MPI. As expected, there is a significantuetibn in complexity by using LC-MPI
for both domains. In the appendix, we give a more detailed@ of how cross-validation can be

-=-LARS-TD
--LC-TD

3 @
2 2
2 2
g 150 g
E £100
Z100F |g/ M e B g el z
-=-LARS-TD
50 50 --LC-TD
C'0 5 10 15 0O 5 10 15
Round of Policy Iteration Round of Policy Iteration
(a) Chain (b) Mountain car

Figure 1: Number of steps used by algorithms LARS-TD and I eliring each round of policy
iteration for a typical trial. For LC-TD, note the decreasesieps due to warm starts.

Domain LARS-TD, PI | LC-TD, PI | LC-MPI
Chain 73+ 13 77+ 11 24+ 11
Mountain car 2144 33 116+ 22 21+5

Table 1: Average number of algorithm steps per policy.

used to select a good value of the regularization param#&also offer some additional comments
on the robustness of the LARS-TD algorithm.

7 Conclusions

In this paper, we proposed formulating tlie regularized linear fixed point problem as a linear
complementarity problem. We showed the LCP formulatiod$da a stronger theoretical guarantee
in terms of the solution’s uniqueness than was previousiysh Furthermore, we demonstrated that
the “warm start” ability of LCP solvers can accelerate thepatation of thel.; TD fixed point when
initialized with the support set of a related problem. Thiasviound to be particularly effective for
policy iteration problems when the set of active featuressdoot change significantly from one
policy to the next.

We proposed the LARQ algorithm as an alternative to LARS-TBe difference between these
algorithms is that LARQ incorporates greedy policy impnoeats inside the homotopy path. The
advantage of this “greedy” homotopy path is that it providest of action-values that are a greedy
fixed point for all settings of thé.; regularization parameter. However, this additional fléjb
comes with increased computational complexity. As a commise between LARS-TD and LARQ,
we proposed the LC-MPI algorithm which only maintains theR@\ invariants at a fixed set of
values. The key to making LC-MPI efficient is the use of warartstby using an LCP algorithm.

There are several directions for future work. An interegtijuestion is whether there is a natural
way to incorporate policy improvement directly within th€P formulation. Another concern for
L, TD algorithms is a better characterization of the condgiander which solutions exist and can
be found efficiently. In previous work, Kolter and Ng [1] imdited the P-matrix property can always
hold provided enough., regularization is added to the problem. While this is possiiil also
decreases the sparsity of the solution; therefore, it wbeldiseful to find other techniques for
guaranteeing convergence while maintaining sparsity.

Acknowledgments

This work was supported by the National Science Foundat¢8H) under Grant #0937060 to the
Computing Research Association for the ClFellows Profd&F Grant [1S-0713435, and DARPA
CSSG HR0011-06-1-0027. Any opinions, findings, and comnahssor recommendations expressed
in this material are those of the authors and do not necéssefiect the views of the National
Science Foundation or the Computing Research Association.

References

[1] J. Kolter and A. Ng. Regularization and feature selatiioleast-squares temporal difference
learning. InProc. ICML, pages 521-528, 2009.

[2] S. Bradtke and A. Barto. Linear least-squares algorghor temporal difference learning.
Machine Learning22(1-3):33-57, 1996.

[3] M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Featselection using regularization in
approximate linear programs for Markov decision procesdasTo appear in Proc. ICML
2010.

[4] R. Tibshirani. Regression shrinkage and selectionhgd iassoJournal of the Royal Statistical
Society. Series B (Methodologicab3(1):267-288, 1996.

[5] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. $teangle regressionThe Annals of
Statistics 32(2):407-451, 2004.

[6] J. Jdice and F. Pires. A block principal pivoting algorithm farge-scale strictly monotone
linear complementarity problem€omputers and Operations Resear2h(5):587-596, 1994.

[7] K. Murty. Linear Complementarity, Linear and Nonlinear Programmiktgldermann Verlag,
1988.

[8] J. Kim and H. Park. Fast active-set-type algorithms fgrregularized linear regression. In
Proc. AISTAT pages 397-404, 2010.

[9] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparseiogdalgorithms. InAdvances in
Neural Information Processing Systems figes 801-808, 2007.

[10] S. Mahadevan and M. Maggioni. Proto-value functiond-ajlacian framework for learning
representation and control in Markov decision proces3ighd.R, 8:2169-2231, 2007.

[11] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and Mttbian. An analysis of linear models,
linear value-function approximation, and feature setecfor reinforcement learning. IRroc.
ICML, 2008.

