u Blaize.Security v

BrainStarter.io

DOWN-TO-EARTH QUALITY

BRAINSTARTER
SMART CONTRACT AUDIT

August 27th, 2024 / V. 1.0

BrainStarter Audit L Blaize.Security

BLAIZE.SECURITY
WE SECURE WEB3 ECOSYSTEMS

Blaize.Security is a world-class web3 security provider that works with up-to-date technologies to
build a safe environment for entire ecosystems. We provide security services for over 25 chains and
ecosystems, and the list grows.

Blaize.Security has over 6 years in the web3 industry and offers a dedicated team of over 25
certified Security Researchers and Auditors to cover all platform components. Therefore we have
separate teams for each security direction and service.

Pavlo Horbonos, Head of Security in Blaize

Software Engineer and Security Researcher with decades of experience in decentralized
technologies, fintech, low-level programming, cyber + web3 security, and Al and Data Science.
Certified auditor and security researcherto

https://www.linkedin.com/in/pavelmidvel/
https://twitter.com/MidvelCorp

Check more info on
https://security.blaize.tech

X (ex-Twitter): https://x.com/BlaizeSecurity

Linkedin: https://www.linkedin.com/company/blaize-security

Contact us:
security@blaize.tech

https://security.blaize.tech
https://security.blaize.tech
https://x.com/BlaizeSecurity
https://www.linkedin.com/company/blaize-security
https://www.linkedin.com/in/pavelmidvel/
https://twitter.com/MidvelCorp

BrainStarter Audit v Blaize.Security

Table of Contents

Executive Summary 2
Auditing strategy and Techniques applied / Procedure 4
Audit Rating 6
Technical Summary 8
Severity Definition)
Audit Scope 10
Protocol Overview 11
Complete Analysis 25
Code Coverage and Test Results for All Files (Blaize Security) 47
Disclaimer 53

security@blaize.tech 1

BrainStarter Audit v Blaize.Security

Executive Summary

During the audit, we examined the security of smart contracts for the BrainStarter
protocol. Our task was to find and describe any security issues in the smart contracts
of the platform. This report presents the findings of the security audit of the
BrainStarter smart contracts conducted between July 31st and August 22nd, 2024.

Blaize.Security conducted a comprehensive audit of the BrainStarter protocol, focusing
on its smart contracts for token staking and liquidity management. The audit scope
included 7 separate smart contracts developed by the BrainStarter team. The protocol
features a system for managing $BRAINS tokens, allowing users to stake tokens and
receive either liquid or illiquid NFTs based on staking thresholds. Liquid stakes are
transferable, while illiquid stakes remain locked and non-transferable. The audit also
covered the mechanisms for token minting, burning, and fee calculations, ensuring that
the protocol’s logic is secure and functions as intended.

More information about the contract logic is detailed in the Protocol Overview section.

The security team provided the decomposition of the protocol, checked the integrity of
the business logic, funds flow, access control system, and user flow, and analyzed a set
of edge cases. The team also checked the system against several checklists (including
all standard vulnerabilities) and conducted an intensive testing stage. The team found
several issues of different levels of risk. All issues are described in the Complete
Analysis section. The BrainStarter team resolved or verified most of them.

However, the security team should note several concerns.

1.Controllable backdoor, centralization, and single point of failure.

All platform contracts are upgradeable - thus, the owner can change any aspect of the
logic of each platform component. While upgradeability is a regular practice, it creates a
controllable backdoor with a significant risk of exploitation in case of inappropriate
private key handling. As all contracts in the scope are upgradeable, such an approach
leads to centralization and possible issues in case of the admin’s private key leak.

security@blaize.tech 2

BrainStarter Audit L Blaize.Security

2.Token upgradability.

The tokens issued by the platform are also upgradeable. Typically, tokens are made
non-upgradeable because they represent users’ assets, and the upgradeability can
cause trust issues. The team confirmed, that token will serve for utility purposes only,
still auditors see such approach as sub-standard.

3.Centralization and control over tokens.

The designated role has full control over NFTs (can mint/burn without restrictions). The
same applies to Dopamine tokens, as the owner can mint tokens without restrictions
and burn tokens without the user’s approval. The team confirmed, that is a part of the
business logic, because of pure utility of assets. Nevertheless it currently violates
users’ balances and is a negative centralization factor.

4.Burnable token without restrictions.

The tokens implement the public burn() / burnFrom() interface via the OZ
ERC20Burnable interface. While this is standard practice, the Customer should be
aware of the potential risks associated with it, listed in the Info-3 issue.

5.Tokens implement the ERC-2612 Permit interface.

While it is a regular practice, it requires additional monitoring of its usage and the
cautious behavior of users. Permit functionality creates several potentially dangerous
situations for users:

- the signed permit cannot be withdrawn; thus, it exists until it is either used or re-written
by the alternative signed permit

— users should validate the deadline for the signature, as in the case of the unvalidated
considerable number, it will exist until executed (as it cannot be withdrawn)

- several simultaneous signatures may exist for the same nonce, creating a racing
condition

Thus, users and the Customer should be aware of these conditions and inform the
community accordingly.

