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Abstract

With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization,
signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains
attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability
and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide
inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set,
K∗-based Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two
biomedically important PDZ domain targets: CAL and MAST2. We introduce a framework for analyzing de novo peptides—evaluation along a
replication/restitution axis—and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their
targets tighter than their targets’ endogenous ligands, validating the peptides’ potential as lead inhibitors. We also provide an implementation
of DexDesign in the free and open source computational protein design software OSPREY.
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Introduction

Since the 1921 discovery (Banting 2024) of the peptide hor-
mone insulin to treat diabetes, many peptides and peptide-
derived therapeutics have come into clinical use, with more
than 30 achieving final regulatory approval just since the year
2000 (Wang et al. 2022a). The use of peptides as therapeutics
has a number of advantages, including standard protocols for
synthesis, good efficacy, high potency, and selectivity (Craik
et al. 2013, Fosgerau and Hoffmann 2015). On the other
hand, peptide therapeutics have a number of drawbacks,
including poor stability, oral bioavailability, membrane per-
meability, and retention (Craik et al. 2013). The substitution
of D-amino acids (Dexter-amino acids that are mirror images
of L-amino acids) for L-amino acids in peptides is one strategy
medicinal chemists have used to address these shortcomings.
The following sections describe the background, benefits of
D-peptides, previous work in noncanonical design, and con-
tributions of DexDesign (i.e. DexterDesign), an algorithm
we developed and incorporated into the protein design soft-
ware OSPREY to generate and analyze de novo D-peptide
inhibitors of two biomedically important PDZ domains tar-
gets: CAL and MAST2.

Benefits of including D-amino acids in peptides

The inclusion of D-amino acids can increase peptide stability
by decreasing the substrate recognition by proteolytic enzymes
(Di 2014). For example, Chen et al. improved both stability
and binding affinity of a bicyclic peptide inhibitor of the

cancer-related protease urokinase-type plasminogen activator
by substituting a single D-serine for a glycine (Angelini et al.
2012, Chen et al. 2013). Haugaard-Kedström et al. observed
that the simple substitution of D-amino acids in two positions
of their de novo PDZ domain inhibitor greatly improved
metabolic stability by increasing their peptide’s half-life 24-
fold (Haugaard-Kedström et al. 2021). More ambitious uses
of D-amino acids have also been performed. Liu et al. con-
structed an entirely D-peptide inhibitor of the MDM2 onco-
protein using mirror image phage display, an experimental
technique used to discover D-peptide drug candidates, that
inhibited growth of glioblastoma both in cell culture and
nude mouse xenograph models (Liu et al. 2010). Nevertheless,
the challenge of preparing an enantiomeric protein target
for mirror image phage display remains a drug-discovery
bottleneck (Lander et al. 2023).

PDZ domains

With over 270 unique occurrences in more than 150 human
proteins, PDZ domains constitute the largest family of
peptide-recognition domains in the human genome (Amacher
et al. 2020). A typical PDZ domain has 80–100 amino acids
folded into five core β-strands (β1-β5) and two α-helices (α1
and α2) (Lee and Zheng 2010, Ivarsson 2012, Amacher et al.
2020). They facilitate a variety of cellular functions, such as
modulating polarization, signaling, and trafficking pathways,
through interaction with short linear motifs (SLiMs) located
at the C-terminus of their ligands (Harris and Lim 2001, Jemth
and Gianni 2007, Christensen et al. 2019, Amacher et al.
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2020). Usually SLiMs bind into a groove of the PDZ domain
between α2 and β2, extending the β2/β3 sheet (Jemth and
Gianni 2007). Modulating the interaction between a SLiM
and its PDZ binding partner is a strategy that both viruses
and therapeutics aim to exploit (Davey et al. 2011, Amacher
et al. 2020) and has been explored by previous computational
design techniques (Smith and Kortemme 2010, Roberts et al.
2012, Smith et al. 2013, Melero et al. 2014, Nakariyakul
et al. 2014, Zheng et al. 2015, Mignon et al. 2017, Opuu
et al. 2020, Panel et al. 2021).

CFTR-associated ligand

Mutations in the cystic fibrosis transmembrane conductance
regulator (CFTR), such as �F508, cause destabilized,
misfolded, and less efficient CFTR (Roberts et al. 2012,
Dougherty et al. 2020). The CFTR-associated ligand (CAL)
binds CFTR via CAL’s PDZ domain (CALP), which shepherds
CFTR through rapid degradation via a lysosomal pathway
(Roberts et al. 2012). Our lab used computational peptide
design to develop a hexamer that bound 170-fold more
tightly to CALP than CALP bound the CFTR C-terminus,
rescuing CFTR activity in monolayers of polarized human
upper airway epithelial cells that contain the �F508 deletion
in CFTR—80% of cystic fibrosis patients are homozygous for
this mutation (Roberts et al. 2012, Holt et al. 2019). Cyclic
peptides (Dougherty et al. 2020) have also been developed.

MAST2

During viral infection, the rabies virus exploits SLiM/PDZ-
domain interactions to further its propogation (Caillet-Saguy
et al. 2015, Delhommel et al. 2015). The rabies virus
glycoprotein’s C-terminal residues interact with MAST2’s
PDZ domain, disrupting the ability of MAST2 and PTEN to
form a complex and inhibits neurite outgrowth and apoptosis
(Préhaud et al. 2010, Caillet-Saguy et al. 2015, Khan et al.
2019). Recognizing the therapeutic potential of promoting
neurite outgrowth in the treatment of neurodegenerative
disease, Khan et al. developed three peptides that mimic
and improve upon the rabies virus glycoproteins’ interaction
with MAST2’s PDZ domain, stimulating neurite outgrowth
in proportion to the affinity the peptide bound MAST2 (Khan
et al. 2019).

Computational tools and algorithms for designing
D-peptides

OSPREY is a free and open-source software program con-
taining a suite of computational protein design algorithms
developed in our lab (Hallen et al. 2018). OSPREY has been
used to, among many other things, design and structurally
characterize peptide inhibitors of CALP for treating CFTR
(Roberts et al. 2012, Holt et al. 2019), predict resistance
mutations in bacteria (Frey et al. 2010, Reeve et al. 2015) and
cancer (Guerin et al. 2022), and improve broadly neutralizing
antibodies against HIV-1 (Rudicell et al. 2014, Holt et al.
2023). OSPREY has been used to computationally redesign
proteins with canonical and non-canonical amino acids (Lilien
et al. 2005, Roberts et al. 2012, Lowegard et al. 2020, Wang
2021), as well as optimize protein: small molecule interactions
(Kaserer and Blagg 2018, Guerin et al. 2022, Guerin et al.
2023), but until now has not had the capability to design
D-peptides. Given the promising biomedical potential of D-
peptides (Liu et al. 2010, Wei et al. 2015, Wang et al. 2017,

Miles et al. 2018, Zhou et al. 2020a, Doti et al. 2021), having
the ability to apply OSPREY’s ensemble-based, provable pro-
tein design algorithms in pursuit of D-peptide design could
greatly decrease the required quantity of expensive, time-
intensive experiments.

There are a few previous computational techniques for D-
peptide design (Donald 2011). One of the earliest was by Elkin
et al., which used the Multiple Copy Simultaneous Search
(Miranker and Karplus 1991) method to predict candidate
D-peptide inhibitors of hepatitis delta antigen dimerization
(Elkin et al. 2000). Recent versions of Rosetta have included
functionality to incorporate non-canonical and D-amino acids
(Renfrew et al. 2012, Bhardwaj et al. 2016). Philip Kim’s
group has developed a computational D-peptide design tech-
nique based on creating a mirror image of the PDB, iden-
tifying hotspot interactions, and searching the D-PDB for
similar configurations of hotspot residues (Garton et al. 2017,
2018). They applied this technique to develop two D-peptide
inhibitors to the SARS-CoV-2 spike protein receptor bind-
ing domain and the human angiotensin-converting enzyme
2 (ACE2) that mimic the ACE2 α1-binding helix (Valiente
et al. 2021, 2022). Overall, the number of algorithms the
protein designer has available for D-peptide design is notably
sparser than for L-design, and the development of additional
computational protocols for this important task is warranted.

DexDesign

In this paper we present a computational protocol, DexDe-
sign, for designing de novo D-peptides in OSPREY. DexDesign
constructs D-peptide scaffolds by mirroring the structure of
a L-protein: peptide complex into D-space (D-amino acids),
then uses the geometric search algorithms in MASTER (Zhou
and Grigoryan 2015) to search hundreds of thousands of L-
protein structures for substructures with backbones similar
to the D-peptide. It then uses the iMinDEE/K∗ algorithm
(Georgiev et al. 2008, Gainza et al. 2012) in OSPREY to
redesign a scaffold D-peptide’s sidechains to optimize target
binding (see Fig. 1). We use DexDesign to predict D-peptides
inhibitors of CALP and MAST2 PDZ domains.

