
Coordinated Reinforcement Learning

Carlos Guestrin GUESTRIN@CS.STANFORD.EDU
Computer Science Department, Stanford University, Stanford, CA 94305
Michail Lagoudakis MGL@CS.DUKE.EDU
Ronald Parr PARR@CS.DUKE.EDU
Department of Computer Science, Duke University, Durham, NC 27708

Abstract
We present several new algorithms for multiagent
reinforcement learning. A common feature of these
algorithms is a parameterized, structured represen-
tation of a policy or value function. This structure
is leveraged in an approach we call coordinated re-
inforcement learning, by which agents coordinate
both their action selection activities and their pa-
rameter updates. Within the limits of our para-
metric representations, the agents will determine
a jointly optimal action without explicitly consid-
ering every possible action in their exponentially
large joint action space. Our methods differ from
many previous reinforcement learning approaches
to multiagent coordination in that structured com-
munication and coordination between agents ap-
pears at the core of both the learning algorithm and
the execution architecture. Our experimental re-
sults, comparing our approach to other RL meth-
ods, illustrate both the quality of the policies ob-
tained and the additional benefits of coordination.

1. Introduction
Consider a system where multiple agents, each with its own
set of possible actions and its own observations, must coordi-
nate in order to achieve a common goal. We want to find
a mechanism for coordinating the agents’ actions so as to
maximize their joint utility. One obvious approach to this
problem is to represent the system as a Markov Decision Pro-
cess (MDP), where the “action” is a joint action for all of the
agents and the reward is the total reward for all of the agents.
The immediate difficulty with this approach is that the action
space is quite large: If there are g agents, each of which can
take a actions, then the action space is ag .

One natural approach to reducing the complexity of this prob-
lem is to restrict the amount of information that is available
to each agent and hope to maximize global welfare by solv-
ing local optimization problems for each agent [13]. In some
cases, it is possible to manipulate the presentation of informa-
tion to the agents in a manner that forces local optimizations
to imply global optimizations [16]. In general, however, the
problem of finding a globally optimal solution for agents with
partial information is known to be intractable [2].

Following [8], we present an approach that combines value
function approximation with a message passing scheme by

which the agents efficiently determine the jointly optimal ac-
tion with respect to an approximate value function. Our ap-
proach is based on approximating the joint value function as
a linear combination of local value functions, each of which
relates only to the parts of the system controlled by a small
number of agents. We show how such factored value func-
tions allow the agents to find a globally optimal joint action
using a very natural message passing scheme. This scheme
can be implemented as a negotiation procedure for selecting
actions at run time. Alternatively, if the agents share a com-
mon observation vector, each agent can efficiently determine
the actions that will be taken by all of the collaborating agents
without any additional communication.

Given an action selection mechanism, the remaining task is to
develop a reinforcement learning algorithm that is capable of
producing value functions of the appropriate form. An algo-
rithm for computing such value functions is presented in [8]
for the case where the model is known and represented as a
factoredMDP. This is the first application of these techniques
in the context of reinforcement learning, where we no longer
require a factored model or even a discrete state space.

We begin by presenting two methods of computing an appro-
priate value function through reinforcement learning: a vari-
ant of Q-learning and a variant of Least Squares Policy Iter-
ation (LSPI) [11]. We also demonstrate how parameterized
value functions of the form acquired by our reinforcement
learning variants can be combined in a very natural way with
direct policy search methods such as [12, 1, 14, 9]. The same
communication and coordination structures used in the value
function approximation phase are used in the policy search
phase to sample from and update a factored stochastic policy
function.

We call our approach Coordinated Reinforcement Learning,
because structured coordination between agents is used in the
core of our learning algorithms and in our execution architec-
tures. Our initial experimental results with LSPI indicate that
the message passing action selection mechanism and value
function approximation can be combined to produce effective
policies and that additional benefits are obtained with agent
coordination.

2. Cooperative Action Selection
We begin by considering the simpler problem of having a
group of agents select a globally optimal joint action to maxi-
mize the sum of their individual utility functions. Suppose we
have a collection of agents, where each agent j must choose

an action aj from a finite set of possible actions Dom(Aj).
We useA to denote {A1, . . . , Ag}. The agents are acting in a
space described by a set of state variables,X = {X1 . . . Xn}.
A state x defines a setting xj for each variableXj and an ac-
tion a defines an action aj ∈ Dom(Aj) for each agent. The
agents must choose the joint action a that maximizes the total
utility.

In general, the total utilityQwill depend on all state variables
X and on the actions of all agentsA. However, in many prac-
tical problems, it is possible to approximate the total utilityQ
by the sum of local sub-utilitiesQj , one for each agent. Now,
the total utility becomes Q =

∑
j Qj . For example, consider

the decision process of a section manager in a warehouse. Her
local utility Qj may depend on the state of the inventory of
her section, on her decision of which products to stock up and
on the decision of the sales manager over pricing and special
offers. On the other hand, it may not depend directly on the
actions of the customer support team. However, the decisions
of the customer support team will be indirectly relevant, as
they may affect the actions of the sales manager.