Therefore, the security team currently evaluates the project as Highly Secure, though
auditors noted the list of areas for improvement (noted with failed standard areas'
checks) and exposure to several risks described above.

security@blaize.tech 3

BrainStarter Audit v Blaize.Security

Auditing strategy and
Techniques applied/Procedure

Blaize.Security auditors start the audit by developing an auditing strategy - an
individual plan where the team plans methods, techniques, approaches for the
audited components. That includes a list of activities:

MANUAL AUDIT STAGE

* Manual line-by-line code by at least 2 security auditors with crosschecks and
validation from the security lead;

* Protocol decomposition and components analysis with building an interaction
scheme, depicting internal flows between the components and sequence diagrams;

» Business logic inspection for potential loopholes, deadlocks, backdoors;

* Math operations and calculations analysis, formula modeling;

» Access control review, roles structure, analysis of user and admin capabilities and
behavior;

* Review of dependencies, 3rd parties, and integrations;

» Review with automated tools and static analysis;

» Vulnerabilities analysis against several checklists, including internal Blaize.Security
checklist;

» Storage usage review;

» Gas (or tx weight or cross-contract calls or another analog) optimization;

» Code quality, documentation, and consistency review.

and a wide spectrum of other vulnerable areas.

security@blaize.tech 4

BrainStarter Audit L Blaize.Security

FOR ADVANCED COMPONENTS:

Cryptographical elements and keys storage/usage audit (if applicable);
* Review against OWASP recommendations (if applicable);

Blockchain interacting components and transactions flow (if applicable);
» Review against CCSSA (C4) checklist and recommendations (if applicable);

TESTING STAGE:

» Development of edge cases based on manual stage results for false positives
validation;

* Integration tests for checking connections with 3rd parties;

* Manual exploratory tests over the locally deployed protocol;

» Checking the existing set of tests and performing additional unit testing;

* Fuzzy and mutation tests (by request or necessity);

* End-to-end testing of complex systems;

In case of any issues found during audit activities, the team provides detailed
recommendations for all findings.

POST-AUDIT STEPS RECOMMENDED

To ensure the security of the contract, the Blaize.Security team suggests that the team
follow post-audit steps:
1. Request audits of other protocol components (dApp, backend, wallet, blockchain,
etc) from Blaize Security
2. Request consulting and deployment overwatch services provided by Blaize Security
3. Launch active protection over the deployed contracts to have a system of early
detection and alerts for malicious activity. We recommend the Al-powered threat
prevention platform VigiLens, by the CyVers team.
4. Launch a bug bounty program to encourage further active analysis of the smart
contracts.
5. Request post-deployment assessment service provided by Blaize Security to
ensure the correctness of the configuration, settings, cross-connections of
deployed entities and live functioning

security@blaize.tech 5

https://cyvers.ai/platform

BrainStarter Audit L Blaize.Security

Audit Rating

Score: 9.73/10

RATING
Security 9.73
Logic optimization 10
Code quality 9.9
Testing suite 7.3
Documentation 9.5

Security: General mark for the security of the protocol.
The main mark for the audit qualification.

Logic optimization: Evaluation of how optimal the implementation is, including
presence of extra/unused code, uncovered/extra cases, gas (or its analog)
optimization, memory management optimization, etc

Code quality: Evaluation of best practices followed, code readability, structure and
convenience of further development

Testing suite: Availability of the native tests suite, level of logic coverage, checks of
critical areas being covered.

Documentation: Availability and quality of the documentation, coverage of core
functionality and user flows: whitepaper, gitbook, readme, specs, natspec, comments
in the code and other possible forms of documentation.

security@blaize.tech 6

BrainStarter Audit L Blaize.Security

SECURITY RATING CALCULATION

Approximate weight of unresolved issues.

Critical: -3 points

High: -2 points

Medium: -0.5 points

Low: -0.1 points

Informational: -0.1 point (in general, depends on the context)

Note: additional concerns, violated checklist items (including standard vulnerabilities),
and verified backdoors may influence the final mark and weight of certain issues.

Starting with a perfect score of 10:
Critical issues: 3 issues (3 resolved): 0 points deducted

High issues: 1 issue (1 resolved): 0 points deducted. While the issue is verified, it still
raises concerns from auditor’s side regarding the absence of the reliable oracle

Medium issues: 1 issue (1 resolved): 0 points deducted
Low issues: 4 issues (4 resolved): 0 points deducted

Informational issues: 6 issues (6 verified): -0.05 points deducted based on the
concern regarding locked tokens (Info-2)

Best practices: partly resolved, -0.02 points deducted.

Other: -0.2 points deducted for the failed check against the backdoor (upgradeability of
contracts), and centralization risk.

Security rating =10-0.05-0.02-0.2=9.73

security@blaize.tech 7

BrainStarter Audit LJ Blaize.Security

Technical Summary

THE GRAPH OF VULNERABILITIES
DISTRIBUTION:

. Critical . Low
. High . Info
Medium

The table below shows the number of the
detected issues and their severity. A total

of 15 problems were found. 15 issues were
fixed or verified by the Customer’s team.

FOUND FIXED/VERIFIED
Critical 3 3
High 1 1
Medium 1 1
Low 4 4
Info 6 6

Best practices and optimizations

* 4items resolved

* 4items unresolved
Section is marked as unresolved, as half of recommendations are
unaddressed

security@blaize.tech 8

BrainStarter Audit LJ Blaize.Security

SEVERITY DEFINITION

CRITICAL

The system contains several issues ranked as very seriousand

dangerous for users and the secure work of the system. Requires
immediate fixes and a further check.

HIGH

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh cause a huge data or

financial leak. Requires immediate fixes and a further check.

MEDIUM

The system contains issues that may lead to medium financial loss
or users’ private information leak. Requires immediate fixes and a
further check.

LOW

The system contains several risks ranked as relatively small with the
low impact on the users’ information and financial security. Requires
fixes.