[12] A.Farahmand, M. Ghavamzadeh, C. Szepesand S. Mannor. Regularized fitted Q-iteration
for planning in continuous-space Markovian decision peais. InProc. ACC IEEE Press,
2009.

[13] M. Loth, M. Davy, and P. Preux. Sparse temporal diffeetearning using LASSO. IfEEE
International Symposium on Approximate Dynamic Prograngn@nd Reinforcement Learn-
ing, 2007.

[14] J. Johns and S. Mahadevan. Sparse approximate polédyagion using graph-based basis
functions. Technical Report UM-CS-2009-041, Universityvmssachusetts Amherst, Depart-
ment of Computer Science, 2009.

[15] S. Mallat and Z. Zhang. Matching pursuits with timeefteency dictionariesIEEE Transac-
tions on Signal Processing1(12):3397-3415, 1993.

[16] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogomatching pursuit: Recursive function
approximation with applications to wavelet decompositiomProceedings of the 27th Annual
Asilomar Conference on Signals, Systems, and Computdtsne 1, pages 40-44, 1993.

[17] M. Lagoudakis and R. Parr. Least-squares policy itemat Journal of Machine Learning
Research4:1107-1149, 2003.

[18] S. Lee and H. Seol. A survey on the matrix completion fgob Trends in Mathematics
4(1):38-43, 2001.

[19] J. Judice and F. Pires. Basic-set algorithm for a generalizezhli complementarity problem.
Journal of Optimization Theory and Applicatiqri&}(3):391-411, 1992.

[20] M. Puterman and M. Shin. Modified policy iteration algbms for discounted Markov deci-
sion problemsManagement Scienc4(11), 1978.

[21] R. Sutton and A. BartoReinforcement Learning: An IntroductioMIT Press, 1998.

A Appendix

A.1 BLCP to LCP Reformulation

Here we generalize an observation frotite and Pires [19] to show that any BLCP can be con-
verted to an LCP ofwicethe original dimension. Recall that the BLCP seeks vecioesdz such
thatw = g + Mz and each variable; meets one of the following conditions:

Zi = U4 = w; <0
zi = 1; == w; >0
l; < z; <y = w; =0
where the vectorsandu are lower and upper bounds respectively. An LCP must haveagative

variables, so the BLCP conversion begins by introducingranagative slack variablet = » — 1.
This slight change allows for writing the problemas= (¢ + M1) + Mz" where:

2= —l, = w; <0

i
,zj:o == w; >0
0<Zi+<’LLi—li — w,:O

The next step is to deal with the fact that variablecan be negative. We do so by introducing
two sets of nonnegative variables such that= w* — w~. Now, the problem can be written
wt = (¢+ Ml)+ Mzt +w™ where:

z;”:ui—li — w;"zo&wfzo

zr=0 = w />0 & w; =0

0<zt<u -1, = wf=w =0.
At this point, the conditions can be expanded into an LCP witice the original dimension. To
help in this conversion, we add another slack variable= u — z = v — I — z*. Now the problem

becomes:
wt | | g+ Ml
YR

w

M I 2t]
-7 0

with variablesw™®,w™, 2z, 2~ > 0 andz;"w;” = 2; w; = 0,Vi. If matrix M is invertible then we
can pivot onM, yielding the following equivalent LCP:

] [-l-M"g N M=t MU wt
2= | | u+Mlg M-t M w™

with variablesw™,w=, 2%, 2~ > 0 andz;fw;” = z;w; = 0,Vi. Given the solution to this LCP,
the original solution to the BLCP can be computedwia= w™ — w™ andz = 2+ + 1.

A.2 LCP formulation of the L; Regularized Linear Fixed Point
Here, we derive an LCP formulation of thHg reguarized fixed point directly. Some readers may
find this presentation more intuitive than the BLCP formiolat

Begin with the LARS-TD optimality conditions. Each coeféiotw; must meet one of the following
conditions:

—B<®I(R—(® -y Mw)<B = w;=0
7 (R~ (¢ =19)w) =3

K2

= w; >0
oI (R— (-2 w)=—-F = w;<0
These can be rewritten as:
0<fB—d(R—(®—~1dMw) <28 = w;=0
=0/ (R—(®—7dMw)=0 = w; >0
B-@f (R~ (2 -7)w) =20 = w;<0

10

Now define two vectors™ andz~ as:
T =p3- 0T (R— (& —7d™)w)
7 =F+3T(R— (-4 ™)w) =23z
Notice that bothz* andz~ are in the rangé0, 23]. Furthermore, when an element = 0, it

must be that:; = 24 (and vice-versa). With these definitions in hand, we canevfie optimality
conditions as:

Now decompose the weight vecterinto positive (o) and negative«)~) portions such that:

w=w"—w"
wh,w™ >0
if w; >0, thenw;" >0 & w; =0

if w; <0, thenw; >0 & w =0

When we convert the optimality conditions to a linear compatarity problem (LCP), we will
show that a solution to the LCP must satisfy these consgrplated onv™ andw~. The optimality
conditions can now be written as:
0<zf<28 & 0<z; <28 = wi=w =0
=0 & 27 =28 = w/ >0 & w; =0
z; =0 & 27 =28 = w; >0 & w/ =0
Now it is easy to show these optimality conditions define a .LGPhelp see this, note that (1)

all the variables 4, >~,w*,w™) must be nonnegative and (2) the only way a weigfit (or
w;") can be positive is if the corresponding variablé (or z;) equals zero. Using the notation

A= 3T (® —®'™) andb = ®T R, the LCP is written:
xt b A —A wt
O[S) L

[gf],[gflm

Notice that a solution to the LCP must meet the constraintplaeed orw™ andw ™. To see this,
assumew;” > 0. If this is true, thenz;” must equal 0 (by complementarity) ang = 23 (by
definition) which in turn impliesv;” = 0 (by complementarity). The same logic appliesjf > 0.

Finally, note that the solution above is equivalent to paniag the transformation in section A.1 to
the BLCP formulation of th€., regularized fixed point.

A.3 The LARQ algorithm

The LARQ algorithm (Figure 2) modifies LARS-TD to identify gy change points in addition to
feature change points. These policy change points, muetthi& feature addition/removal points
of LARS-TD, can be found analytically. Policy changes camimle at a step size given by the
equation

_ Dlow — OTw
O T D AW — O AW ©)
whereAw is the vector along which the coefficients are currently taised to move according to
the LARS-TD invariants.

11

Algorithm LARQ ({si, ai, 74, 7}, 7, {95}, B)

parameters:
{si,a;,ri, s;}: state, action, reward, and nextstate samples
¥ : discount factor
{¢;} : basis functions
B : regularization parameter

initialization:
w—0
mim(sh) — 1
D qZ‘ij — @j(si,ai)
c—®'R
{B, i} — max; |c;|
T« {i}

while 5 > g:
Get features for next states following policy :
BT DT — gi(si,m(si))

Find update direction:
Awr — (8T®7 — v®T®7) ! sgn(er)

Find step size for adding a feature to the active set:
d— (87 (®7 — v®7)Awr
ej=B cjth }

(3 K2 <— min . b
{a1,i1} G¢T | ;=10 d;FT

Find step size for removing a feature from the active set:
{ s} — mi +.0 [Wi
2,12 mlnjEI ij

Find step size to first of {add a feature, remove a feature, terminate at fixed point}:
a «— min{ai, az, 8 — B}

/I This next section is omitted in LARS-TD
Find step size for greedy policy update
Q/w - ‘PI;—WI
AQ'™ — &'TAwr
foreach action a
Q/a : Q:‘a - (I)(S//u a)IWI
AQ' 1 AQL* — (s, a)zAwz
Q;ainjr

a .a ; i
{5,415} < min; =
3,03 i Ta 7
AQIT—AQ]

such that AQ* > AQQ“}
{az, 74} «— min,{ag}
/
i3 —ig?
o — min{a, az}
/I End of LARQ-only section

Update weights, 3, and correlation vector:
wz «— wz + alAwg
B—p—-a

c+—c—ad

Update active set or policy:
if (v =a1), T — T J{i1}
elseif (e = a2),Z «— T — {i2}
elseif (o = ag), m(ig) «— 74
end while
return w.

Figure 2: The LARQ algorithm.

To satisfy the greedy invariant of LARQ, however, we musbatasure that the new policy we
switch to will be better than the old policy as we move towaditts new fixed point. In general,

all that is necessary to satisfy this requirement is thagtiaelient of the new policyp;™ Aw with

respect to the direction of travel is greater than the gradiéthe old policy.

12

A.4 LCP Solver

In our experiments, we used a modified complementary pigatigorithm to solve for theé.; TD
fixed point using the LCP formulation as shown at the end okagjx section A.1. We adapted a
Matlab LCP solver due to P. Fackler and M. Miranda that all@vsvarm starts. The fileemke.m

can be found in the CompEcon toolboxhaitp://www4.ncsu.edu/"pfackler . The code was
adapted so that the full matri&” (® — v®'™), which can be very large depending on the size of the
feature set, was never explicitly formed. The full matrini needed to determine which element
should be pivoted in and out of the active set at any iteradithe algorithm. We only formed
the principal submatrix associated with the active elesieAs a further optimization, rather than
forming the principal submatrix itself, it is possible todgie and downdate thaverseof this
principal submatrix incrementally to solve the necessiaigdr system of equations.