Computing the action that maximizes Q =
∑

j Qj seems in-
tractable a priori, as it would require the enumeration of the
joint action space of all agents. Fortunately, by exploiting
the local structure in the Qj-functions through a coordina-
tion graphwe can compute the optimal action very efficiently,
with limited communication between agents and limited ob-
servability, as proposed in [8]. We repeat the construction
here as it will be important throughout this paper.

In our framework, each agent j has a local utility function
Qj . An agent’s local Q-function might be influenced by a
subset of the state variables, the agent’s action and actions
of some other agents; we define Scope[Qj] ⊂ X ∪A to be
the set of state variables and action variables that influence
Qj . (We use Qj(x,a) to denote the value of Qj applied to
the instantiation of the variables in Scope[Qj] within x,a.)
The scope of Qj can be further divided into two parts: the
observable state variables:

Observable [Qj] = {Xi ∈ X | Xi ∈ Scope[Qj]};

and the relevant agent decision variables:

Relevant [Qj] = {Ai ∈ A | Ai ∈ Scope[Qj]}.

This distinction will allow us to characterize the observations
each agent needs to make and the type of communication
needed to obtain the jointly optimal action, i.e., the joint ac-
tion choice that maximizes the total utility Q =

∑
j Qj . We

note that eachQj may be further decomposed as a linear com-
bination of functions that involve fewer variables; in this case,
the complexity of the algorithm may be further reduced.

Recall that our task is to find a coordination strategy for the
agents to maximize

∑
j Qj at state x. We assume that the

agents have full observability of the relevant state variables,
i.e., agent j can observe Observable[Qj]. Given a particular
state x = {x1, . . . , xn}, agent j can instantiate the part of
Qj that depends on the state x, i.e., condition Qj on state
x. Note that each agent only needs to observe the variables in

A
1

A
4

A
2

A
3

1Q

2Q 4Q

3Q

Figure 1. Coordination graph for a 4-agent problem.

Observable[Qj], thereby decreasing considerably the amount
of information each agent needs to gather.

After conditioning on the current state, eachQ j will only de-
pend on the agent’s action choice Aj . Our task is now to
select a joint action a that maximizes

∑
j Qj(a). The fact

that the Qj’s depend on the actions of multiple agents forces
the agents to coordinate their action choices. We can rep-
resent the coordination requirements of the system using a
coordination graph, where there is a node for each agent and
an edge between two agents if they must directly coordinate
their actions to optimize some particularQj . Fig. 1 shows the
coordination graph for an example where
Q = Q1(a1, a2) + Q2(a2, a4) + Q3(a1, a3) + Q4(a3, a4).

A graph structure suggests the use of a cost network [6],
which can be solved using non-serial dynamic program-
ming [3] or a variable elimination algorithm which is virtu-
ally identical to variable elimination in a Bayesian network.
We review this construction here, as it is a key component.

The idea is that, rather than summing all functions and then
maximizing, we maximize over variables one at a time. When
maximizing over al, only summands involving a l participate
in the maximization. In our example, we wish to compute:

max
a1,a2,a3,a4

Q1(a1, a2)+Q2(a2, a4)+Q3(a1, a3)+Q4(a3, a4).

Let us begin our optimization with agent 4. To optimize A 4,
functionsQ1 and Q3 are irrelevant. Hence, we obtain:
max

a1,a2,a3
Q1(a1, a2)+Q3(a1, a3)+max

a4
[Q2(a2, a4)+Q4(a3, a4)].

We see that to choose A4 optimally, the agent must know
the values of A2 and A3. In effect, it is computing a con-
ditional strategy, with a (possibly) different action choice for
each action choice of agents 2 and 3. Agent 4 can summarize
the value that it brings to the system in the different circum-
stances using a new function f4(A2, A3) whose value at the
point a2, a3 is the value of the internalmax expression. This
new function is a new joint value function for agents 2 and
3 (indicated with a dashed line in Fig. 1), summarizing their
joint contribution to the total reward under the assumption
that agent 4 will act optimally with respect to their choices.

Our problem now reduces to computing
max

a1,a2,a3
Q1(a1, a2) + Q3(a1, a3) + f4(a2, a3),

having one fewer agent. Next, agent 3 makes its decision:
maxa1,a2 Q1(a1, a2) + f3(a1, a2),
where f3(a1, a2) = maxa3 [Q3(a1, a3) + f4(a2, a3)].

Agent 2 now makes its decision, giving

f2(a1) = max
a2

Q1(a1, a2) + f3(a1, a2),

and agent 1 can now simply choose the action a1 that maxi-
mizes f1 = maxa1 f2(a1). The result at this point is a num-
ber, which is the desired maximum over a1, a2, a3, and a4.

We can recover the maximizing set of actions by performing
the entire process in reverse: the maximizing choice for f 1

selects the action a∗
1 for agent 1. To fulfill its commitment to

agent 1, agent 2 must choose the value a∗
2 which maximizes

f2(a∗
1). This, in turn, forces agent 3 and then agent 4 to select

their actions appropriately.

In general, the algorithm maintains a set F of functions,
which initially contains {Q1, . . . , Qg}. The algorithm then
repeats the following steps:

1. Select an uneliminated agent Al;
2. Take all f1, . . . , fL ∈ F whose scope contains Al.
3. Define a new function f = maxal

∑
j fj and introduce

it into F . The scope of f is ∪L
j=1Scope[fj]− {Al}.