INFO

The issue has no impact on the contract’s ability to operate, yet is

relevant for best practices. Or this status can be assigned to the

issues related to the suspicious activity or substandard business
logic decisions which cannot be classified without the comments
from the team (and can be re-classified on the later audit stages).

Issues reviewed by the team can get the next statuses:

Resolved: issue is resolved by an appropriate patch or changes in the business logic
Verified: the team provided sufficient evidences that the issue describes desired behavior
Unresolved: neither path nor comments provided by the team, or they are not sufficient to
resolve the issue

Acknowledged: the team accepts the misbehavior and connected risks

security@blaize.tech 9

BrainStarter Audit L Blaize.Security

Audit Scope

Language/Technology: Solidity
Blockchain: Polygon

The scope of the project includes:

» contracts\Brains.sol

» contracts\BrainsReceiptLocker.sol
+ contracts\BrainsStaking.sol

» contracts\Dopamine.sol
 contracts\llliquidStake.sol
 contracts\LiquidStake.sol

+ contracts\UnlockFeeCalculator.sol

Repository: https://github.com/codefunded/p-brainstarter-contracts

The source code of the smart contract was taken from the branch:
main.

Initial commit:

m a80efe9ael705e31adf46e340c0c6d03ece89002

Final commit:

B ab203b656f996b7ff80f025a41305227d8e5a211

security@blaize.tech 10

https://github.com/codefunded/p-brainstarter-contracts

BrainStarter Audit W Blaize.Security

Protocol overview

DESCRIPTION

Brains.sol:

A token contract implementing ERC20, ERC20Burnable, ERC20Permit, and Ownable
features. It includes a minting mechanism with a yearly limit. Batch transfer functionality
is provided. The contract is upgradable via UUPS.

BrainsReceiptLocker.sol:

Manages the exchange of receipt tokens from various sale phases (pre-sale, strategic,
seed) into actual $BRAINS tokens and stakes them. It integrates with the BrainsStaking
contract for staking operations.

BrainsStaking.sol:

The BrainsStaking contract manages the staking process within the BrainStarter
protocol. It allows users to stake their $BRAINS tokens and receive either liquid or
illiquid stake NFTs based on the staking amount and configured thresholds. Liquid
stakes are represented by ERC721 tokens that are transferable and tradeable. Liquid
stakes are minted when the staking amount exceeds the configured
liguidStakeThreshold. llliquid stakes are represented by non-transferable ERC721
tokens. llliquid stakes are minted when the staking amount does not exceed the
liguidStakeThreshold or the remaining amount after minting liquid stakes is less than
the threshold.

The proportion of liquid to illiquid stakes is determined by the liquidStakeThreshold
parameter. Here’s how it works:

1. Stake Amount Below Threshold:

If the staking amount is less than the liquidStakeThreshold, the entire amount is
converted into an illiquid stake.

security@blaize.tech 11

BrainStarter Audit L7 Blaize.Security

2. Stake Amount Equal to or Above Threshold:

If the staking amount is equal to or greater than the liquidStakeThreshold, the following
steps occur:

The maximum possible number of liquid stakes are minted, each representing an
amount equal to the liquidStakeThreshold. Any remaining amount that is less than the
liguidStakeThreshold is converted into an illiquid stake.

It appears that the BrainsStaking contract itself does not include a reward system.
However, there seems to be a mechanism in place for distributing rewards using the
Dopamine ($DPM) token based on the amounts staked in the BrainsStaking contract. A
script for calculating airdrop was found within the protocol, suggesting that rewards are
distributed later in the form of Dopamine tokens instead of embedding a reward system
directly in the staking contract.

Dopamine.sol:

Another token contract implementing ERC20, ERC20Burnable, and Ownable features,
with additional minting and burning controls. Supports batch transfers. The contract is
upgradeable via UUPS. The owner has the unique capability to burn tokens from any
account without needing approval.

llliquidStake.sol:

An ERC721 contract representing non-transferable stakes in the BrainStarter
ecosystem. Only mintable by managers and serves to lock tokens in a non-transferable
state.

LiquidStake.sol:
An ERC721 contract representing transferable stakes., allowing trading of $BRAINS
stakes within the ecosystem. Manages the minting and burning of these stakes.

UnlockFeeCalculator.sol:

This is a utility library for calculating unlock fees based on the type of lock and the time
elapsed since staking. It handles different fee structures for various lock types, ensuring
proper compliance with staking rules.

security@blaize.tech 12

BrainStarter Audit LZ Blaize.Security

ROLES AND RESPONSIBILITIES

1. Brains.sol

Owner

* Initialize the contract and set key parameters such as the initial supply and yearly mint
limit.

» Mint tokens.

 Authorize upgrades of the contract.

General Users

* Transfer tokens.

 Burn their tokens.

2. BrainsReceiptLocker.sol

Owner

* Initialize the contract with the necessary parameters and addresses.
* Authorize upgrades of the contract.

General Users

» Exchange their receipt tokens for $BRAINS and stake them.

3. BrainsStaking.sol

Owner

* Initialize the contract and set parameters like the staking token and thresholds.
* Authorize upgrades of the contract.

» Withdraw tokens from the contract.

* Set the liquid stake threshold.

Stakers

» Stake their $BRAINS tokens.

» Unstake their tokens (both liquid and illiquid stakes) according to the rules.

* Check their stake information and rewards.

security@blaize.tech 13

BrainStarter Audit L7 Blaize.Security

4. Dopamine.sol

Owner

* Initialize the contract and set the initial owner.
* Mint and burn tokens.