Methods

Algorithm and computational protocol

DexDesign generates de novo D-peptides by combining
MASTER’s molecular structure search (Zhou and Grigo-
ryan 2015) with provable computational protein redesign
algorithms in OSPREY (Donald 2011, Hallen et al. 2018),
mediated via energy-equivariant geometric transformations
(EEGT). EEGTs, such as translation, rotation, or reflection,
are geometric transformations of a molecular structure that
do not affect the energy of that structure. Each EEGT
corresponds to a symmetry in the energy field (Noether 1983).
For example, an energy function will compute the same energy
of protein structure s and s reflected over the Cartesian x-
y plane. The MASTER algorithm searches a database of
protein structures for a user-specified query structure and
is guaranteed to find all protein substructures in the database
with a backbone RMSD below a cutoff threshold (Zhou and
Grigoryan 2015). The K∗ algorithm in the OSPREY software
suite (Hallen et al. 2018) searches for amino acid substitutions
that maximize a design objective, such as binding affinity or
specificity, while translating and rotating the ligand (Lilien
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DexDesign: Computational design of D-peptide inhibitors 3

Figure 1. Example of the DexDesign protocol applied to CALP. (A) The potent inhibitor kCAL01 (in pink) bound to CALP (in cyan) (PDB ID 6ov7) (Holt et al.
2019) is used as a starting point for a DexDesign search for a D-peptide inhibitor of CALP. Both kCAL01 and CALP are composed of solely L-amino acids.
(B) The input structure is reflected to produce a mirror-image of the kCAL01: CALP complex, which flips the chirality of all amino acids to D. (C) The
complex is split into its constituent peptide and protein components. (D) Residues P0 to P−5, which are the residues located within CALP’s binding
pocket, are used as the query structure to conduct a MASTER (Zhou and Grigoryan 2015) search of a large database of L-protein structure to find
substructures with similar backbones (as determined by backbone RMSD) to the D-version of kCAL01. 10 representative matches of L-peptide segments
(in multicolored wire representation) are overlaid on the pink stick D-version of kCAL01. (E) Each L-peptide match is aligned to the D-version of kCAL01 in
the D-kCAL01: CALP complex structure and D-kCAL01 is removed. Shown (in purple sticks) is an L-peptide substructure GGAASG (residues 168–173)
that MASTER identified in Mycobacterium tuberculosis Rv0098 (PDB ID 2PFC) (Wang et al. 2007). This L-peptide forms the basis for OSPREY redesign.
(F) The L-peptide: D-CALP complex is reflected once again to form an D-peptide: L-CALP complex. The K∗ algorithm (Lilien et al. 2005, Gainza et al. 2012)
in OSPREY (Hallen et al. 2018) is then invoked to conduct a search over D-peptide sequences and continuous sidechain conformations to optimize the
D-peptide for binding. K∗ identified two mutations at positions P0 and P−2 predicted to improve binding of the peptide with a normalized ��G of
−1.4 kcal/mol, improving KD by 9-fold (see Supplementary Information B for information on the normalization procedure). Position P0 is mutated from
Gly to Trp, and P−2 is mutated from Ala to Arg. Shown is an OSPREY-predicted low energy ensemble of the D-peptide GGARSW with Molprobity probe
dots (Word et al. 1999, Williams et al. 2018, Jou et al. 2024) showing goodness-of-fit the OSPREY-predicted mutated D-sidechains make with CALP.

et al. 2005, Georgiev et al. 2008, Ojewole et al. 2018, Jou
et al. 2020). It does this by exploiting molecular ensembles
to compute a provably accurate ε-approximation to the
binding constant, Ka (see Supplementary Information A: the
K∗ algorithm) (Lilien et al. 2005, Georgiev et al. 2008). In
essence, DexDesign invokes MASTER search as a subroutine
to suggest D-peptide scaffolds with backbone conformations
similar to their L-peptide counterpart, then invokes K∗ as a
subroutine to optimize amino acid sequences and side chain
conformations on those scaffolds.

After preparing a database (DB) of L-protein structures, a
protein designer initiates DexDesign by identifying a protein
target (t) of interest, for which there exists a structure of
a protein or peptide (p) bound to t. In MASTER terminol-
ogy, the structure of this bound complex will become our
query, qtp. Below, we define terms used in the DexDesign
algorithm:

1. Let sn be a protein structure with n residues. We define
substructure si,j of s, where 1 ≤ i < j ≤ n, to be a
structure of residues i through j of s.

2. Let r (s, a) be a function that reflects all atoms in protein
structure s across a plane a. Without loss of generality, we
let a be the x-y plane and define r(s) = r (s, a) henceforth.
We note that r is an involution, i.e. r (r(s)) = s.

3. Let M (DB, s, c) be the MASTER subroutine. M returns
a set of substructures from DB with backbone RMSD,
when optimally aligned with protein substructure s, less
than c Å.

4. Let O
(
p, t

)
be the OSPREY K∗ subroutine. O redesigns

peptide p towards increased binding affinity with protein
target t by searching over mutated and continuously
minimized amino acid sidechains, and returns a set of
mutant sequences (and structural molecular ensembles)
derived from p that have improved binding with t.
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Figure 2. The DexDesign Algorithm. It takes as input a query structure (q)
of a bound target (t) and peptide (p), a database (DB) of L-protein
structures, and a cutoff (c). Line 1 reflects the L-protein complex into
D-space. Line 2 splits the target and peptide into two structures, the
D-target (dT) and the D-peptide (dP). Line 3 calls MASTER (Zhou and
Grigoryan 2015) (M) to search the L-protein database for all substructures
with a backbone RMSD to dP less than c. The set of results is saved in
LM. Line 4 reflects each MASTER peptide (lP) and D-target (dT), to make a
D-version of lP bound to the original L-target. OSPREY (Hallen et al. 2018)
K∗ redesign (Lilien et al. 2005, Gainza et al. 2012) is then run on each
target: peptide complex (lT + dP), resulting in a set of K∗ scores (K∗),
along with an OSPREY-predicted structural ensemble of the D-peptide
(dP) and L-target (lT) complexes, with the sequence and continuously
minimized sidechains of dP optimized to bind lT. The K∗ scores and
computed structural ensembles are returned on Line 5.

The DexDesign algorithm is described in Figs 1 and 2.

Capabilities added to OSPREY
Customize existing or add new conformation libraries

In previous works (Kaserer and Blagg 2018, Reeve et al. 2019,
Guerin et al. 2022, Wang et al. 2022b, Kugler et al. 2023),
a typical OSPREY-based computational protein redesign
entailed 1) selecting a starting molecular structure, 2) adding
hydrogens, 3) specifying the design algorithm and its input
parameters, 4) running the algorithm, and 5) analyzing the
results. To enable Step 4, OSPREY included a default library
of amino acid atom connectivity templates from Amber (Case
et al. 2022) and rotamers from Lovell et al. (Lovell et al.
2000). These templates and rotamers then became starting
points for continuous minimization within a voxel during the
sequence and computational search (Georgiev et al. 2008,
Hallen and Donald 2017). Embedding the templates within
the algorithm provided protein designers with simple defaults
for the majority of protein redesign problems. And while
some works (Stevens et al. 2006, Wang 2021, Holt et al.
2023) have expanded these defaults in certain cases, such
as in our use of non-canonical amino acids to design CALP
inhibitors (Wang 2021), the necessity of providing a simple,
general approach that enabled protein designers to experiment
with diverse and novel biochemical building blocks remained.
The implementation of a general, in contrast to application-
specific, approach to modeling templates and flexibility
enables designers to design proteins with chemistries that the
creators of the protein design software did not even anticipate!

To meet this need, we have simplified the process of spec-
ifying rotamers, voxel-based continuous minimization, new
molecular fragment templates, or even entire conformation
libraries in OSPREY. OSPREY continues to provide intel-
ligent defaults, but they are moved from deep within the
software and are now exposed to the designer, allowing the
designer to modify them as needed in a simple graphical
user interface (see Fig. 3, right). This seemingly simple change

has profound implications for OSPREY. When the complete
conformation space specification (i.e. the design parameters
such as the mutable residues, the flexible residues, etc. See
Applying DexDesign to CALP and MAST2 for further defini-
tion) is a user-modifiable input to the algorithm, new classes
of design capabilities, such as design with D-amino acids via
DexDesign, are unlocked.

An algorithm for D-protein/peptide design

The molecular interaction forces between two molecules are
invariant over a reflection of those two molecules. Put another
way, if KD

(
x, y

)
is the dissociation constant for protein x bind-

ing protein y, then KD
(
x, y

) = KD
(
r(x), r(y)

)
. The OSPREY

energy function, as described in detail in previous works
(Georgiev and Donald 2009, Gainza et al. 2012, Hallen et al.
2018, Martin and Donald 2024), mimics this physics precisely
by being (exactly) energy equivariant with respect to reflec-
tion, allowing us to add the ability to design D-proteins and
peptides in OSPREY (see Supplementary Table 1 for exam-
ples of stereogenic atom configurations upon reflection, and
Supplementary Fig. 1 for a visualization). We accomplished
this by reflecting OSPREY’s default L-conformation library
into D-space. A protein designer can now use the functionality
described in Customizing existing or add new conformation
libraries to specify a D- or L- conformation library on a per-
protein basis (see Fig. 3, left). DexDesign requires this capa-
bility because designing a D-peptide targeting an L-protein
requires the use of both D- and L-conformation libraries.

Applying DexDesign to CALP and MAST2

To use DexDesign to predict de novo D-peptide inhibitors
to CALP and MAST2, we started with structures of their
bound complexes: kCAL01 bound to CALP (PDB ID 6ov7)
(Holt et al. 2019) and PTEN bound to MAST2 (PDB ID 2kyl)
(Terrien et al. 2010). We created a database of high-resolution
L-protein structures by mining the RCSB PDB (Berman et al.
2000) for crystallographically determined structures with a
resolution better than 2.5 Å, omitting DNA, RNA, and small
molecules. This resulted in a database containing 119,160
structures (see Supplementary Fig. 2 for further description of
the composition of the database). Using the DexDesign algo-
rithm in Fig. 2, we first reflected each molecular structure to
D-space and split the peptide and target PDZ domain into two
separate structures, dp and dt, respectively. We then used the
MASTER algorithm (Zhou and Grigoryan 2015) to query the
database for L-protein substructures with backbones similar
to dp. MASTER returns a set of candidate L-peptides (LM),
each of which (lp ∈ LM) we superimposed over dp in the dp: dt
complex and subsequently removed dp. We then again reflect
each bound complex lp:dt, resulting in a de novo D-peptide
candidate r

(
lp

)
bound to the original L-protein target r

(
dt

)

in a complex r
(
lp

)
:r

(
dt

)
.