As above, the maximizing action choices are recovered by
sending messages in the reverse direction.

The computational cost of this algorithm is linear in the num-
ber of new “function values” introduced in the elimination
process. More precisely, consider the computation of a new
function e whose scope is Z. To compute this function, we
need to compute |Dom[Z]| different values. The cost of the
algorithm is linear in the overall number of these values, in-
troduced throughout the algorithm. As shown in [6], this cost
is exponential in the induced width of the coordination graph
for the problem. The algorithm is distributed in the sense that
the only communication required is between agents that par-
ticipate in the interior maximizations described above. There
is no need for a direct exchange of information between other
agents. Thus, the induced tree width has a natural interpreta-
tion in this context; it is the maximum number of agents who
will need to directly collaborate on the action choice.

The order in which the variables are eliminated will have an
important impact on the efficiency of this algorithm. We as-
sume that this is determined a priori and known to all agents.
It is also possible to devise a simple communication protocol
which relaxes the need for a fixed elimination order. In this
case, the maximization is performed asynchronously: while
an agent is performing its local maximization, its neighbors
are “locked”; any agent which is “unlocked” and which has
“unlocked” neighbors can start its local maximization step.
This process is guaranteed to achieve the same optimal result,
although the tree width of the resulting elimination ordering
may be larger than that of an ordering which is carefully cho-
sen a priori.

At this point, we have shown that if the global utility function
Q is approximated by the sum of local utilities Qj , then it is
possible to use the coordination graph to compute the maxi-
mizing joint action efficiently. In the remainder of this paper,
we will show howwe can learn these local utilities efficiently.

3. Markov Decision Processes
The mechanism described above can be used to maximize
not just immediate value, but long term cumulative rewards
by using Q-functions that are derived from the value func-
tion of an MDP. The extent to which such a scheme will be
successful will be determined by our ability to represent the
value function in a form that is usable by our action selection
mechanism. Before addressing this question, we first review
the MDP framework.

AnMDP is defined as a 4-tuple (X,A, P, R)where: X is a fi-
nite set of states; A is a finite set of actions; P is aMarkovian
transition model where P (x, a,x′) represents the probability
of going from state x to state x′ with action a; and R is a
reward function R : X×A×X &→ IR, such that R(x, a,x′)
represents the reward obtained when taking action a in state
x and ending up in state x′. For convenience, we will some-
times useR(x, a) =

∑
x′ P (x, a,x′)R(x, a,x′).

We will be assuming that the MDP has an infinite horizon
and that future rewards are discounted exponentially with a
discount factor γ ∈ [0, 1). A stationary policy π for an MDP
is a mapping π : X &→ A, where π(x) is the action the agent
takes at state x. The optimal value function V ∗ is defined so
that the value of a state must be the maximal value achievable
by any action at that state. More precisely, we define:

QV(x, a) = R(x, a) + γ
∑

x′

P (x′ | x, a)V(x′);

and the Bellman operator T ∗ to be:

T ∗V(x) = max
a

QV(x, a).

The optimal value function V ∗ is the fixed point V∗ = T ∗V∗.

For any value function V , we can define the policy obtained
by acting greedily relative to V . In other words, at each state,
we take the action that maximizes the one-step utility, as-
suming that V represents our long-term utility achieved at
the next state. More precisely, we define Greedy(V)(x) =
arg maxa QV(x, a). The greedy policy relative to the optimal
value function V ∗ is the optimal policy π∗ = Greedy(V∗). It
follows immediately from the definition of π ∗ and is a ba-
sic property of MDPs that an agent following π ∗ maximizes
its long term return in an environment. Thus, an agent with
knowledge of QV∗ can maximize with respect to QV∗ (as in
Section 2) and achieve optimal long-term return.

Since QV∗ is (exponentially) difficult to compute exactly for
large MDPs, we use approximation to find local utilities, Qj ,
such that

∑
j Qj is a good approximation of QV∗ . Recall

that we are interested in computing local utilities Qj for each
agent that will represent an approximation to the global util-
ity Q. In [8], we presented an algorithm for computing such
value functions for the case where the model is known and
represented as a factored MDP. In this paper, we consider the
case of unknown reward and transition models, i.e., the rein-
forcement learning case. In the next three sections, we will
present alternative, and complementary, approaches for coor-
dinating agents in order to learn the local Qj-functions.

4. Coordination Structure in Q-learning
Q-learning is a standard approach to solving an MDP through
reinforcement learning. In Q-learning the agent directly
learns the values of state-action pairs from observations of
quadruples of the form (state, action, reward, next-state),
which we will henceforth refer to as (x, a, r,x′). For each
such quadruple,Q-learning performs the following update:

Q(x, a)← Q(x, a) + α[r + γV (x′)−Q(x, a)],

where α, is the “learning rate,” or step size parameter and
V (x′) = maxaQ(x′, a). With a suitable decay schedule for
the learning rate, a policy that ensures that every state-action
pair is experienced infinitely often and a representation for
Q(x, a)which can assign an independent value to every state-
action pair,Q-learning will converge to estimates forQ(x, a)
which reflect the expected, discounted value of taking action
a in state x and proceeding optimally thereafter.