* Authorize upgrades of the contract.

» Execute batch transfers.

General Users

* Transfer tokens.

* Burn their tokens.

5. llliquidStake.sol

Manager

* Mint and burn illiquid stakes (NFTs) for specific addresses.
UPGRADER

« Authorize upgrades of the contract.

Stakers

* Hold non-transferable illiquid stakes.

Default Admin

* Initial role assignment and overall contract management.

6. LiquidStake.sol

Manager

* Mint and burn liquid stakes (NFTSs).

UPGRADER

* Authorize upgrades of the contract.

Stakers

* Hold and transfer liquid stakes.

Default Admin

* Initial role assignment and overall contract management.

security@blaize.tech 14

BrainStarter Audit LZ Blaize.Security

CONFIGURATION AND SETTINGS

1. Initial Supply and Minting Limits

* Contracts: Brains.sol

* Importance:

Initial Supply: Determines the starting amount of $BRAINS tokens in circulation,
impacting the initial market dynamics and token distribution.

Yearly Minting Limits: Caps the number of new tokens minted yearly, preventing
inflation and maintaining token value.

2. Stake Thresholds and Lock Types

« Setting: Minimum amount required for staking and the lock type associated with
stakes (liquid or illiquid).

* Contracts:

BrainsStaking.sol:

The setLiquidStakeThreshold function sets the minimum staking amount for liquid
stakes.

The stakeFor function manages the staking process, including lock types defined in the
UnlockFeeCalculator library.

UnlockFeeCalculator.sol (Library):

Defines the lock types and associated unlock fees.

* Importance:

Stake Thresholds: Ensure that only committed users can participate in staking,
providing stability to the staking pool.

Lock Types: Different lock types offer various levels of liquidity and reward structures.

security@blaize.tech 15

BrainStarter Audit L Blaize.Security

LIST OF VALUABLE ASSETS

1. SBRAINS Token

* Type: ERC20

 Description: In the BrainsReceiptLocker.sol contract, users can exchange their
receipt tokens, which represent entitlements from pre-sale, strategic, and seed sales,
for $BRAINS tokens. This process integrates users into the ecosystem by converting
their initial investments into the primary token. In the BrainsStaking.sol contract,
$BRAINS tokens can be staked in both liquid and illiquid forms.

Location in Protocol:

* BrainsReceiptLocker.sol: Receives $BRAINS tokens in exchange for receipt tokens
from various sales phases.

* BrainsStaking.sol: $BRAINS tokens are staked here, and the contract keeps track of
the staked amounts. Additionally, $BRAINS tokens remain on the contract as unlock
fees during unstake operations when a fee is applicable.

2. Dopamine (DPM) Token

* Type: ERC20

* Description: Another token within the ecosystem, similar in structure to $BRAINS,
with functionalities for minting, burning, and batch transfers.

3. llliquid Stakes

* Type: ERC721 (NFT)

* Description: Non-transferable NFT stakes representing locked $BRAINS tokens.
These stakes are illiquid and cannot be traded, and they are designed to lock tokens for
certain periods or conditions.

security@blaize.tech 16

BrainStarter Audit LJ Blaize.Security

4. Liquid Stakes

* Type: ERC721 (NFT)

» Description: Transferable NFT stakes representing $BRAINS tokens that can be
traded or transferred. They provide liquidity and flexibility within the ecosystem,
allowing users to trade their stakes.

5. Receipt Tokens

* Type: ERC20 (Specific to pre-sale, strategic, and seed sales)

* Description: These tokens represent the entitlement to $BRAINS tokens obtained
through various sale phases. Users exchange these tokens for actual $BRAINS tokens
using the BrainsReceiptLocker contract.

Location in Protocol:
* BrainsReceiptLocker.sol: Holds receipt tokens and handles their exchange for
$BRAINS tokens. It then stakes the $BRAINS tokens on behalf of the user.

Note: Contracts do not support any other assets except those listed above.
Nevertheless, rescue functionality was added to the BrainsReceiptLocker contract.

DEPLOYMENT

1. deployBrains.ts
Description:
* Deploys the Brains token contract using a UUPS proxy.
* Initializes the contract with the deployer address, initial supply, and yearly mint limit
from deploymentConfig.
» Saves the contract’s ABI and address for future reference.

Critical Settings and Considerations:
* Initial Supply and Mint Limits: It’s crucial to set these values accurately during

deployment as they impact the initial token distribution and inflation control.

security@blaize.tech 17

BrainStarter Audit LJ Blaize.Security

2. deployStakeNFTs.ts
Description:
* Deploys the llliquidStake and LiquidStake contracts using UUPS proxies.
* Initializes both contracts with the deployer’s address.
 Saves the contracts’ ABI and address.
Critical Settings and Considerations:
* Role Assignments: Ensure roles like Manager and UPGRADER are properly assigned
to manage staking operations and contract upgrades.

3. deployDopamine.ts

Description:

* Deploys the Dopamine token contract using a UUPS proxy.
« Initializes the contract with the deployer as the initial owner.
* Logs the deployment address.

4. deployStakingAndLocker.ts

Description:

* Deploys the BrainsStaking with references to the Brains, llliquidStake, LiquidStake

» Grants Manager roles to the BrainsStaking for both the llliquidStake and LiquidStake.
* Deploys the BrainsReceiptLocker contract, linking it with the BrainsStaking contract
and token addresses from deploymentConfig.

Critical Settings and Considerations:
« setLiquidStakeThreshold: Set this parameter carefully to control liquidity in the
system. If set to zero, it means all stakes are locked, which affects protocol’s flexibility.