Before executing Step 4 of the DexDesign algorithm (K∗
redesign; see Fig. 2) we further pruned the set of D-peptide
candidates based on two additional criteria. First, we visu-
alized candidate D-peptide: L-protein complex structures in
PyMol (Schrödinger 2015) using Molprobity dots (Word et al.
1999, Williams et al. 2018) in our lab’s Protein Design Plugin
(Jou et al. 2024) to evaluate the number and severity of steric
clashes, as steric clashes need to be resolved via sequence
mutation and additional modeling of continuous side chain
flexibility in the K∗ algorithm. Since clash resolution and
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Figure 3. Screenshots of OSPREY protein design specification options. OSPREY (Hallen et al. 2018) now allows protein designers to add their own
conformation libraries and easily control rotamer selections and allowed movements. Left: DexDesign includes, in addition to the standard
L-conformation library, a D-conformation library that is the mirror image of the L-library. A conformation library describes the standard connectivity
templates, rotamers, and allowed movements, all of which can be further customized by the protein designer. A protein designer can specify multiple,
distinct conformation libraries per chain. Right: New detailed control over side chain conformational flexibility. Each of the conformation library rotamers
(e.g. tptm, pttm, etc.) can be included or excluded. The angle of voxel in which OSPREY continuously minimizes a rotamer (Gainza et al. 2012) can now
be set, and each dihedral angle can be included or excluded from the continuous minimization. The customizations available to the protein designer with
DexDesign unlocks the ability to explore new types of conformation spaces, such as D-space amino acids.

peptide improvement via K∗ redesign utilize the same algorith-
mic technique and therefore draw from the same pool of lim-
ited computational resources, we chose to prioritize D-peptide
candidates with fewer clashes so we could allocate more com-
putational resources to improving a D-peptide candidate via
K∗ sequence redesign. Second, we observed instances where
MASTER found identical D-peptide candidate sequences with
nearly identical structures in multiple distinct PDB files, which
we resolved by removing the duplicate results.

Using the above criteria, we selected 8 promising D-peptide
candidates to use as starting points for OSPREY K∗ redesign.
We call these selected candidates D-peptide redesign (DPR)
scaffolds. The complete set of DPR scaffolds is described in
Supplementary Table 2. To evaluate and improve upon the
DPR scaffolds, we developed three design techniques.

Design techniques: minimum flexible set, inverse alanine

scanning, and mutational scanning

DexDesign’s de novo peptide design has one important dis-
tinction from protein redesign: the model of the starting
protein structure used as input for K∗ redesign is a theoret-
ical model, rather than one determined by experiment. As
described in Computational tools and algorithms for design-
ing D-peptides, OSPREY’s algorithms have been successfully
applied to a large and diverse set of biomedical applications.
Yet in the most common uses of the K∗-family of algo-
rithms, viz., those provably approximating Ka (K∗ (Lilien et al.
2005, Georgiev et al. 2008), BBK∗ (Ojewole et al. 2018),
MARK∗ (Jou et al. 2020), and EWAK∗ (Lowegard et al.
2020)), the protein designer starts a redesign to achieve a
specific redesign goal (e.g. improving or ablating binding of
a protein to a ligand) from an experimentally determined
structure of the protein: ligand complex. The mere existence
of this experimental structure provides a solid foundation
upon which further redesign builds, i.e. the given protein and
ligand bind at least in vitro, and at least to some degree.

Unfortunately, we do not have this luxury when designing de
novo peptides to bind a given protein target. For example,
while DexDesign uses the backbones of known L-peptide
binders as input to the algorithm, the resulting DPR scaffolds
are sufficiently different in sequence, side chain conforma-
tion, and chirality that the protein designer should assume
that their DPR scaffold will not bind its protein target in
vitro without further optimization via K∗. To address this
challenge—which is inherent to de novo design—we have
developed design techniques that systematically evaluate the
quality of DPR scaffolds and rigorously suggest mutations
that are predicted to improve the D-peptide’s binding affinity
to its target PDZ domain. These three design techniques
assume that the protein designer has a fixed amount of time
and computational resources at their disposal. To that end,
they are formulated to allow designers to rapidly evaluate
their DPR scaffolds by restraining the conformation space
to the minimal size necessary to computationally evaluate
a hypothesis. Conformation space size grows exponentially
with the number of flexible residues. Here, restricting the size
of a conformation space is an effective technique to obtaining
computational predictions quickly.

Design technique 1: identifying a minimum flexible set.
The K∗ algorithm in OSPREY predicts a provable approxi-
mation to Ka by calculating provable bounds on the partition
function values of three molecular ensembles: the protein:
ligand complex, the apo protein, and the apo ligand (Lilien
et al. 2005, Georgiev et al. 2008). To generate these low-
energy ensembles, the K∗ algorithm enumerates a stream of
conformations in order of increasing energy, stopping only
when it reaches a point when its enumerated conformations
are sufficient to calculate a provably good ε-approximation
to the partition function value, and thus the K∗ score. The set
of conformations that K∗ enumerates is determined entirely
by its conformation space, or the combinatorial set of all
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Figure 4. Illustration of the Minimum Flexible Set and Inverse Alanine Scanning design techniques applied to CALP-DPR5. (A) Choosing the Minimum
Flexible Set. The CALP-DPR5 scaffold peptide (in cyan) is extracted from a crystal structure of the tobacco necrosis virus (PDB ID: 1c8n, residues
C61-66, AGGFVT) (Oda et al. 2000). When aligned and superimposed over the query peptide kCAL01 and CALP (Holt et al. 2019) (in green) to create the
DPR scaffold, sidechain and backbone clashes are present that the designer must address (red and pink MolProbity dots) (Word et al. 1999, Williams
et al. 2018, Jou et al. 2024). The four peptide residues that clash with CALP are located at P0 (Thr), P−1 (Val), P−2 (Phe), and P−5 (Ala). We specify the
Minimum Flexible Set, or those residues that must be allowed to undergo continuous minimization (see Gainza et al. 2012) in all designs derived from
CALP-DPR5, as the peptide residues located at P0, P−1, and P−2. The peptide: CALP clash involving the alanine located at P−5 can be resolved by
allowing OSPREY to translate and rotate the peptide during K∗ optimization, an option now available to the protein designer in the process of specifying
a redesign’s conformation space (related to Fig. 3). (B and C) The Inverse Alanine Scanning applied to CALP-DPR5. Complementing the Minimum
Flexible Set technique, Inverse Alanine Scanning addresses peptide: target clashes by mutating all peptide residues modulo a single amino acid to
alanine. In (B) and (C), we focus on position P−1 (Val) and use K∗ to mutate all other peptide residues to alanine, as well as to continuously minimize
peptide: target sidechain conformations. (B) Inverse Alanine Scanning structural prediction with the source amino type, valine. As expected, the clashes
present in CALP-DPR5 (A) vanish in the Inverse Alanine Scanning peptide (as indicated by the lack of red and pink Molprobity dots). Furthermore, K∗ has
rotated P−1 (Val) to point towards the peptide’s C-term, indicating that conformation is preferable. With this rotation, P−1 (Val) remains within CALP’s
hydrophobic pocket. (C) An OSPREY-predicted ensemble of the result of the Inverse Alanine Scan mutating position P−1 to methionine. CALP V345 and
I295 form favorable van der Waals interactions (green and blue Molprobity dots) with multiple conformations of P−1 (Met), which is also reflected in the
increase in K∗ score of P−1 (Met) compared to P−1 (Val). This result indicates that further K∗ binding affinity optimization can include methionine at P−1,
and that V345 and I295 should be allowed to flex continuously in CALP-DPR5 design candidates containing mutations at P−1.

conformations that can be generated from given flexibility
rules. Examples of such rules include the number of side chain
rotamers an amino acid can explore, and the degree of contin-
uous rotational flexibility permitted for a dihedral angle. The
conformation space is in turn specified by the protein designer
as an input to the K∗ algorithm (see Fig. 3). While specifying
an appropriate conformation space has always been an impor-
tant factor in K∗’s ability to find mutations that accomplish a
protein design’s goal, specifying a sufficiently efficient, but still
expressive, conformation space is an essential prerequisite of
DPR scaffold redesign.

The MASTER search in Step 3 of the DexDesign algorithm
(see Fig. 2) returns a set of L-peptides with low backbone
RMSD to the D-peptide query. Due to the fact the MASTER
search is by backbone-only RMSD, it is often the case that
the L-peptide search results have side chains in sterically
unfavorable positions that clash with the D-protein target. As
discussed in Section 2.3, we prune DPR candidate peptides
that cause many unfavorable clashes. On the other hand,
we keep DPR candidate peptides with only a few small
clashes because these clashes can typically be resolved with
an appropriately specified conformation space. We call the
set of residues that the protein designer must specify to be
continuously flexible to resolve these clashes the Minimum
Flexible Set.

The Minimum Flexible Set is different for each DPR scaf-
fold, since the D-peptide in each DPR scaffold is unique. Given
a fixed budget of computational resources, protein design-
ers should prefer DPR scaffolds requiring smaller Minimum
Flexible Sets, since such DPR scaffolds allow K∗ to expend
more compute resources on searching for favorable mutations

that increase binding to the target protein. See Fig. 4A for an
example of specifying the Minimum Flexible Set for a CALP-
DPR candidate.

Design technique 2: inverse alanine scanning.
Inverse Alanine Scanning is a technique complementary to
the Minimum Flexible Set. Whereas the Minimum Flexible
Set technique identifies a conformation space that resolves
all clashes, Inverse Alanine Scanning allows the designer to
investigate single residue mutations on the peptide that may
increase binding to the target protein only when the target
protein’s nearby residues are provided sufficient flexibility in
the conformation space. In contrast with Minimal Flexible
Set, this technique resolves the problem of clashes between
DPR scaffolds and the protein target by mutating all peptide
residues, modulo the single residue under investigation, to
alanine. We call this Inverse Alanine Scanning because this
computational technique mutates all the peptide’s residues
except the residue of interest to alanine, the opposite of the
canonical alanine scanning experiment. See Fig. 4B and C for
a picture of this technique.

Notably, Inverse Alanine Scanning not only provides evi-
dence as to which residues in the target protein must be
flexible to accommodate certain favorable mutations, but it
also provides evidence about which protein residues can safely
remain rigid because they do not interact with peptide muta-
tions in their vicinity. In the former case, a protein designer
can visually inspect the OSPREY-generated structural ensem-
ble of a favorable mutant to determine the set of residues
which flexed and interacted with the mutated sidechains:
these residues must remain flexible in the final conformation
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space. Conversely, when Inverse Alanine Scanning identifies a
favorable mutant that, upon visual inspection of the OSPREY-
generated structural ensembles, has residues that do not flex,
then these residues can safely be omitted from the final
conformation space. This knowledge is valuable because it
allows the designer to specify a smaller conformational space
than they otherwise would in the next technique, K∗-based
Mutational Scanning.