In section 2.3, we stated that the LCP formulation is twicéaage as the BLCP formulation. We
used the LCP formulation here because the code was readilialale and appeared robust. How-
ever, any suitable solver could be used instead.

A.5 Robustness of LARS-TD

When theA matrix is a P-matrix, LC-TD and LARS-TD are guaranteed todpice solutions that
achieve thd.; TD optimality conditions. When the P-matrix property doeshnad, both algorithms

have the potential to violate the optimality conditionsphactice, we found LARS-TD to be much
more susceptible to this problem. We discuss here a possitid@ale explaining this behavior.

There are two ways that LARS-TD can violate the invariani:tile sign of the correlation may
disagree with the sign of the weights for features in thevactet, and (2) once a feature is removed
from the active set, the absolute value of its correlatioy indact increase compared to the corre-
lation of features in the active set. Both of these problera®acourse detectable while running the
algorithm. Instead of terminating prematurely when onéese two problems arises (in which case
the algorithm wouldhotreturn a set of coefficients for the desired value of the r@igdtion param-
eter3), our LARS-TD implementation simply ignores the deviagand continues. This decision
was made for practical reasons. We found it better for LARSt3 return a set of coefficients at
the requested value gfthan to terminate early and return coefficients at a largkrevaf 5. How-
ever, these LARS-TD violations did impact performance. &le, for one setting ¢f in our
mountain car experiments, we found that the final policyrledrusing LC-TD reached the goal in
19 out of 20 trials, taking 136- 22 steps on average. The policies learned using LARS-TDheshc
the goal in 17 of 20 trials, taking 16t 41 steps on average.

The fact that LARS-TD produced solutions violating theTD optimality conditions explains the
empirical behavior shown in Figure 1. In those plots, notlta policy iteration converged after
six rounds when using LC-TD whereas it did not converge avhaén using LARS-TD. Recall that
convergence is obtained when the coefficientdo not change significantly from one round to the
next. Since LARS-TD was frequently violating the optimal@onditions, it was not reaching an
L, TD fixed point whereas LC-TD was doing so. Thus, LC-TD was ablproduce the same set
of coefficients in two subsequent rounds of policy iteratibARS-TD would violate the optimality
conditions in different ways in subsequent rounds of polieyation and therefore never stabilized
on one set of coefficients.

We offer the following explanation as to why a homotopy metthike LARS-TD may be more prone
to violating the optimality conditions in comparison to aGR solver. Consider the behavior of both
LARS-TD and LC-TD for a fixedd, ", R, and~ but a varying3. For a particular non-P-matrix
oT(® — v®'™), there will exist at least on® such that there is not a unique solution achieving
the L; TD optimality conditions. As demonstrated by Kolter and Ng (Figure 2b), changes in
the number of solutions a8 varies can correspond to discontinuities in the homotopi. paf
LARS-TD encounters such a point, then it will fail to preseithe invariants when it crosses the
discontinuity and it is unlikely to re-establish them. Thli®ecause the algorithm does not make the
sort of discontinuous changes needed to jump onto a diffél@motopy path. In contrast, LC-TD
directly solves the problem for a particul@ror perhaps a finite set ¢f values). Discontinuities in
the homotopy path have no direct impact on the LCP solveilgyato find a solution. Moreover, if
solutions are desired at a set@®falues, a failure to find a solution for any particular valué mot
taint the solver’s search for a valid solution at other vaJuwen if using warm starts. In summary, a

13

250

200

150

Steps to Goal

100

10 20 35) 40 50 60
Figure 3: Average performance of final policy produced by M@# for the mountain car MDP at
different values of the regularization parameter

negative aspect of a homotopy method is that it can be ddri&#groblem occurs at any point along
the continuous homotopy path, while a direct method thatbes for a solution at a particular value
of the regularization parameter is influenced only by theprties of the solution at that particular
value.

A.6 Use of Cross-Validation

Lastly, to show how one may use the results of LC-MPI, Figush@ws the average performance
of the 11 greedy policies for mountain car. The graph showstimber of steps to reach the goal
up to a maximum of 350 steps per trial. The large error barsafgee values of? are due to poor
policies resulting in tests that do not reach the goal wiB80 steps. Notice the classic “bathtub”
shape in which under- and over-regularized solutions perfmorly.

14