In practice the formal convergence requirements for Q-
learning almost never hold because the state space is too large
to permit an independent representation of the value of every
state. Typically, a parametric function approximator such as
a neural network is used to represent the Q function for each
action. The following gradient-based update scheme is used:
w← Q(x, a,w)+α[r+γV (x′)−Q(x, a,w)]∇wQ(x, a,w),

(1)
where w is a weight vector for our function approximation
architecture and, again, the value V (x ′) of the next state is:

V (x′) = maxaQ(x′, a,w). (2)

TheQ-learning update mechanism is completely generic and
requires only that the approximation architecture is differen-
tiable. We are free to choose an architecture that is compatible
with our action selection mechanism. Therefore, we can as-
sume that every agent maintains a local Qj-function defined
over some subset xj of the state variables (which can be the
entire state x) and a subset aj of the action variables a (its
own actions and possibly actions of some other agents). The
global Q-function is now a function of the global state x and
the joint action vector a:

Q(x,a,w) =
g∑

j=1

Qj(xj ,aj ,wj).

The Qj’s can be maintained locally by each agent as an arbi-
trary, differentiable function of a set of local weightsw j .

There are some somewhat subtle consequences of this repre-
sentation. The first is that determiningV (x′) in Eq. (2) seems
intractable, because it requires a maximization over an expo-
nentially large action space. Fortunately, the Q-function is
factored as a linear combination of localQj-functions, where
each Qj depends on a subset aj of a. Thus, we can apply
the coordination graph procedure from Sec. 2 to obtain the
maximum value V (x′) at any given state x′.

Once we have defined the local Qj-functions, we must com-
pute the weight update in Eq. (1). Each agent must know

∆(x,a, r,x′,w) = [r + γV (x′)−Q(x,a,w)], (3)

the difference between the current Q-value and the dis-
counted value of the next state. We have just shown that it
is possible to apply the coordination graph from Sec. 2 to
compute V (x′). The other unknown terms in Eq. (3) are the
reward r and the previousQ-valueQ(x,a,w). The reward is
observed and the Q-value is computed by a simple message
passing scheme similar to the one in the coordination graph
by fixing the action of every agent to the one assigned in a.

Therefore, after the coordination step, each agent will have
access to the value of ∆(x,a, r,x′,w). At this point, the
weight update equation is entirely local:
wi ← Q(x, a,w) + α ∆(x,a, r,x′,w)∇wiQi(xj ,aj ,wi),
The reason is simply that the gradient decomposes linearly:
once an action is selected, there are no cross-terms involving
any wi and wj . The locality of the weight updates in this
formulation of Q-learning make it very attractive for a dis-
tributed implementation. Each agent can maintain an entirely
local Q-function and does need to know anything about the
structure of the neighboring agents’ Q-functions. Different
agents can even use different architectures, e.g., one might
use a neural network and another might use a CMAC. The
only requirement is that the joint Q-function be expressed as
a sum of the these individualQ-functions.

The only negative aspect of this Q-learning formulation is
that, like almost all forms of Q-learning with function ap-
proximation, it is difficult to provide any kind of formal con-
vergence guarantees.

5. Multiagent LSPI
Least Squares policy iteration (LSPI) [11] is a new reinforce-
ment learning method that performs policy iteration by using
a stored corpus of samples instead of a model. LSPI repre-
sentsQ-functions using as a linear combination of basis func-
tions. Given a policy, πi, LSPI computes a Q-function, Qπi

(in the space spanned by the basis functions) which is a fixed
point for πi with respect to the samples. The new Qπi then
implicitly defines policy πi+1 and the process is repeated un-
til some form of convergence is achieved.

We briefly review the mathematical operations required for
LSPI. We assume that our Q-functions will be approximated
by a linear combination of basis functions (features),

Qπ(x, a, w) =
k∑

i=1

φi(x, a)wi = φ(x, a)ᵀw,

For convenience we express our basis in matrix form:

Φ =

φ(x1, a1)ᵀ
. . .

φ(x, a)ᵀ
. . .

φ(x|X|, a|A|)ᵀ

.

where Φ is (|X||A| × k). If we knew the transition matrix,
Pπ, for the current policy and knew the reward function we
could, in principle, compute the fixed point by defining and
solving the system Awπ = b, where A = Φᵀ(Φ − γPπΦ)
and b = ΦᵀR.

In reinforcement learning, we sample experiences from the
environment in place of R and Pπ . Given a set of samples,
D = {sdi , adi, s

′
di

, rdi)| i = 1, 2, . . . , L}, we can construct
approximate versions ofΦ, PπΦ, andR as follows :

Φ̂ =

φ(sd1 , ad1)ᵀ
. . .

φ(sdi , adi)ᵀ
. . .

φ(sdL , adL)ᵀ

P̂πΦ =

φ(s′d1
, π
(
s′d1

)
)ᵀ

. . .
φ(s′di

, π
(
s′di

)
)ᵀ

. . .
φ(s′dL

, π
(
s′dL

)
)ᵀ

R̂ =

rd1

. . .
rdi

. . .
rdL

Then, we can construct Â = Φ̂
ᵀ
(Φ̂−γP̂πΦ) and b̂ = Φ̂

ᵀ
R̂.