Design technique 3: K∗-based mutational scanning.
After learning which residues must flex from Minimum Flex-
ible Set and obtaining hints as to which mutations might
improve binding from Inverse Alanine Scanning, the K∗-based
Mutational Scanning technique (hereafter Mutational Scan)
can be used. A Mutational Scan uses K∗ to systematically
sample rotamers for all 20 amino acids at each DPR residue.
We specified a K∗ design implementing a Mutational Scan for
each residue in a DPR peptide and set the conformation space
as the union of the set of flexible residues from the Minimum
Flexible Set and the Inverse Alanine Scanning steps. We ran K∗
Mutational Scans on each of the DPR scaffolds. In many cases
we observed mutations that notably improved the K∗ score.
We then used the results of the Mutational Scans to inform the
specification of additional K∗ designs that permitted multiple
simultaneous peptide mutations in order to optimize peptide:
target binding. We then further refined that set by removing
sequences whose increase in K∗ score was driven primarily
by peptide destabilization, as indicated by a large decrease
in the unbound peptide’s partition function value qL (see
Supplementary Information A: the K∗ algorithm). We then
sorted the remaining favorable DPR sequences by their K∗
score. Finally, we analyzed the OSPREY-predicted structures
of the top 3 sequences for each DPR scaffold. Our analysis is
included below.

Results

DPR validation criteria

The aim of DexDesign is to predict novel D-peptides
inhibitors. For this reason, we validated each of the DPR
peptides across multiple criteria relevant to PDZ domain
inhibitors. These criteria include:

1. The DPR’s binding affinity. As an effective inhibitor must
interact with its protein target in such a way that it
disrupts the target protein’s ability to bind its endogenous
ligand, to validate the inhibitory potential of the D-
peptides we compared their K∗ scores to the K∗ scores of
each PDZ-domain’s endogenous ligand, as well as some
previous L-peptide inhibitors. We use the K∗ algorithm
(Lilien et al. 2005, Georgiev et al. 2008) to optimize the
D-peptide’s sequence to increase binding affinity between
the peptide and the endogenous ligand’s binding site
(the groove between α2 and β2 in the PDZ domain).
See Supplementary Information A for a definition of K∗
scores and how they are generated by the K∗ algorithm.

2. The DPR’s ability to replicate biophysical facets common
to PDZ domain binding. Due to their central role in
regulating cellular trafficking and signaling pathways
(Amacher et al. 2020), much research has been conducted
to better understand and characterize PDZ domains
(Harris and Lim 2001, Skelton et al. 2003, Jemth and
Gianni 2007, Lee and Zheng 2010, Ivarsson 2012,

Caillet-Saguy et al. 2015, Christensen et al. 2019,
Amacher et al. 2020, Nardella et al. 2021, Tahti et al.
2023). This research has identified structural and bio-
physical elements that are commonly found facilitating
canonical PDZ domain interactions (Christensen et al.
2019). One such element is the presence of a hydrogen
bond network formed between the peptide’s C-terminal
carboxylate and the loop connecting β1 and β2, termed
the carboxylate binding loop (CBL) (Doyle et al. 1996,
Lee and Zheng 2010, Christensen et al. 2019). Another
is the presence of β-strand-β-strand interactions between
the peptide and β2 (Harris and Lim 2001, Christensen
et al. 2019). A third commonality is the presence of
a hydrophobic pocket in the α2-β2 groove, which
canonically is filled by a hydrophobic residue at position
P0 in the peptide (Harris and Lim 2001), and in some
peptides, by residue P−2 (Christensen et al. 2019).

3. We assessed the following biophysical facets in our val-
idation of D-peptides: 1) the H-bond network formed
by the D-peptide carboxylate and the CBL; 2) β-strand
interactions between the D-peptide backbone and β2,
and; 3) the ability of the D-peptide to fill the hydropho-
bic pocket. These facets have proven sufficient for the
systems presented in this manuscript, however, there may
exist D-peptide inhibitors that initiate novel interactions
not following this paradigm (see Discussion - Replication
and Restitution for additional discussion on this point).

4. The presence of novel and favorable interactions in the
DPR. Our validation includes a structural analysis of
the OSPREY-predicted low-energy ensemble of the DPR
bound to its target PDZ domain. Since DexDesign pre-
dicts de novo D-peptides, and since empirical structures
of D-peptide inhibitors bound to PDZ domains are lack-
ing, it is possible that a D-peptide could bind its target
PDZ domain in a mode quite distinct from that of
canonical L-peptides. For example, L-peptide residues
at positions that point into the PDZ domain’s binding
groove may, in a D-peptide, point away (and vice-versa,
see Supplementary Fig. 3 for an example), providing the
possibility for some peptide residues to interact with
parts of the PDZ domain in ways not formerly possible.
To account for the possibility of novel modes of binding
(and not, e.g. disregard D-peptides that fail to replicate
all the criteria listed in 2), we analyzed the OSPREY-
predicted low-energy molecular ensembles of the DPR
bound to its target PDZ domain. In these analyses, we
highlight the presence (or absence) of notable struc-
tural features capable of further validating the quality of
the DPRs.

CALP

Using our crystal structure of kCAL01 bound to CALP (PDB
ID 6ov7) (Holt et al. 2019), we used DexDesign to generate 5
DPR scaffolds: CALP-DPR[1–5] (see Supplementary Table 2
for further information about the DPR scaffolds). We then
applied the design techniques and selection procedures from
Applying DexDesign to CALP and MAST2 - Design Tech-
niques to optimize the DPRs, thereby obtaining a final set of
15 D-peptide CALP inhibitors, CALP-PEP[1-15]. We assessed
each of the CALP-PEPs using the quantitative and structural
validation criteria described in Results - DPR validation crite-
ria. We also compared the CALP-PEPs to CALP’s endogenous
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Figure 5. Quantitative and Structural Analysis of the CALP-PEPs, kCAL01, and the CFTR C-terminal SLiM. The OSPREY-predicted binding affinity (log10
K∗ score) of the tightest known peptide binder of CALP (kCAL01, PDB ID 6ov7) (Holt et al. 2019), the CALP-PEPs, and CALP’s endogenous ligand (the
CFTR C-terminal SLiM, PDB ID 2lob) (Piserchio et al. 2012) show (blue bars) that the CALP-PEPs are predicted to bind more tightly, with log10 K∗ scores
ranging from 18.7 (CALP-PEP15) to 26.1 (CALP-PEP9), than the CFTR C-terminal SLiM (log10 K∗ score of 16.2). Conversely, the CALP-PEPs are predicted
to bind CALP less tightly than the best known CALP peptide inhibitor, kCAL01 (Roberts et al. 2012, Holt et al. 2019), which OSPREY predicts to have a
log10 K∗ score of 30.4. Since the primary objective of a competitive inhibitor is to outcompete an endogenous ligand in binding to the target protein, the
K∗ scores, viz. provably accurate ε-approximations to K a (see Supplementary Information A), of the 15 de novo D-peptide CALP-PEPs exceeding that of
CFTR’s C-terminal SLiM indicates that the CALP-PEPs meet their fundamental design objective. For example, CALP-PEP9 has a ��G of −2.3 kcal/mol,
improving KD 46-fold, compared to the CFTR C-terminus (see Supplementary Information B). While not predicted to bind as tightly as kCAL01,
D-peptides have therapeutic advantages over L-peptides, including improved metabolic stability (described in Background and introduction - Benefits of
including D-amino acids in peptides), that can compensate for not reaching the binding affinity of the strongest CALP peptide inhibitor. The red bars
show the number of β-strand H-bonds contributing to the common β2-sheet extension PDZ-binding motif. The green bars show the number of H-bonds
between the peptide’s C-terminal carboxylate and the CBL. The number of CBL and β-strand H-bonds varies across the CALP-PEPs, but the one
predicted to bind tightest, CALP-PEP9, has 3 CBL and 3 β-strand H-bonds, the same number CFTR and kCAL01 have. The K∗ scores of the CALP-PEPs
and empirical structures were determined using the K∗ algorithm (Lilien et al. 2005, Georgiev et al. 2008) in OSPREY. Supplementary Information A
provides a definition of the K∗ algorithm and K∗ score. The error bars on the K∗ scores show the provable upper- and lower-bound of the K∗
approximation. The number and type of H-bonds between the peptides and CALP were determined using Pymol (Schrödinger 2015).

ligand (CFTR) and also to the most binding-efficient L-
peptide CALP inhibitor, kCAL01, which our group reported
in 2012 (Roberts et al. 2012) and solved a crystal structure of
in 2019 (Holt et al. 2019). An overview of each of the CALP-
PEP’s K∗ scores, CBL H-bonds, and peptide: β2 backbone
H-bonds is shown in Fig. 5. Notably, each of the CALP-PEPs
is predicted to bind CALP tighter than the CFTR C-terminal
SLiM, a critical prerequisite of an effective inhibitor. After nor-
malization (see Supplementary Information B for information
on the normalization procedure) and conversion to Gibbs
free energy, the top 3 peptides, CALP-PEP9, CALP-PEP4, and
CALP-PEP5, when compared to the CFTR C-terminus, have
a �G of 2.3, 2.3, and 2.1 kcal/mol lower than the CFTR C-
terminus (CALP-PEP9: �G = −6.9 kcal/mol, CALP-PEP4:
�G = −6.9 kcal/mol, CALP-PEP5: �G = −6.7 kcal/mol,

CFTR C-terminus: �G = −4.6 kcal/mol), improving KD over
the CFTR C-terminus by 46-, 44-, and 33-fold, respectively.
Below, we provide the results and analyze the OSPREY-
predicted structural ensembles.