Good Practices in Using Upgrades

* Using upgrades: The upgrades.deployProxy function from the OpenZeppelin Hardhat
Upgrades plugin simplifies the deployment process by handling the proxy setup and
contract initialization. This method provides built-in safety checks and standards
compliance, making it more secure and reliable compared to manual deployment.

* Explicit Role Management: Always ensure that the UPGRADER role is properly
managed. This role is critical for authorizing upgrades, and restricting it to trusted
accounts or governance mechanisms is vital for protocol security.

security@blaize.tech 18

BrainStarter Audit L Blaize.Security

ERC20

BRAINS.SOL

¢ l Y

initialize() mint() upgrade
Check if the yearly mint limit and the
mint period are not exceeded
L N
burn() batchTransfer()

DOPAMINE.SOL

e 4 DY Y

initialize() mint() upgrade batchTransfer()

burnByAdmin(account, amount)

A
{ 3

burn() transfer()

security@blaize.tech 19

BrainStarter Audit
ERC721
ILLIQUIDSTAKE.SOL
A
L M
safeMint(to) burnByld(tokenld)

tokenlid =
getTokenldFromAddress(to)

_safeMint(to, tokenld)

LIQUIDSTAKE.SOL
A
a N
safeMint(to) burnByld(tokenld)

tokenld = _nextTokenld++

_safeMint(to, tokenld)

security@blaize.tech

[Blaize.Security

Default Admin

initialize()

Upgrader

Fl

upgrade

Default Admin

Hl

initialize()

Upgrader

Fl

upgrade

transferFrom()

20

BrainStarter Audit L Blaize.Security

CONTRACTS

BRAINSRECEIPTLOCKER.SOL

!

o exchangeTokensAndStake
initialize() upgrade() (amount, IERC20 token)

| |

Verify the type of receipt token
provided

Set initial parameters including
staking contract address,

underlying token and token
addresses for receipt tokens

Transfer the receipt tokens amount
from the user to the contract

Verify lockType based on type of
transferred receipt token

BrainsStaking.stakeFor
(user, amount, lockType)

BRAINSTAKING.SOL

If the liquid stake threshold is set to 0,
the whole stake will be illiquid.
When the liquid stake threshold is set

to a value greater than 0, the stake will
be split into liquid and illiquid. /L

[[1 1

setLiquidStakeThreshold() upgrade() withdrawTokens(token, amount)

initialize()

|

Set initial parameters including
staking contract address, illiquid

stakes and liquid stakes contracts
addresses

21

security@blaize.tech

BrainStarter Audit L Blaize.Security

CONTRACTS

BRAINSRECEIPTLOCKER.SOL

|

stakeFor(staker, amount, lockType)

|

Transfer staking tokens amount from the user
to the contract and add staker in stakers

Depending on the liquid stake threshold,
mint liquid or illiquid stake NFTs

Update internal records and emit staking event

User

L N

unstakeLiquid(stakelD) unstakellliquid()

Verify ownership and maturity of the stake

Calculate any applicable fees using UnlockFeeCalculator library

Burn the stake NFT and transfer tokens back to the user

security@blaize.tech 22

BrainStarter Audit

CONTRACTS

BRAINSRECEIPTLOCKER.SOL

Allows the user to unstake theirilliquid
stake before it has matured. This
operation will incur a fee that can be
calculated using the
“getllliquidBeforeMaturedUnstakeFee’
function.

User

(

Allows the user to unstake their liquid
stake before it has matured. This
operation will incur a fee that can be
calculated using the

‘getLiquidBeforeMaturedUnstakeFee’

function.

)

unstakellliquidBeforeMaturedWithFee() unstakeLiquidBeforeMaturedWithFee()

—

getllliquidBeforeMatured
UnstakeFee()

Calculate any applicable fees using

UnlockFeeCalculator library

Burn the stake NFT and transfer tokens
back to the user

security@blaize.tech

D

Blaize.Security

getLiquidBeforeMatured

UnstakeFee()

23

BrainStarter Audit L Blaize.Security
INTERACTION FLOW
Underlying token (BRAINS)
Receipt tokens . I
Uk BrainsReceiptLocker Call stakeFor() for User Call safeMint() on liquid

Call getUnlockFeeAmount()

on UnlockFeeCalculator
to get unlock fee

RS il burnByld() on liquid

orilliquid stake

User
Burn ERC721 from User

security@blaize.tech

on BrainsStaking

orilliquid stake

LiquidStake or
llliquidStake (ERC721)
Call unstakellliquid() or
— unstakeLiquid() & User

on BrainsStaking

24

BrainStarter Audit

Complete Analysis

STANDARD CHECKLIST/VULNERABLE AREAS

O 00000000 OOOOOO

©

security@blaize.tech

Storage structure and data modification flow

Access control structure, roles existing in the system

Public interface and restrictions based on the roles system
General Denial Of Service (DOS)

Entropy lllusion (Lack of Randomness)

Order-dependency and time-dependency of operations
Accuracy loss, incorrect math/formulas other violated operations
with numbers

Validation of function parameters, inputs validation

Asset management, funds flow and assets conversions
Signatures replay and multisig schemes security

Asset Security (backdoors connected to underlying assets)
Incorrect minting, initial supply or other conditions for assets issuance
Global settings mis-using, incorrect default values

Violated communication between components/modules, broken
co-dependencies

3rd party dependencies, used libraries and packages structure
Single point of failure

Centralization risk

General code structure checks and correspondence to best practices

Language-specific checks

Pass

Pass

Pass

Pass

N/A

Pass

Pass

Pass

Pass

N/A

Fail

Pass

Pass

N/A

N/A

Pass

Fail

Pass

Pass

Blaize.Security

25

BrainStarter Audit W Blaize.Security

DISCOVERED ISSUES

[‘AL-1 (@) Resolved]

THE PREVIOUS STAKE AMOUNT MIGHT BE OVERWRITTEN.