Approximations derived from different sets of samples can be
combined additively and this leads to an incremental update
rule for Â and b̂. Assume that initially Â = 0 and b̂ = 0. For
a fixed policy, a new sample (x, a, r,x′) contributes to the
approximation according to the following update equations:

Â← Â + φ(x, a)
(
φ(x, a) − γφ(x′, π(x′))

)ᵀ

b̂← b̂ + φ(x, a)r .

The solution ŵπ = Â−1b̂ approximates the true solution wπ.

We note that this approach is very similar to the LSTD algo-
rithm [5]. Unlike LSTD, which defines a system of equations
relating state values to state values, LSPI is defined over Q-
values. Each iteration of LSPI yields the Q-values for the
current policy. Thus, each solution implicitly defines the next
policy for policy iteration.

An important feature of LSPI is that it is able to reuse the
same set of samples even as the policy changes. For example,
suppose the corpus contains a transition from state x to state
x′ under action a1 and πi(x′) = a2. This is entered into the Â
matrix as if a transition were made from (x, a1) to (x′, a2). If
πi+1(x′) changes the action forx′ from a2 to a3, then the next
iteration of LSPI enters a transition from (x, a1) to (x′, a3)
into the Â matrix. The sample can be reused because the
dynamics for state x under action a1 have not changed.

The application of collaborative action selection to the LSPI
framework is surprisingly straightforward. We first note that
any set of Q-functions produced by LSPI will, by construc-
tion, be of the right form for collaborative action selection.
Each agent is assigned a local set of basis functions which
define its local Q-function. These basis functions can be de-
fined over the agent’s own actions as well as the actions of
a small number of other agents. As with ordinary LSPI, the
current policy πi is defined implicitly by the current set of
Q-functions, Qπi . However, in the multiagent case, we can-
not enumerate each possible action to determine the policy at
some given state because this set of actions is exponential in
the number of agents. Fortunately, we can again exploit the
structure of the coordination graph to determine the optimal
actions relative to Qπi : for each transition from state x to

state x′ under joint action a the coordination graph is used to
determine the optimal joint action a′ for x′. The transition is
added to the Â matrix as a transition from (x, a) to (x′,a′).

An advantage of the LSPI approach to collaborative action
selection is that it computes a value function for each succes-
sive policy which has a coherent interpretation as a projec-
tion into the linear space spanned by the individual agent’s
local Q-functions. Thus, there is reason to believe that if this
space is expressive enough to approximate closely the true
value function, coordinated action selection will make action
choices similar to those of the greedy policy with respect to
the true value function.

A disadvantage of LSPI is that it is not currently amenable to
a distributed implementation during the learning phase: Con-
struction of the A matrix requires knowledge of the evalua-
tion of each agent’s basis functions for every state in the cor-
pus, not only for every action that is actually taken, but for
every action recommended by every policy considered.

6. Coordination in Direct Policy Search
Value function based reinforcement learning methods have
recently come under some criticism as being unstable and
difficult to use in practice. A function approximation archi-
tecture that is not well-suited to the problem can diverge or
produce poor results with little meaningful feedback that is
directly useful for modifying the function approximator to
achieve better performance.

LSPI was designed to address some of the concerns with Q-
learning based value function approximation. It is more sta-
ble than Q-learning and is more transparent, thus easier to
debug. However, LSPI is still an approximate policy iteration
procedure and can be quite sensitive to small errors in the es-
timated Q-values for policies [4]. In practice, LSPI can to
take large, coarse steps in policy space.

The shortcomings of value function based methods have
led to a surge of interest in direct policy search methods
[12, 1, 14, 9]. These methods use gradient ascent to search
a space of parameterized stochastic policies. As with all gra-
dient methods, local optima can be problematic. Defining
a relatively smooth but expressive policy space and finding
reasonable starting points within this space are all important
elements of any successful application of gradient ascent.

We now show how to seed a gradient ascent procedure with
a multiagent policy generated by Q-learning or LSPI as de-
scribed above. To guarantee that the gradient exists, policy
search methods require stochastic policies. Our first task is
to convert the deterministic policy implied by our value Q-
functions into a stochastic, policy µ(a|x), i.e., a distribution
over actions given the state. A natural way to do this, which
also turns out to be compatible with most policy search meth-
ods, is to create a softmax over the Q-values:

µ(a | x) =
e

1
T j Qj(x,a)

∑
b e

1
T k Qk(x,b)

; (4)

where T is a temperature parameter indicating how stochastic
we want to make the initial policy. For simplicity of presen-

tation, we will use T = 1. To be able to apply policy search
methods for such policy representation, we must present two
additional steps. The first is a method of efficiently gener-
ating samples from our stochastic policy and the second is a
method of efficiently differentiating our stochastic policy for
gradient ascent purposes.

Sampling from our stochastic policy may appear problematic
because of the size of the joint action space. For sampling
purposes, we can ignore the denominator, since it is the same
for all actions, and sample from the numerator directly as
an unnormalized potential function. To do this sampling we
again use variable elimination on a coordination graph with
exactly the same structure as the one in Sec. 2. Condition-
ing on the current state x is again easy: each agent needs to
observe only the variables in Observable [Qj] and instantiate
Qj appropriately. At this point, we need to generate a sample
fromQj-functions that depend only on the action choice.