K∗ redesign of the peptide sequence enabled each of the
CALP-PEPs to achieve a tighter binding affinity to CALP
when compared to the DPR scaffold from which it was
generated. This is indicated by their positive log10 �K∗ score
(see Supplementary Table 3). Notably, the CALP-PEPs �K∗
scores strongly correlate with their K∗ scores (Spearman corre-
lation = 0.95). We postulate this strong correlation indicates
that DexDesign’s K∗ optimization is not merely alleviating
clashes in the DPR scaffolds, but that it is also identifying
peptide sequences forming novel side chain interactions that
increase binding affinity. For example, CALP-PEP9’s P−2
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Figure 6. Structural analysis of OSPREY-generated ensemble of CALP-PEP9. Of the 15 CALP-PEPs, CALP-PEP9 (RGGRHK) is predicted to be the tightest
binder to CALP with a log10 K∗ score of 26.1, which approaches the predicted affinity of the most binding-efficient L-peptide inhibitor kCAL01 (previously
reported (Roberts et al. 2012) by our lab; with a log10 K∗ score of 30.4), and vastly exceeds the predicted binding affinity of the CFTR C-terminal SLiM
(log10 K∗ score of 16.2). CALP-PEP9 is predicted to improve KD by 46-fold over the CFTR C-term, with a normalized KD of 8.9 μM versus 420 μM
(Amacher et al. 2013) for the C-terminal SLiM (see Supplementary Information B). (A) CALP-PEP9’s P0 carboxylate forms favorable H-bonds with the
carboxylate binding loop (CBL: G290-I293, G�1G�2) and strand β2, mimicking canonical PDZ binding interactions (Christensen et al. 2019) of L-peptides.
(B) The amino acid at position P−5 in CALP-PEP9 is arginine. P−5’s amino group and sidechain make favorable van der Waals contacts, indicated by blue
and green MolProbity dots (Word et al. 1999, Williams et al. 2018, Jou et al. 2024), with CALP’s E300 and H301. Its guanidine sidechain also forms
H-bonds with E300’s carboxyl group. (C) In canonical L-peptide’s, a PDZ-domain’s hydrophobic pocket is filled by a hydrophobic amino acid at position P0

(Christensen et al. 2019). In contrast, all of the CALP DPRs fill the pocket with the amino acid at position P−1 (see Supplementary Fig. 3). CALP’s
hydrophobic pocket, defined as the groove between α2 and β2 and involving V345, I295, I293, L291, and L348, is filled by a histidine in position P−1. (D)
CALP-PEP9’s P−2 is arginine, which is predicted to make favorable van der Waals contacts and form H-bonds with β2’s S294 and the sidechain of β3’s
E309. The K∗ scores and additional structural validation of all the CALP-PEPs can be found in Supplementary Table 3.

arginine reaches across β2 and makes favorable contacts with
β3’s Glu309 (see Fig. 6D). The magnitude of the predicted
improvement in binding ranges from ��G = −2.0 kcal/mol
for CALP-PEP15 to −3.5 kcal/mol for CALP-PEP9. Next, we
validated the CALP-PEPs based on their ability to replicate
canonical PDZ domain binding motifs.

To quantify validation criterion (1) (the presence of an
H-bond network, see Results - DPR validation criteria bul-
let point 2), we counted the number of H-bonds formed
between the peptide’s C-terminal carboxylate and the CBL,
and to quantify (2) (the presence of peptide: β2 backbone
interactions) we counted the number of H-bonds between the
peptide and β2 backbones. We used visual inspection with
MolProbity Probe Dots (Word et al. 1999, Williams et al.
2018) in our lab’s Protein Design Plugin (Jou et al. 2024)
to perform a binary classification for (3) (the ability of the
D-peptide to fill the hydrophobic pocket), more specifically,

we classified the hydrophobic pocket as filled if a D-peptide’s
sidechain contacted the residues within the pocket. As a point
of reference, kCAL01 and the CFTR C-terminal SLiM each
have 3 H-bonds with the CBL, 3 H-bonds between the peptide
and β2 backbone, and fill CALP’s hydrophobic pocket their P0

amino acid (valine for kCAL01, leucine for CFTR C-terminal
SLiM).

9 of the 15 CALP-PEPs (CALP-PEP[4-12]) had 2 or more
H-bonds between their C-terminal carboxylate with the CBL.
CALP-PEPs derived from the CALP-DPR1 and CALP-DPR5
scaffolds had 1 (or in the case of CALP-PEP1 and CALP-
PEP3, 0) H-bonds. Encouragingly, all the CALP-PEPs formed
at least 2 backbone H-bonds with CALP’s β2 strand (see
Fig. 5 and Supplementary Table 3). CALP-PEP9, which we
predict to be the tightest binder to CALP, forms 3 C-terminal
carboxylate H-bonds with the CBL and 3 backbone H-bonds
with CALP’s β2 strand, matching the numbers formed by both
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Figure 7. The DexDesign-generated D-peptides are predicted to bind to MAST2 tighter than PTEN. Blue bars show the OSPREY-predicted binding affinity
of the MAST-PEPs and PTEN6-Cter (hereafter denoted PTEN6, the 6 C-terminal residues of MAST2’s endogenous ligand PTEN). We used the
DexDesign algorithm (described in Methods - Algorithm and computational protocol) and novel design techniques (described in Applying DexDesign to
CALP and MAST2 - Design techniques) to generate 15 de novo D-peptides predicted by the K∗ algorithm (Lilien et al. 2005, Gainza et al. 2012) to bind
MAST2 tighter than PTEN6. Notably, PTEN binds MAST2 209-fold tighter than CFTR binds CALP (KD = 1.9 ± 0.05 μM vs. 420 ± 80 μM) (Terrien et al.
2012, Amacher et al. 2013), and binds MAST2 as tightly as the strongest known inhibitor of CALP, kCAL01 (KD = 2.3 ± 0.2 μM) (Roberts et al. 2012),
indicating a more challenging target of inhibition. OSPREY predicts PTEN6 to bind MAST2 with a log10 K∗ score (a provably accurate ε-approximations to
K a, see Supplementary Information A) of 28.8. Despite the more difficult target, all the MAST2-PEPs have higher log10 K∗ scores than PTEN6, ranging
from 29.4 for MAST2-PEP9 to 32.7 for MAST2-PEP4, meaning the MAST-PEPs are predicted to outcompete PTEN6 and inhibit PTEN6: MAST2 binding.
The best predicted inhibitor, MAST2-PEP4, has a ��G of −1.1 kcal/mol, improving KD 5-fold compared to the PTEN6 (see
Supplementary Information B). The K∗ scores of the MAST2-PEPs and empirical structures were determined using the K∗ algorithm (Lilien et al. 2005,
Georgiev et al. 2008) in OSPREY (Hallen et al. 2018). Supplementary Information A provides a definition of the K∗ algorithm and K∗ score. The error bars
on the K∗ scores show the provable upper- and lower-bound of the K∗ approximation.

the CFTR C-terminal SLiM and kCAL01 (see Fig. 6). CALP-
PEP9 contains arginines at position P−2 and P−5, both of
which are predicted to make favorable van der Waals contacts
with CALP (see Fig. 6B and D). In addition, CALP-PEP’s P−2

and P−5 guanidino groups are predicted to form H-bonds with
CALP’s S294 and E309, and E300 and H301, respectively
(Fig. 6B and D). While it does not appear that the quantity
of CBL and backbone H-bonds drives the predicted strength
of binding of CALP-PEPs (see Fig. 5), the CBL does play an
important role in determining peptide specificity (Amacher
et al. 2020), therefore we regard evaluation of D-peptide:
PDZ domain H-bonds as necessary components of a larger
ensemble of criteria.

In contrast, whether a CALP-PEP fills CALP’s hydrophobic
pocket is important to designing a tight binder. All the CALP-
PEPs saw an increase in their K∗ scores when they mutated
P−1 to an amino acid capable of filling the pocket (see
Supplementary Table 3). 11 of the 15 CALP-PEPs mutate
P−1 to histidine, 3 of the 15 to phenylalanine, and CALP-
PEP15 is unique with methionine. For example, the mutation
to histidine at P−1 in CALP-PEP9 fills and favorably interacts
with multiple residues in the hydrophobic binding pocket (see
Fig. 6C).

MAST2

Using an NMR structure of PTEN bound to MAST2
(PDB ID 2kyl) (Terrien et al. 2010), we used DexDe-
sign to generate 3 DPR scaffolds: MAST2-DPR[1–3] (see
Supplementary Table 2). From these 3 DPR scaffolds, we
used the design techniques described in Applying DexDesign
to CALP and MAST2 - Design techniques to generate 15 pep-
tides, MAST2-PEP[1-15]. Figure 7 shows an overview of the
MAST2-PEPs K∗ scores and how they compare to MAST2’s
endogenous ligand PTEN. Additional structural information
about the MAST2-PEPs, such as which residue fills MAST2’s
hydrophobic cavity, is in Supplementary Table 4.

PTEN binds MAST2 209-fold tighter than CFTR binds
CALP (KD = 1.9 ± 0.05 μM vs. 420 ± 80 μM) (Terrien
et al. 2012, Amacher et al. 2013) and binds MAST2 as
tightly as the strongest known inhibitor of CALP, kCAL01
(KD = 2.3 ± 0.2 μM) (Roberts et al. 2012). In other words,
to design competitive inhibitors of the MAST2: PTEN
interaction requires us to design D-peptide inhibitors with
a better affinity than the tightest known L-peptide inhibitor
of CALP. Despite the challenge inherent in disrupting the
MAST2: PTEN interaction, all the MAST2-PEPs are predicted
to bind MAST2 with affinities surpassing PTEN (see Fig. 7).
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The log10 K∗ scores of the MAST-PEPs range from a low
of 29.4 for MAST2-PEP9 to a high of 32.7 for MAST2-PEP4.
MAST2-PEP4 is the best DexDesign-generated inhibitor and
is predicted to bind MAST2 with a normalized Gibbs free
energy �G of −8.8 kcal/mol, a −1.1 kcal/mol improvement
over MAST2: PTEN, resulting in a 5-fold improvement in
KD. In some cases a 5-fold improvement might be considered
small, but we have previously shown (Roberts et al. 2012,
Rudicell et al. 2014) that differences of this magnitude can
have profound effects on biological activity. For example,
kCAL01 binds only 6-fold tighter than previous competing
peptides, such as iCAL35, that were discovered via high-
throughput SPOT arrays (Roberts et al. 2012). However, in
ex vivo assays (see PDZ domains - CFTR-associated ligand)
iCAL35 had non-significant biological activity (Roberts et al.
2012), whereas the 6-fold tighter binding kCAL01 had signif-
icant biological activity. Since the SLiMs modulate a delicate
network of competing affinities and specificities (Lee and
Zheng 2010, Amacher et al. 2013, Amacher et al. 2020),
5–7× improvements in affinity (such as that achieved by
CALP-PEP4) can make the difference between failure and true
biological activity.