BrainsStaking.sol: stakeFor(), lines 213-215.

In case liquidStakeThreshold equals 0, a special case in the code is invoked
during the staking of tokens where an internal function
_mintOrSetllliquidStakeData() is executed, passing the passed parameter
"_amount.” The function _mintOrSetllliquidStakeData() is supposed to store the
total staked amount of tokens staked as illiquid stakes. However, the passed
amount won’t be added to the value in ‘s.illiquidStakeldTolnfo[_staker].amount’
but will overwrite it. As a result, users might lose their previous stakes if
liguidStakeThreshold equals 0.

This issue is marked as Critical because the incorrect handling of staking
amounts when liquidStakeThreshold equals 0 can result in users losing their
previously staked tokens. Overwriting the stake amount instead of accumulating
it could lead to a significant loss of staked tokens, impacting the users’ balances
and trust in the system.

RECOMMENDATION:

Pass 's.illiquidStakeldTolnfo[_staker].amount + _amount when calling
_mintOrSetllliquidStakeData() for case when liquidStakeThreshold equals to 0.

POST-AUDIT.

Resolved with the code proposed in the recommendation.

security@blaize.tech 26

BrainStarter Audit L Blaize.Security

{-\L-z @ Resolved]

LOSS OF ILLIQUID STAKES IS POSSIBLE.

BrainsStaking.sol: stakeFor(), lines 213-215.

BrainsStaking.sol: stakeFor(), lines 227-228.

When a user stakes tokens, part of them can become liquid and part of them
illiquid. This ratio is defined by the parameter liquidStakeThreshold. One of the
conditions in the function covers cases where tokens are divided into liquid and
illiquid, and the user already has illiquid tokens stored in
's.illiquidStakeldTolnfo[_staker].amount.’

The new amount is calculated as ‘'newTotalAmount =
existingllliquidStakeAmount + remainingAmountToAddToStake.’

If newTotalAmount' is greater than liquidStakeThreshold, the function increases
the number of liquid NFT tokens to mint by 1, and the remainder
‘newTotalAmount % s.liquidStakeThreshold' is written in the
‘s.illiquidStakeldTolnfo[_staker].amount'.

However, in case s.liquidStakeThreshold was changed between the user’s
previous stakes and current stake, adding only 1 token to the number of liquid
NFT tokens might not be enough. As a result, the user will lose his tokens
because they were subtracted from 's.illiquidStakeldTolnfo[_staker].amount,
and a sufficient number of liquid tokens weren’t minted.

security@blaize.tech 27

BrainStarter Audit L Blaize.Security

Consider the following example:
s.illiquidStakeldTolnfo[_staker].amount = 60.
liguidStakeThreshold was changed from 100 to 50, thus = 50.
1. The user stakes 140 tokens.
2. 'howManyLiquidStakesToMint = 140/ 50 = 2.
3. ‘'newTotalAmount = 60 + 40 = 100.
4. 's.illiquidStakeldTolnfo[_staker].amount = 100 % 50 = 0.
As aresult, the user's illiquid balance is equal to 0. However, only 1 liquid token
was added, whereas he should have received 2 liquid tokens.

This issue is marked as Critical because changes in the liquidStakeThreshold
parameter between staking operations can lead to an incorrect calculation of
liquid and illiquid token balances. If the threshold changes, the logic for
converting illiquid stakes to liquid tokens may not account for the new threshold
correctly, causing users to lose tokens. This can result in discrepancies in token
balances, undermining the integrity and reliability of the staking mechanism.

RECOMMENDATION:

Take into account possible changes of liquidStakeThreshold and recalculate the
number of liquid tokens to stake in cases where 'newTotalAmount’ is greater
than liquidStakeThreshold. For example, instead of
howManyLiquidStakesToMint++

the code can look like

howManyLiquidStakesToMint += newTotalAmount / s.liquidStakeThreshold.

POST-AUDIT.

Resolved with the code proposed in the recommendation.

security@blaize.tech 28

BrainStarter Audit L Blaize.Security

[L-3 @ Resolved]

LACKOF INFORMATION REMOVAL AFTER UNSTAKING.

BrainsStaking.sol: _unstakeLiquid(), _unstakellliquid().

The BrainsStaking contract does not appear to remove information about
withdrawn stakes in the _unstakeLiquid() and _unstakellliquid() functions.
Specifically, the amount in s.illiquidStakeldTolnfo[_staker].amount and in
s.liquidStakeldTolnfo[liquidStakeldsl[i]].amount is not cleared after an illiquid
stake is withdrawn. This oversight could allow multiple withdrawals of the same
stake.

This issue is marked as Critical because the potential for multiple withdrawals
can lead to significant financial losses and exploitation of the staking system.

RECOMMENDATION:

Implement logic to remove or clear stake information after the stake has been
successfully withdrawn to ensure accurate tracking of staked tokens and
prevent multiple withdrawals.

POST-AUDIT.

Information removal now exists for both liquid and illiquid stakes.

security@blaize.tech 29

BrainStarter Audit L Blaize.Security

[_ (©) Resolved]

POTENTIAL BYPASS OF COMMISSION SYSTEM.