Following our earlier example, our task is now to sample from
the potential corresponding to the numerator of µ(a | x).
Suppose, for example, that the individual agent’sQ-functions
have the following form:
Q = Q1(a1, a2) + Q2(a2, a4) + Q3(a1, a3) + Q4(a3, a4).
and we wish to sample from the potential function for

eQ1(a1,a2)eQ2(a2,a4)eQ3(a1,a3)eQ4(a3,a4).

To sample actions one at a time, we will follow a strategy
of marginalizing out actions until we are left with a potential
over a single action. We then sample from this potential and
propagate the results backwards to sample actions for the re-
maining agents. Suppose we begin by eliminating a4. Agent
4 can summarize it’s impact on the rest of the distribution
by combining its potential function with that of agent 2 and
defining a new potential:

f4(A2, A3) =
∑

A4

eQ2(a2,a4)eQ4(a3,a4).

The problem now reduces to sampling from
eQ1(a1,a2)eQ3(a1,a3)f4(a2, a3),

having one fewer agent. Next, agent 3 communicates its con-
tribution giving:

f3(a1, a2) =
∑

a3

eQ3(a1,a3)f4(a2, a3).

Agent 2 now communicates its contribution, giving
f2(a1) =

∑

a2

eQ1(a1,a2)f3(a1, a2),

and agent 1 can now sample actions from the potential
P (a1) ∼ f2(a1).

We can now sample actions for the remaining agents by re-
versing the direction of the messages and sampling from the
distribution for each agent, conditioned on the choices of the
previous agents. For example, when agent 2 is informed of
the action selected by agent 1, agent 2 can sample actions
from the distribution:

P (a2|a1) =
P (a2, a1)

P (a1)
=

eQ1(a1,a2)f3(a1, a2)
f2(a1)

.

The general algorithm has the same message passing topol-
ogy as the original action selection mechanism. The only
difference is the content of the messages: the forward pass
messages are probability potentials and the backward pass
messages are used to compute conditional distributions from
which actions are sampled.

The next key operation is the computation of the gradient of
our stochastic policy function, a key operation in a REIN-
FORCE style [15] policy search algorithm.1 First, recall that
the global Q-function is the sum of the local Qj-functions:

Q(x,a,w) =
g∑

j=1

Qj(x,a,wj).

Our stochastic policy representation now becomes:

µ(a | x) =
e j Qj(x,a,wj)

∑
b e j Qj(x,b,wj)

.

We can now compute the gradient of the log policy:

∇wj ln µ(a|x) =

= ∇wj ln

(
e j Qj(x,a,wj)

∑
b e j Qj(x,b,wj)

)
;

= ∇wj ln e j Qj(x,a,wj) −∇wj ln
∑

b

e j Qj(x,b,wj);

= ∇wj

∑

j

Qj(x,a,wj)−
∑

b∇wj e j Qj(x,b,wj)

∑
b′ e j Qj(x,b′,wj)

;

= ∇wj Qj(x,a,wj)−
∑

b e j Qj(x,b,wj)∇wj Qj(x,b,wj)
∑

b′ e j Qj(x,b′,wj)
.

We note that both the numerator and the denominator in
the summation can be determined by a variable elimina-
tion procedure similar to the stochastic action selection pro-
cedure. Specifically, the denominator can be written as∑

b′
∏

j eQj(x,b′,wj). The variable elimination procedure for
computing this sum of products is exactly the same as the for-
ward pass used for sampling from the policy. We canwrite the
numerator as

∑
b

(∏
j eQj(x,b,wj)

)
∇wj Qj(x,b,wj). The

procedure for computing this value is exactly the same as the
denominator, except that one extra potential is introduced,
namely∇wj Qj(x,b,wj).

These action selection and gradient computation mechanisms
provide the basic functions required for essentially any pol-
icy search method. As in the case of Q-learning, a global er-
ror signal must be shared by the entire set of agents. Apart
from this, the gradient computations and stochastic policy
sampling procedure involve a message passing scheme with
the same topology as the action selection mechanism. We
believe that these methods can be incorporated into any of a
number of policy search methods to fine tune a policy derived
by Q-learning with linear Q-functions or by LSPI.

1Most policy search algorithms are of this style.

7. Experimental Results
We validated our coordinated RL approach on two domains:
the multiagent SysAdmin [8] and the power grid [13]. In the
SysAdmin problem, there is a network of computers; each is
associated with an administrator agent. Each machine runs
processes and receives a reward if a process terminates. Pro-
cesses take longer to terminate on faulty machines and dead
machines can send bad packets to neighbors, causing them to
become faulty and eventually die. Each machine is associ-
ated with an agent Aj , which, at each step, decides whether
or not to reboot the machine. Rebooting a machine makes
its status good with probability 1, but running processes are
lost. These agents have to coordinate their actions so as to
maximize the total reward for the system, or in other words,
maximize the total number of successfully completed jobs in
the system. Thus, agents must coordinate to satisfy two, po-
tentially conflicting, goals: running their own processes to
termination and not sending bad packets to neighboring ma-
chines, as they can eventually cause the failure of the entire
network. For a network of n machines, the number of states
in this MDP is 9n (3 status levels × 3 load levels per com-
puter) and the joint action space contains 2n actions.