The MAST2-PEPs replicate some of the canonical L-peptide
PDZ-binding motifs, such as the residue in position P0 filling
the hydrophobic pocket between the PDZ domain’s α2 helix
and β2 strand. 9 out of 15 MAST2-PEPs have residue P0

filling the hydrophobic pocket (see Supplementary Table 4).
This contrasts with the CALP-PEPs, where in all cases the
residue at position P−1 filled the hydrophobic pocket. In
the best predicted inhibitor, MAST2-PEP4, the P0 leucine
fills MAST2’s hydrophobic cavity formed by Tyr17, Phe19,
Val77, Ile79, and Leu81 (see Fig. 8C and D). In contrast to
PTEN’s P0 valine, MAST2-PEP4’s P0 leucine forms favorable
interactions with all 5 of the cavity’s hydrophobic residues. In
addition, a rotation of MAST2-PEP4’s C-terminal carboxylate
alleviates a steric clash with the carboxylate binding loop
present in the MAST2: PTEN complex.

The MAST2-PEPs also exploit novel geometric features of
D-peptides not available to their L-counterparts. For exam-
ple, MAST2-PEP4’s P−3 glutamate makes favorable van der
Waals contacts with MAST2’s His73 imidazole side chain (see
Fig. 8A). PTEN does not make the analogous interaction, and
instead PTEN’s P−3 isoleucine is oriented towards MAST2’s
β2 strand, and the residue nearest to His73 is a glutamine at
P−4, whose amide fails to make van der Waals contacts with
His73 (see Fig. 8B). The creation of novel favorable interac-
tions with MAST2 is common in the designed MAST2-PEPs
and compensates for the loss of some of the canonical PDZ-
domain binding motifs. We discuss the trade-offs between
replicating canonical interactions and finding new modes of
binding available to D-peptides below.

Discussion

Replication and restitution: a framework for
evaluating de novo peptides

Though the CALP-PEPs and the MAST2-PEPs both target
PDZ domains, the interactions they make with their respec-
tive targets can be generally categorized into one of two
kinds: replication or restitution. Replication means to repli-
cate interactions previously observed in L-peptide inhibitors,
for example, in the case of the PDZ domains, the β2 strand

extension, residue P0 filling the hydrophobic pocket, and
the H-bond network a peptide’s terminal carboxylate makes
with the CBL. Restitution, on the other hand, refers to the
process of compensating for typical L-peptide binding motifs
by making novel interactions that are now possible to explore
due to the change from L- to D-chirality of the peptide.
Whereas in some cases the generated peptides are predicted
to have improved binding through replicating the canonical
PDZ interactions, in other cases, due to the special geometric
properties of D-peptides, we instead observe an increase in
binding (restitution) due to novel interactions that we observe
in the structures that were not available to L-peptides. This
suggest the intriguing possibility that some peptides may
be stabilized by replicating native-like interactions from L-
peptides, whereas others might be stabilized by forming novel
interactions, available only to the ligands with D-space con-
figuration of peptides.

In the de novo peptides we generated, both the CALP-PEPs
and the MAST2-PEPs contained elements both replicating and
restituting the binding interactions formed by the endogenous
L-peptides from which their backbone conformations are
derived (see Fig. 1). In general, the CALP-PEPs relied more on
a strategy of replication to improve binding affinity, whereas
the MAST2-PEPs exploited a strategy of restitution. Take
for example the SLiM’s canonical C-terminal carboxylate H-
bond network formed with the CBL. Whereas 13 of the 15
CALP-PEPs replicated (to varying degrees, and sometime even
exceeding the number of) H-bonds formed with the CBL
(see Fig. 5), the MAST2-PEPs’ terminal carboxylate tended to
have few, if any, H-bonds with the CBL (see, e.g. Fig. 8C).
We postulate that the reason for the MAST-PEPs’ use of
restitution instead of replication for the CBL H-bond network
is that the structure of the PTEN: MAST2 complex (PDB ID
2kyl) (Terrien et al. 2010) indicates the existence of steric
clashes between the C-terminal carboxylate and the CBL
(see Fig. 8D). When using MolProbity (Williams et al. 2018)
to evaluate the lowest-energy model of the empirical NMR
structure, it indicates there is a bad clash (van der Waal radii
overlap of 0.518 Å) between PTEN P0 valine’s OXT atom
and the HA atom from Lys16 in MAST2’s CBL. OSPREY’s
energy function (Georgiev and Donald 2009, Gainza et al.
2012, Hallen et al. 2018, Martin and Donald 2024), which
uses continuous sidechain minimization in addition to trans-
lation and rotation of the peptide to minimize the energy
of each conformation evaluated by OSPREY’s iMinDEE/K∗
algorithm (Georgiev et al. 2008, Gainza et al. 2012), pushes
and rotates the C-terminal carboxylate away from the CBL to
alleviate the steric clash (see Fig. 8C), with the trade-off being
the loss of replication of some of canonical PDZ CBL H-bond
interactions.

The CALP-PEPs and MAST2-PEPs also exploit restitution
to form novel favorable interactions with their target proteins.
One type of restitution is the creation of favorable new side
chain interactions between the peptides and their targets.
For example, CALP-PEP9’s P−2 arginine forms two new H-
bonds with CALP β2 strand’s S294 and the sidechain of β3’s
E309 (see Fig. 6D) that are absent in the CALP: kCAL01
structure (PDB ID 6ov7) (Holt et al. 2019). Interestingly,
CFTR’s P−1 arginine forms an analogous H-bond with E59
CALP: CFTR structure (PDB ID 2lob) (Piserchio et al. 2012),
providing evidence that this interaction, as restituted in
CALP-PEP9 (based on the kCAL01 structure lacking this
interaction), is both plausible and favorable in vitro. The
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Figure 8. MAST2-PEP4 creates novel favorable interactions with MAST2 not found in PTEN. MAST2-PEP4 (cyan sticks) is the DexDesign-generated de
novo D-peptide predicted to bind MAST2 (green cartoon and lines) with the tightest affinity. The K∗ algorithm (Lilien et al. 2005, Gainza et al. 2012) in
OSPREY (Hallen et al. 2018) predicts MAST2-PEP4 to bind MAST2 with a log10 K∗ score (a provably accurate ε-approximations to K a, see
Supplementary Information A) of 32.7, compared to 28.8 for PTEN6 (gray sticks, the 6 C-terminal residues of MAST2’s endogenous ligand PTEN). After
normalization (see Supplementary Information B), the Gibbs free energy change �G of the MAST2: MAST2-PEP4 complex is −8.8 kcal/mol, a
−1.1 kcal/mol improvement over MAST2: PTEN6, resulting in a 5-fold improvement in KD. Center: the lowest-energy conformation from the
OSPREY-predicted conformational ensemble of MAST2 (green) bound to MAST2-PTEN6 (cyan) and the lowest-energy model of PTEN6 (grey) from an
empirical solution NMR ensemble of the MAST2: PTEN complex (PDB ID 2kyl) (Terrien et al. 2010). In comparison to the binding modes of, e.g. the
CALP-PEPs to CALP (see Fig. 6) which largely recover canonical PDZ-domain binding interactions, MAST2-PEP4 restitutes binding to MAST2 by
exploiting novel geometric features of D-peptides not available to their L-counterparts (see Discussion). A: MAST2-PEP4’s P−3 glutamate makes
favorable van der Waals contacts with MAST2’s His73 imidazole side chain, as indicated by predominantly green and blue MolProbity dots (Word et al.
1999, Williams et al. 2018, Jou et al. 2024). These favorable contacts are absent in the MAST2: PTEN6 complex. (B) In contrast to (A), PTEN6 cannot
make some favorable interactions available to our D-peptides. For example, in MAST2: PTEN6, PTEN6’s P−3 isoleucine is oriented towards MAST2’s β2
strand (not shown), and the residue nearest to His73 is P−4 glutamine, whose amide fails to make van der Waals contacts with His73. C: MAST2-PEP4’s
P0 leucine fills MAST2’s hydrophobic cavity (Terrien et al. 2012) formed by Tyr17, Phe19, Val77, Ile79, and Leu81. In contrast to PTEN6’s P0 valine (D),
MAST2-PEP4’s P0 leucine forms favorable interactions, as indicated by the green and blue MolProbity dots, with all 5 of the cavity’s hydrophobic
residues. In addition, a rotation of the C-terminal carboxylate alleviates a steric clash (indicated by the red and pink MolProbity dots in (D) with the
carboxylate binding loop present in the MAST2: PTEN6 complex.

MAST2-PEPs likewise restitute novel favorable interactions.
For example, MAST2-PEP4’s P−3 glutamate makes favorable
van der Waals contacts with MAST2’s His73 imidazole side
chain (see Fig. 8A). In contrast, PTEN cannot make some
favorable interactions available to MAST2-PEP4. In the
MAST2: PTEN structure, PTEN’s P−3 isoleucine is oriented
towards MAST2’s β2 strand, and the residue nearest to His73
is P−4 is glutamine, whose amide fails to make van der Waals
contacts with His73 (see Fig. 8B). In the future, we believe
that designed D-peptide libraries of binders and inhibitors
can be characterized as falling on a spectrum ranging from
replication (1) to restitution (−1) and can be visualized as a
per-residue replication-restitution score ranging from 1 to −1.
In this way, the functional contributions to binding of de novo
peptides could be mapped into a vector space which can be
visualized or exploited as novel features for machine learning
design approaches.

Validation of DexDesign scaffold discovery and
redesign

To assess DexDesign, we performed a computational exper-
iment to measure the ability of DexDesign to design a de
novo D-peptide similar to a D-peptide found in an empir-
ical D-peptide: L-protein complex. In our experiment, we
began with the crystal structure of a known D-peptide in
complex with an L-protein and applied a global reflection
to the D-peptide: L-protein complex. Then, we employed
MASTER to search the L-database using the resulting, now
flipped, L-peptide as the query. The returned L-structures
were aligned with the reflected complex and reflected once
again to produce D-peptide: L-protein scaffolds ordered by
increasing backbone alignment RMSD. The first, and there-
fore lowest, RMSD backbone alignment was then selected for
redesign using OSPREY. We then measured the similarities of
the redesigned D-peptide to the empirical D-peptide. While
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Figure 9. Geometric, chemical, and physical properties of DPRV that drive binding to streptavidin. (A) Similar to GyGlanvdessG Ala3, DRPV Met610
displays favorable hydrophobic and van der Waals contacts with streptavidin Trp79. Streptavidin (green cartoon and lines) displays hydrophobic
contributions through inward-facing tryptophan residues of the β barrel, which have been reported as important for ligand binding (Hyre et al. 2006).
Favorable van der Waals interactions are shown as green and blue dots between DRPV (cyan) Met610 and streptavidin Trp79. GyGlanvdessG (grey) Ala3
also shares similar hydrophobic and van der Waals contacts with streptavidin Trp79. (B) Differences in C-terminal orientation and interactions between
D-peptide GyGlanvdessG: streptavidin and DPRV: streptavidin. Unlike GyGlanvdessG, DRPV’s aspartic acid C-terminus makes hydrogen bonds with both
streptavidin residues Ser45 and Ser52. However, GyGlanvdessG’s C-terminal Ser9 fails to form a hydrogen bond with streptavidin Ser52. Residues
number Ser45-Ser52 on streptavidin are known to be important for establishing binding of biotin (Freitag et al. 1997), so these contacts are likely
evidence of high-affinity binding of DPRV.