BrainsStaking.sol.
The issue arises when a user takes the following steps:

1. The user stakes tokens via BrainsReceiptLocker with a lock type that requires
a time-based lock period and associated fees. The staked amount in this case is
less than the liquidStakeThreshold.

2. The user then stakes additional tokens directly via BrainsStaking using the
Public lock type, which does not have any lock period or fees. The staked
amount, in this case, is also less than the liquidStakeThreshold.

3. The user then can unstakes all their tokens via unstakellliquid(). Due to the
mechanics of the BrainsStaking contract, the user can withdraw both the original
locked stake and the newly staked tokens without incurring any fees, effectively
bypassing the commission system.

Note: This issue is marked as high severity because it presents a significant risk
to the integrity of the commission system. While it doesn’t directly compromise

the security of the contract (which would warrant a critical classification), it does
allow users to exploit the system and avoid paying fees.

RECOMMENDATION:

Implement checks and restrictions to prevent this bypass strategy.

POST-AUDIT.

The necessary checks have been added to the function.

security@blaize.tech {0)

BrainStarter Audit L Blaize.Security

MEDIUM-1 () Resolved
UNFINISHED TODO AND VERIFICATION OF FEE WITHDRAWAL LOGIC.

BrainsStaking.sol: withdrawTokens(), _unstakellliquid(), _unstakeLiquid().

The owner’s withdraw function contains a TODO comment (line 308) regarding
the restriction of withdrawing staking tokens, but this restriction has not been
implemented. Also, it is unclear how the unlock fees, subtracted during unstake
operations (lines 369, 399), will be withdrawn if such a restriction is applied.
Unfinished Implementation: Leaving TODO comments without implementation
can lead to incomplete functionalities and unexpected behavior.

Ambiguity in Fee Management: The current implementation does not clarify how
the unlock fees, subtracted during unstake operations, will be managed and
withdrawn from the contract if the staking token withdrawal is restricted.

This issue is marked as Medium because commissions could potentially get
stuck in the contract if a restriction is added. If there is no restriction, then the
admin will have to calculate how much commissions he can withdraw.

RECOMMENDATION:

1. Verify Fee System: Confirm how the fee system is intended to work, especially
in relation to the management and withdrawal of unlock fees.

2. Clarify Restriction Intent: Provide clarification on the intended restriction for
withdrawing staking tokens. Explain why the restriction has not been
implemented yet and whether it will be implemented in the future.

3. Update Documentation: Ensure that the documentation clearly outlines the
process for managing and withdrawing unlock fees, including any restrictions.
E.g.: add the variable to track currently accumulated fees (unlockFee amounts
deducted from unstakes), and withdraw fees in case the variable is not O.

POST-AUDIT.

The Customer’s team verified the implemented logic. The logic tracks how many
tokens are stored in the contract as fees, and the contract allows the admin to
withdraw only the collected fees, not tokens staked by users. For any other
token, there are no restrictions on withdrawing (intended to be used as arescue

token function by admins).
security@blaize.tech 31

BrainStarter Audit L Blaize.Security

[ov O venes

VERIFICATION OF TOKEN PRESENCE IN THE CONTRACT.

BrainsReceiptLocker.sol: exchangeTokensAndStake().

The exchangeTokensAndStake function in the BrainsReceiptLocker contract
allows users to exchange their receipt tokens for $BRAINS tokens and stake
them immediately. However, the function does not mint $BRAINS tokens;
instead, it approves the underlying tokens for the BrainsStaking contract. The
assumption is that the underlying tokens will be transferred to BrainsStaking,
where the actual staking occurs. The BrainsStaking contract then transfers the
staking tokens from the sender, which in this case is BrainsReceiptLocker.
This chain of operations implies that the underlying tokens must already be
present in the BrainsReceiptLocker contract before the function is called. The
absence of verification steps or documentation regarding this requirement can
lead to potential issues if the tokens are not present, resulting in failed
transactions or unexpected behavior.

RECOMMENDATION:

1. Verify Token Presence: Add explicit verification steps to ensure the underlying
tokens are present in the contract before proceeding with staking.

2. Add Documentation: Document the requirement for tokens to be present in
the BrainsReceiptLocker contract before it starts functioning, so developers are
aware of this prerequisite.

POST-AUDIT:

The Customer’s team verified the logic and added a comment to the
BrainsReceiptLocker that an admin has to initially send the tokens into that
contract.

security@blaize.tech 32

BrainStarter Audit L Blaize.Security

LOW-2 () Resolved]

CONFUSING STAKE ID LOGIC.

BrainsStaking.sol: _mintLiquidStakes().

In the _mintLiquidStakes() function, the s.illiquidStakeldTolnfo[_staker].stakeld
is set to the ID of the last liquid stake minted for the user. This could be confusing
since users can withdraw both liquid and illiquid tokens, leading to unclear logic
for dApp integration.

RECOMMENDATION:
Simplify or clarify the logic in _mintLiquidStakes() by ensuring that

s.illiquidStakeldTolnfo[_staker].stakeld is used consistently and does not mix
liquid and illiquid stake IDs.

POST-AUDIT:

The assignment of stakeld was corrected for liquid stakes minting, as this was a
typo.

security@blaize.tech 33

BrainStarter Audit L Blaize.Security

[ovs O rotes

UNNECESSARY MINTING OF ILLIQUID STAKE.

BrainsStaking.sol: stakeFor().