We implemented our multiagent LSPI algorithm and tested it
on a variety of network topologies, as defined in [7]. Fig. 2
shows the estimated value of the resulting policies for prob-
lems with increasing number of agents. For comparison, we
also plot the results reported by Guestrin et al. [8] for three
other methods: their LP-based (LP) approach; and Schneider
et al.’s [13] Distributed Reward (DR) and Distributed Value
Function (DVF) algorithms. We also plot the “utopic max-
imum value”, a loose upper bound on the value of the opti-
mal policy [8]. Note, the LP-based approach is a planning
algorithm, i.e., uses full knowledge of the (factored) MDP
model. On the other hand, coordinated RL, DR and DVF are
all model-free reinforcement learning approaches.

In our experiments, we created two sets of multiagent LSPI
basis functions corresponding to the backprojections of the
“single” or “pair” indicator functions from [8]. For n ma-
chines, we found that about 600n samples are sufficient for
multiagent LSPI to learn a good policy. Samples were col-
lected by starting at the initial state (with all working ma-
chines) and following a purely random policy. To avoid bi-
asing our samples too heavily by the stationary distribution
of the random policy, each episode was truncated at 15 steps.
Thus, samples were collected from 40n episodes each one
15 steps long. The resulting policies were evaluated by av-
eraging performance over 20 100-step long runs. The entire
experiment was repeated 10 times with different sample sets
and the results were averaged.

The results in all cases clearly indicate that multiagent LSPI
learns very good policies comparable to the LP approach
using the same basis functions, but without any use of the
model. Note that these policies are near-optimal, as their val-
ues are very close to the upper bound on the value of the opti-
mal policy. It is worth noting that the number of samples used
in each case grows linearly in the number of agents, whereas
the joint state-action space grows exponentially. For example,

a problem with 15 agents has over 205 trillion states and 32
thousand possible actions, but required only 9000 samples.

We also tested our multiagent LSPI approach on the power
grid domain of Schneider et al. [13]. Here, the grid is com-
posed of a set of nodes. Each node is either a provider (a fixed
voltage source), a customer (with a desired voltage) or a dis-
tributor (where control takes place). Links between nodes are
associated with resistances and no customer is connected di-
rectly to a provider. The distributors must set the resistances
attached to them to meet the demand of the customers. If
the demand of a particular customer is not met, then the grid
incurs a cost equal to the demand minus the supply. The to-
tal cost is the sum of all costs for all customers. At every
time step, each distributor decides whether to double, halve,
or maintain (3 possible actions) the value of the resistance
at each of its links (6 possible resistance levels). If two dis-
tributors are linked, they share the same resistance and their
action choices may conflict. In such case, a simple conflict
resolution schema is applied (see [13] for details).

Schneider et al. [13] applied a set of algorithms, including DR
and DFV, to this problem. In their set up, each distributor is
an agent that observes a set of state variables directly related
to itself and all its neighbors, and makes a local decision for
its links. Therefore, the complexity of each agent depends on
the number of its neighbors. We applied our multiagent LSPI
algorithm to the same problem with one agent for each end-
point of a link on a distributor node. Thus, we end up with
more, but simpler and identical, agents. Two simple types
of state-action basis functions were used: NOCOMM, which
has indicators for each assignment of the state of the resis-
tor and the action choice, giving a total of 9 indicator bases
for each agent; and, PAIRCOMM, which has indicator bases
for each assignment of the resistance level, action of agent i,
and action of agent j for each pair (i, j) of directly connected
agents, giving a total of 27 indicator bases for each pair of
agents. Thus, our agents observe a much smaller part of the
state space than those of Schneider et al. [13]. The average
costs incured by the resulting policies, along with results for
a uniformly random policy, are shown in Table 1. Multia-
gent LSPI used only 10, 000 training samples for each run
(as opposed to 60, 000 used in [13]) and the resulting poli-
cies were tested for 60, 000 steps (same as in [13]). The
multiagent LSPI results with the NOCOMM basis set are sub-
optimal. With some exceptions, most policies were close to
random and the resulting average cost was high (with large
confidence intervals). However, the very simple pairwise co-
ordination strategy obtained from the PAIRCOMM basis set
yielded near-optimal policies. These agents incur a lower av-
erage cost than the DR and DVF agents for all grids using less
training data and observing a smaller part of the state space.

8. Conclusions and Future Work
We proposed a new approach to reinforcement learning: Co-
ordinated RL. In this approach, agents make coordinated de-
cisions and share information to achieve a principled learning
strategy. Our method successfully incorporates the coopera-
tive action selection mechanism derived in [8] into the rein-

2 4 6 8 10 12 14 16
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
Unidirectional Star − Single Basis Functions

Number of Agents

Es
tim

ate
d A

ve
rag

e R
ew

ard
 pe

r A
ge

nt
(20

x1
0 r

un
s)

LP

LSPI
Utopic Maximum Value

Distr VF

Distr Rew

2 4 6 8 10 12 14 16
3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
Unidirectional Star − Pair Basis Functions

Number of Agents

Es
tim

ate
d A

ve
rag

e R
ew

ard
 pe

r A
ge

nt
(20

x1
0 r

un
s) LP

LSPI

Utopic Maximum Value

Distr VF

Distr Rew

5 10 15 20
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
Unidirectional Ring of Rings − Single Basis Functions

Number of Agents

Es
tim

ate
d A

ve
rag

e R
ew

ard
 pe

r A
ge

nt
(20

x1
0 r

un
s)

LP

LSPI

Utopic Maximum Value

Distr VF

Distr Rew

Figure 2. SysAdmin problem, discounted reward per agent, for topologies: (a) star with “single” basis; (b) star with “pair” basis; (c) ring of
rings with “single” basis. LP, DR and DRF results as reported in [8].