DexDesign is intended for construction of novel de-novo D-
peptides, the capability to generate a DPR similar to the D-
form empirical structure should validate our redesign pro-
tocol. Finally, we incorporated significantly more backbone
sampling and remodeling that improved both binding affinity
and native sequence recovery significantly (see Improved pre-
dictions using additional backbone sampling and remodeling
below).

We selected a crystal structure of the D-amino acid con-
taining peptide GyGlanvdessG in complex with streptavidin
(PDB ID 5n8j) (Lyamichev et al. 2017). Streptavidin is a
homotetrameric protein that binds the vitamin biotin with
high affinity (Freitag et al. 1997), and is therefore commonly
used in Western blotting and immunoassays (Brower et al.
1985). A monomer of streptavidin forms a β barrel, with
ligands oriented towards the interior of the barrel. Similar
to CBL interactions with CALP and MAST2, streptavidin
forms favorable hydrogens bonds with ligands via a flexible
binding loop (Freitag et al. 1999). Analogously, streptavidin
exhibits hydrophobic contributions through inward-facing
tryptophan residues of the β barrel (Hyre et al. 2006). There-
fore, a high-affinity ligand should establish hydrogen bonds
with the binding loop while orienting hydrophobic residues
towards β barrel tryptophans. We selected this system due to
its comparable D-peptide size and similar chemistry to PDZ
domains.

We sourced the lowest backbone RMSD (0.48 Å) of
inverted D-amino acid GyGlanvdessG from chain A residues
608 to 616 of ST0929 (PDB ID 3hje) (Cielo et al. 2010), a
glycol transferase. After application of Minimum Flexible Set,
Inverse Alanine Scanning, and K∗-based Mutational Scan to

this scaffold (see Applying DexDesign to CALP and MAST2
- Design techniques), we determined the optimal binder,
hereafter denoted as DPRV, to have a log10 K∗ score of 32.8
with the sequence WWMIGDWND. This differed slightly
from GyGlanvdessG (GLANVDESS), which has a log10
K∗ score of 32.2. The sequence similarity between the two
peptides is 21.43% (see Improved predictions using additional
backbone sampling and remodeling for computational
experiments that show how increased backbone sampling
and remodeling improved native sequence recovery to 44%
and predicted binding affinity to 39.54), a degree of native
sequence recovery comparable to reported recovery in popular
protein design programs such as Rosetta for L-proteins (Zhou
et al. 2020b). This is especially true for NMR structures, such
as we used in our MAST2 study (see Results - MAST2). With
DPRV, we report that DexDesign generates a D-ligand with
chemistry unique to the DPR scaffold.

While DexDesign exhibits comparable performance to
state-of-the-art methods (Zhou et al. 2020b), native sequence
recovery on a short (9 residue) peptide may be a poor indicator
of ligand binding. For example, a 40% sequence recovery
equates to 3.6 residues for our redesigned peptide. This is
a small number of residues, and likely fails to capture the
geometric and chemical features that drive high affinity.
To investigate the similarities of GyGlanvdessG and DPRV,
we also report the backbone alignment RMSD of DPRV
to GyGlanvdessG: streptavidin (0.48 Å), and the geometric,
chemical, and biophysical properties of our designed peptide
that enable binding (see Fig. 9). Finally, we report the log10 K∗
scores computed over molecular ensembles as validation of
binding competency (above and see Supplementary Table 5).
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Figure 10. Quantitative analysis of D-peptides with additional backbone sampling and remodeling. Blue bars note the predicted binding affinity (K∗ score
(log10), see Supplementary Information A) while green bars note the native and DexDesign-predicted sequences’ similarity. The numbers on the y -axis
denote both K∗ score (log10) and sequence similarity (%). A horizontal red dashed line shows comparison of native sequence recovery to DRPV
(Discussion - Validation of DexDesign scaffold discovery and redesign). Experiment 1 and 2 data are separated by the vertical dashed black line. See
Supplementary Information Tables 6 and 7 for the full dataset. As reported in Discussion - Improved predictions using additional backbone sampling and
remodeling, two in silico experiments were performed to evaluate DexDesign native sequence recovery and predicted binding affinity using additional
backbone sampling and remodeling. These experiments improved native sequence recovery results for DPRV and GyGlanvdessG over the model using a
single backbone conformation. Sampling of additional backbone conformations (Experiment 1) resulted in the greatest increase in native sequence
recovery from 21.43% (DPRV) to 44.44% (Match 11). This computational experiment also resulted in the greatest improvement in predicted binding
affinity, with an improvement in K∗ score (log10) from 32.8 (DPRV) to 39.54 (Match 500). Experiment 2 indicates the benefit of incorporating diverse
scaffolds from homology modeling into DexDesign for native sequence recovery, though Match 1 suggests a potential trade-off between sequence
recovery and predicted binding affinity. The median sequence similarity and K∗ score (log10) for Experiment 1 were 31.7 and 31.9, respectively. The
median sequence similarity and K∗ score (log10) for Experiment 2 were 30.8 and 33.7, respectively. Overall, sampling of additional backbone
substructures (Experiment 1) and remodeling of ligand backbone structure (Experiment 2) resulted in an almost universal increase in native sequence
recovery and predicted binding affinity compared to the single backbone conformation DPRV native sequence recovery experiments.

We also performed a control experiment wherein we
mutated the ST0929 scaffold sequence (RYEEGLFNN)
directly to the sequence of the D-peptide GyGlanvdessG,
without using any OSPREY-based techniques such as K∗-
based Mutational Scan and Inverse Alanine Scanning. The
purpose of this experiment was to investigate the predicted
binding of the GyGlanvdessG sequence on the ST0929 scaf-
fold backbone. This control experiment produced a log10 K∗
score of only 26.6, a difference of −5.7 from GyGlanvdessG.
Interestingly, a 100% wildtype sequence recovery mutant
yields lower predicted binding despite the selection of a DPR
scaffold with the lowest backbone RMSD. Therefore, we
conclude that the GyGlanvdessG sequence was not recovered
by the full DexDesign protocol because these novel OSPREY-
based design techniques would not permit optimal binding on
the lowest backbone RMSD scaffold. Instead, the DexDesign
techniques (as outlined in Applying DexDesign to CALP and
MAST2 - Design techniques) resulted in a novel D-peptide.
These results highlight the sensitivity of the peptide design
to the starting scaffold; even similar-appearing scaffolds have
different degrees of designability due to geometric differences
between backbones. Overall, our experiment highlights the
utility of DexDesign for generation of novel peptides, as
opposed to sequence recovery of known binders.

The difference between amino acid composition of the
D-amino acid containing peptide GyGlanvdessG and the
redesigned peptide is likely due to subtle differences in scaffold
geometry. As shown in Fig. 9 and Supplementary Fig. 4, the

backbones of D-amino acid GyGlanvdessG, DPRV, and the
ST0929-sourced peptide scaffold mutated to the endogenous
ligand (control) vary at residues important for establishing
hydrogen bonds. For example, GyGlanvdessG’s Glu7 residue
makes hydrogen bonds with residues Asn23 and Ser27 of
streptavidin (Supplementary Fig. 4A). DPRV’s Trp7, which is
shifted 1.9 Å away from streptavidin Ser27 in comparison to
GyGlanvdessG, does not form either of these hydrogen bonds.
However, DRPV’s Asp9 facilitates hydrogen bond formation
with residues Ser45 and Ser52 on streptavidin (Fig. 9B). These
residues belong to the flexible binding loop, where favorable
contacts are crucial for high-affinity binding (Freitag et al.
1997). The hydrogen bond formed with flexible loop residue
Ser52 is unique to DRPV and is not present in the ST0929
control experiment or GyGlanvdessG. Therefore, a peptide
that replicates some characteristics of a known ligand, while
restituting novel interactions, may be a much more competent
binder.

Improved predictions using additional backbone

sampling and remodeling

To further assess DexDesign and DRPV (Discussion - Val-
idation of DexDesign scaffold discovery and redesign), we
performed additional computational experiments and exten-
sive data analysis with 13 new designs using additional back-
bone sampling and remodeling. These results are visualized
in Figs 10 and 11 (see Supplementary Tables 6 and 7 for
the full dataset). As with the original DexDesign algorithm,
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Figure 11. Match 11 creates novel favorable interactions with streptavidin not available to wildtype ligand GyGlanvdessG while replicating endogenous
interactions. The wildtype ligand GyGlanvdessG is shown in grey sticks, while Match 11 is shown in cyan. Streptavidin residues are shown in green, with
favorable contacts illustrated with green and blue Molprobity Probe Dots (Word et al. 1999, Jou et al. 2023). The designed D-peptide Match 11 was
produced in Experiment 1 (Discussion - Improved predictions using additional backbone sampling and remodeling), where predicted binding affinity and
native sequence recovery were improved by incorporating additional sampling of MASTER-returned backbones in the DexDesign algorithm. Of the 13
total substructures in computational Experiments 1 and 2, Match 11 (WIDRIDYSE) resulted in the highest native sequence recovery at 44.44%. Of
designs in Discussion, Match 11 is predicted to be the 2nd-tightest binder to streptavidin with a log10 K∗ score of 38.8 (Match 500 is predicted to bind
with a log10 K∗ score of 39.54, but with a native sequence recovery of 36.36%). This is an improvement over designed D-peptide DPRV (no additional
sampling or minimization), which had a log10 K∗ score of 32.2 and native sequence recovery of 21.43%. (A) Match 11 recapitulates the amino acid
identity (Asp) and sidechain conformation of GyGlanvdessG at the 6th position from the N-terminus. The recapitulated Asp residue of Match 11 is highly
similar to the endogenous (GyGlanvdessG) conformation, resulting in the replication of favorable interactions with streptavidin residue R84. (B) Match 11
recapitulates the amino acid identity (Ser) and sidechain conformation of GyGlanvdessG at the 8th position from the N-terminus. Recapitulating the
amino acid type with a similar conformation results in Match 11 replicating favorable interactions with streptavidin residues L25, S27, S45 and A46, as
present with the endogenous ligand. (C) Unlike the endogenous GyGlanvdessG ligand (GLANVDESSG), Match 11’s residue W138 is predicted to
restitute novel interactions with streptavidin. Unlike the inert N-terminal Gly (G1) of GyGlanvdessG, W138 of Match 11 forms favorable van der Waals
contacts with streptavidin residues A86, H87, S112, G113. None of these interactions are present in the GyGlanvdessG crystal structure. (D) Similar to
W138, Match 11’s R141 establishes favorable interactions with streptavidin that are not present in the endogenous GyGlanvdessG ligand. R141 initiates
novel, favorable interactions with streptavidin residues Q24, L25, W108, and D128. GyGlanvdessG’s N4 is oriented in the opposite direction in the
structure, and only recapitulates some of the favorable contact with W108.
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computational Experiments 1 and 2 permit ligand translation
and rotation when calculating structural molecular ensembles,
partition functions, and binding affinity.

In the design community, a consensus has emerged that
high native sequence recovery is undesirable: a 25% to 50%
native sequence recovery is considered excellent, and higher
is considered overfitting (Kuriyan et al. 2012). In the case of
native sequence recovery, the community has converged on
this desired percentage (Kuhlman and Baker 2000), which
is empirically grounded, because computational predictions
are being compared to experimental sequences. Therefore, the
native sequence recovery of 21% for DRPV is comparable,
albeit slightly underperforms, other tools in the computa-
tional protein design domain. Moreover, using increased back-
bone sampling and remodeling, we have increased the native
sequence recovery to 44%. Here we include the methods and
results for these experiments.

We report analysis as two computational experiments:
Experiment 1 and Experiment 2. Experiment 1 (see
Supplementary Table 6) incorporates additional sampling
of MASTER-returned backbones. That is, more than one
substructure was used as a template for redesign. This compu-
tational experiment is designed to explore a larger backbone
conformational space by performing DexDesign on sequences
with backbone alignment RMSD ranging from 0.50–0.70 Å
(as returned by MASTER). This method produced the best
improvements in native sequence recovery and predicted
binding affinity. Experiment 2 (see Supplementary Table 7)
includes backbone minimization (via molecular dynamics
(Case et al. 2022)) before design. Molecular dynamics
simulation of atomic backbone movements were performed
using the AmberTools23 sander (Simulated Annealing with
NMR-Derived Restraints) engine (Case et al. 2023). For each
backbone in Experiment 2, a non-periodic MD simulation
was performed with the AMBER energy function (Case et al.
2022) and generalized Borne (Onufriev and Case 2019)
solvation model. Force fields were parameterized for van
der Waals and electrostatic interactions, while polar and
non-polar solvent contribution terms were added to enable
implicit solvation. Each substructure was evaluated for 50
time steps at 298 K. In this design strategy, substructures are
minimized before any design techniques (Minimum Flexible
Set, Inverse Alanine Scanning, K∗-based Mutational Scanning)
are performed. Because downstream design decisions are
sensitive to MASTER-returned backbones (Discussion -
Validation of DexDesign scaffold discovery and redesign),
remodeling fragments to more realistic energies before design
improved native sequence recovery and predicted binding
affinity. Sampling of additional backbone conformations and
remodeling before design resulted in improved K∗ (log10)
scoring and native sequence recovery (sequence similarity).

Experiment 1 resulted in improved K∗ (log10) scoring and
native sequence recovery (sequence similarity). Of the 10
system designed in Experiment 1, only 2 peptides, Match 2
and Match 100, have sequence similarity outside of desirable
bounds. Match 11 resulted in the best sequence similarity of
44.44%, and the 2nd-highest K∗ score (log10) of 38.8. Match
500 reports the highest K∗ score (log10) of 39.54 with the
3rd-highest sequence similarity of 36.36%. Four of the ten
designs have a predicted binding affinity greater than DRPV.
Five systems have a predicted binding affinity greater than the
wildtype GyGlanvdessG, which has a K∗ score (log10) of 32.2.
These results demonstrate the benefit of additional backbone

sampling, outline valuable future steps to improve D-peptide
design.

Interestingly, in Experiment 2, minimization of Match 1 (the
same match used to generate DPRV) before design did not
change the sequence similarity of 21.43%, but did improve
the K∗ score (log10) from 32.8 to 35.13. The conformational
and energy landscape of the sampled backbones are improved,
but perhaps do not optimize for wildtype recovery due to
the presence of different D-space amino acids with higher
affinity (an observation discussed in Discussion - Validation
of DexDesign scaffold discovery and redesign, see ST0929
scaffold). Minimization of Match 10 and 295 increased native
sequence recovery by 14.93% and 9.34%, respectively, at the
cost of worse K∗ scores (log10). Therefore, while predicted
binding affinity is slightly worse, the native sequence recovery
is comparable to computational tools with successful exper-
imental results (Zhou et al. 2020b, Dauparas et al. 2022,
Li et al. 2022). This data reports the benefit of incorpo-
rating improved backbone sampling and diverse scaffolds
from homology modeling into DexDesign for native sequence
recovery with a potential trade-off between sequence recovery
and predicted binding affinity.

For Experiment 1, the most conserved residues (by median)
were at positions 1, 2, 5, 6, and 8 (Supplementary Table 6,
Rank columns). At these positions, selection of the GyGlan-
vdessG wildtype residue were predicted among the top
32.5% of possible selections or better. For Experiment 2
(Supplementary Table 7, Rank columns), the most conserved
residues (by median) were at positions 1, 5, 6, and 8.
At these positions, selection of the wildtype residue were
predicted among the top 20% of possible selections or
better. Most notably, conserved regions between Experiment
1 and Experiment 2 capture most nonpolar, hydrophobic
residues (GyGlanvdessG residue positions 1–3, 5), which
are known to be highly conserved among high-affinity
binders with intended folds (Dahiyat and Mayo 1997).
Furthermore, for in vitro/in vivo experimental validation,
we, and the community, rarely test only the lowest-energy
design. Therefore, computational methods that demonstrate
selection within roughly the top third, or better, of highly
conserved sequence motifs are a reasonable and effective filter
for experimental testing.

Overall, sampling of additional backbone substructures
(Experiment 1) and remodeling of ligands (Experiment 2)
resulted in an almost universal increase in native sequence
recovery and predicted binding affinity. As reported in Dis-
cussion - Validation of DexDesign scaffold discovery and
redesign, the native sequence recovery (sequence similarity)
and K∗ (log10) score of DRPV without additional backbone
sampling and remodeling was 21.43% and 32.8, respec-
tively. The median sequence recovery for Experiment 1 was
31.67%, and for Experiment 2 was 30.77%. Furthermore,
the median K∗ (log10) score for Experiment 1 was 31.91
and for Experiment 2 was 33.74. The best native sequence
recovery was seen in Experiment 1, Match 11 with an increase
from 21.43% to 44.44%. The best predicted binding affinity
resulted from Experiment 1, Match 500, with an improved K∗
(log10) score from 32.8 to 39.54. Additionally, evaluation of
D-amino acid selections relative to design techniques (Inverse
Alanine Scanning and K∗-based Mutational Scanning) indi-
cates that DexDesign maintains highly-conserved residues
while acting as an effective pruning filter for experimental
testing.
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Conclusions

In this work, we presented an algorithm, DexDesign, to com-
putationally design de novo D-peptides. In addition, we have
presented three computational protein design techniques, the
Minimum Flexible Set, Inverse Alanine Scan, and K∗-based
Mutational Scan, that are generally applicable to both D-
and L-peptide design. The process of developing DexDesign
required us to add new capabilities to the OSPREY (Hallen
et al. 2018) protein redesign software, including the ability
to add arbitrary conformation libraries. This enables excit-
ing new opportunities for the types of chemistries OSPREY
can model and the conformations its algorithms can search
and optimize. With DexDesign we have added a D-amino
acid conformation library to OSPREY by reflecting the L-
version of OSPREY’s standard protein conformation library.
Future designs and algorithms that model non-proteinogenic
molecular building blocks, such as non-canonical amino acids
or small molecule rotamers, are now substantially easier to
implement. We envision providing additional generally useful
standard conformation libraries within OSPREY itself in the
future, and protein designers with specialized use cases can
create their own conformation libraries and import them in
their design specification in a trivial and code-free process.

We have used DexDesign to generate and optimize
30 de novo D-peptide inhibitors for two biomedically
important PDZ targets: CALP and MAST2. We used provable
approximations of binding affinity (see Supplementary Infor-
mation A) and analyzed the OSPREY-predicted low-energy
ensembles of the bound D-peptide: target structures to
assess the quality of the novel peptides. We employed a
novel restitution-replication framework for analyzing the
basis upon which our DexDesign-generated D-peptides
improved binding compared to their targets’ endogenous
ligands. Additionally, we performed additional computational
experiments and extensive data analysis with 13 new designs
using additional backbone sampling and remodeling that
resulted in a native sequence recovery of 44%. Future work
includes the important in vitro experimental validation of
the algorithm we have presented here. There are many
other peptide-recognizing PDZ domain targets for which
one could use DexDesign to design de novo D-peptide
inhibitors. Furthermore, DexDesign is not restricted to PDZ-
domains, it could be applied to design novel antineoplastic,
antifungal, or antibiotic D-peptide therapeutics. It is a general
algorithm applicable to any target for which there exists
structural models of a peptide: target complex. The structural
models can be determined experimentally or computationally
predicted using machine learning-based algorithms such as
AlphaFold (Jumper et al. 2021, Varadi et al. 2022), although
the accuracy of the results may be somewhat diminished
compared to experimentally determined structures of ligand-
target complexes. Thus, DexDesign provides an important
tool to the drug discovery community interested in developing
novel D-peptide therapeutics.
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