Grid (see [13]) Random DR DVF Multiagent LSPI
NOCOMM PAIRCOMM

A 29.70 ± 0.13 41.00 ± 0.30 17.17 ± 5.87 28.19 ± 8.30 0.08 ± 0.01
B 52.00 ± 0.24 0.65 ± 0.57 0.32 ± 0.07 37.08 ± 21.85 0.13 0.02
C 96.80 ± 0.31 90.00 ± 1.78 44.00 ± 8.75 83.32 ± 16.57 40.86 ± 1.14
D 44.14 ± 0.37 0.32 ± 0.19 0.17 ± 0.02 28.45 ± 17.83 0.11 ± 0.02

Table 1. Power grid problem: average cost over 10 runs of 60000 steps and 95% confidence intervals. DR and DVF results as reported in [13].
forcement learning framework to allow for structured com-
munication between agents, each of which has only partial
access to the state description. We believe the coordination
mechanism can be applied to almost any reinforcement learn-
ing method. In this paper we applied the Coordinated RL
approach to Q-learning, LSPI, and policy search. With Q-
learning and policy search, the learning mechanism can be
distributed. Agents communicate reinforcement signals, util-
ity values, and conditional policies. In LSPI some central-
ized coordination is required to compute the projection of the
value function. The resulting policies can always be executed
in a distributed manner. A feature of our method is that the
structure of the communication between agents is not fixed
a priori, but derived directly from the value function or pol-
icy architecture. In our view, an algorithm such as LSPI can
provide an offline estimate of the Q-functions. Subsequently,
Q-learning or direct policy search can be applied online to re-
fine this estimate. By using our Coordinated RL method, we
can smoothly shift between these two phases.

Our method can be applied to maximize long term return for
any MDP. As with all value function approximation meth-
ods, there is a tradeoff between accuracy and complexity.
Our approach will be most advantageous when the true Q-
function can be approximated reasonably by a linear combi-
nation of local Q-functions defined over subsets of the ac-
tions. In our experiments with this type of value function,
we reliably learned policies that were comparable to the best
policies achieved by other methods and close to the theoret-
ical optimal achievable in our test domains. The amount of
data required scaled linearly with the number of state and ac-
tion variables even though the state and action spaces were
growing exponentially. Furthermore, we demonstrated that
coordination can significantly improve the quality of the poli-
cies obtained.

Our experiments involved discrete state spaces and were cho-
sen primarily to compare learning performance with previ-
ous closed-form approximationmethods. Our basis functions
match closely the basis functions used in previous work. In
future work, we plan to use continuous variables and basis
functions. While our methods require discrete actions, they
generalize immediately to continuous state variables.

Acknowledgments We are grateful to D. Koller and C. Shel-
ton for useful discussions and W. Wong and J. Schneider for their
power grid simulator. This work was supported by the DoD MURI,
administered by the ONR, Grant N00014-00-1-0637, and Air Force
contract F30602-00-2-0598, DARPA’s TASK program. C. Guestrin
was also supported by a Siebel Scholarship. M. Lagoudakis was
partially supported by the Lilian Boudouri Foundation.

References
[1] J. Baxter and P.Bartlett. Reinforcement learning in POMDP’s

via direct gradient ascent. In ICML, 2000.
[2] D. Bernstein, S. Zilberstein, and N. Immerman. The complex-

ity of decentralized control of Markov decision processes. In
UAI-00, 2000.

[3] U. Bertele and F. Brioschi. Nonserial Dynamic Programming.
Academic Press, New York, 1972.

[4] D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts, 1996.

[5] S. Bradtke and A. Barto. Linear least-squares algorithms for
temporal difference learning. Mach. Learn., 2(1):33–58, 1996.

[6] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1–2):41–85, 1999.

[7] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for
factored MDPs. In IJCAI-01, 2001.

[8] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with
factored MDPs. In NIPS-14, 2001.

[9] V. Konda and J. Tsitsiklis. Actor-critic algorithms. InNIPS-12,
2000.

[10] M. G. Lagoudakis and R. Parr. Model-Free Least-Squares pol-
icy iteration. Tech. Rep. CS-2001-05, Duke University, 2001.

[11] M. Lagoudakis and R. Parr. Model free least squares policy
iteration. In NIPS-14, 2001.

[12] A. Ng and M. Jordan. PEGASUS: A policy search method for
large MDPs and POMDPs. In UAI-00, 2000.

[13] J. Schneider, W. Wong, A. Moore, and M. Riedmiller. Dis-
tributed value functions. In ICML, 1999.

[14] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy
gradient methods for reinforcement learning with function ap-
proximation. In NIPS-12, 2000.

[15] R. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Mach. Learn.,
8(3):229–256, 1992.

[16] D. Wolpert, K. Wheller, and K. Tumer. General principles of
learning-based multi-agent systems. In Agents’99, 1999.