In the stakeFor() function, an illiquid stake is minted even when the user only
intends to stake liquid tokens. This occurs regardless of whether the
remainingAmountToAddToStake is zero, leading to the creation of an
unnecessary illiquid stake. While this does not critically impact the staking
functionality, it can create confusion for users, especially when interacting with
getters and dApps that differentiate between liquid and illiquid stakes.

RECOMMENDATION:

Adjust the logic to avoid minting an illiquid stake when the
remainingAmountToAddToStake is zero. This will prevent unnecessary token
minting and reduce potential confusion for users and developers working with
the staking contract.

POST-AUDIT:

The project team added a check if remainingAmountToAddToStake
is equal to 0, to short circuit to minting liquid stakes and skip locked
(illiquid) stake logic.

security@blaize.tech 34

BrainStarter Audit L Blaize.Security

LOW-4 @ Resolved J

INCORRECT STAKER LIST MANAGEMENT ON LIQUID STAKE TRANSFER.

BrainsStaking.sol: stakeFor().

When a user stakes tokens and is added to the stakers list, they remain on this
list even if they transfer their liquid stake to another user. If the new owner of the
stake later unstakes the tokens, the original staker is not removed from the
stakers list. This could cause confusion and potential issues, such as incorrect
tracking of active stakers.

Note: The issue is marked as low severity because it does not directly impact the
core functionality or security of the staking process. The primary risk is related to
inaccurate tracking of the stakers list, which could lead to minor confusion or
inefficiencies in off-chain or on-chain systems that rely on this list.

RECOMMENDATION:

Ensure that when a liquid stake is transferred and then unstaked by the new
owner, the original staker is appropriately removed from the stakers list if they no
longer hold any stakes.

POST-AUDIT:

The client’s team has successfully implemented the recommended
changes. The staker list management logic has been corrected and moved
from BrainsStaking.sol to the appropriate LiquidStake.sol and
LockedStake.sol contracts.

security@blaize.tech 35

BrainStarter Audit L Blaize.Security

[ror O vewes_|

ADMIN CAN BURN TOKENS FROM ANY USER WITHOUT APPROVAL.

Dopamine.sol, LiquidStake.sol, llliquidStake.sol.

The current implementation allows the admin (designated role for NFTs) to burn
tokens and NFTs from any user without requiring approval from the user. This
functionality provides the admin with significant control over the tokens, which
could be used to enforce certain policies or penalties but also poses a risk of
misuse. The ability to burn tokens without user approval can be seen as a
centralization risk, as it gives the admin significant power over user assets.

The issue is marked as Info, as while it violates the user’s balances, it can be part of
the planned business logic (especially if the token is planned as pure utility).
However, the issue may be reclassified if the token is used as an exchangeable
value.

RECOMMENDATION:

Verify the intended functionality and provide clear documentation on the
rationale behind this design decision. Implement safeguards or checks to
prevent potential misuse of this capability.

POST-AUDIT:

The Customer verified that tokens are not supposed to be financial assets but
purely internal utility assets.

security@blaize.tech 36

BrainStarter Audit L7 Blaize.Security

= O vetes)

UPGRADABLE CONTRACT AND POTENTIAL TOKEN WITHDRAWAL.

The BrainsReceiptLocker contract, which is responsible for locking a significant
amount of tokens, currently lacks a function to withdraw receipt tokens. Given that
the contract is upgradeable, there is a potential risk that an admin could update the
contract to add a withdrawal function and subsequently withdraw the locked
tokens.

RECOMMENDATION:

Confirm whether the tokens are intended to be locked permanently or if there
should be a mechanism to withdraw them in the future. If maintaining
upgradeability is necessary, implement safeguards to prevent unauthorized
withdrawals. One approach could be to transfer tokens to a zero address if they
are meant to be locked permanently.

POST-AUDIT:

The Customer verified that it is an intended logic, as the team will operate this
contract in further development stages. However the security team still leaves
the concern about clarity of the logic (clear marking that assets may be operated
lately) and about the upgradeability of the contract in general.

security@blaize.tech 37

BrainStarter Audit L Blaize.Security

I O vewes_|

NO RESTRICTIONS ON THE TOKEN BURNING.

Dopamine.sol, Brains.sol
The contracts inherit the default ERC20Burnable interface, which contains public
burn() and burnFrom() functions.
While it is a regular functionality that allows users to burn tokens from their
accounts, it still possesses several risks to the tokens economy:
« intentional decreasing of the supply by malicious actors
» secondary threats from the protocols holding the token - in case of their exploit
» secondary threats from burning of tokens via “dangling approves.”

The issue is marked as Info—while such functionality creates certain risks, it is a
regular token extension. However, the security team requires additional verification
from the Customer about the awareness of existing risks connected to this
business logic decision.

RECOMMENDATION:

Verify the protocol's unrestricted burn() functionality is desired and potential
risks are acknowledged.

POST-AUDIT:

The Customer’s team verified that they are aware of potential risks and find them
acceptable. They confirmed that tokens burning is not financially feasible. Even if
someone tries to buy as many tokens as possible and burn them, Tokenomics
won't suffer.

security@blaize.tech 38

BrainStarter Audit L Blaize.Security

= O vewes_|

UNRESTRICTED TOKEN MINTING.

Dopamine.sol.
The token implements the mint() interface controlled by the owner.
However, there are no restrictions on the minting process:
» the owner can mint any amount of tokens, at any moment in time, for any user
« there are no restrictions on the total supply of the token; thus, it can grow to any
value

While the flexible supply and controlled minting are regular models, the absence of
control measures creates several risks:
 centralization risk, as the Owner has unrestricted access to the token’s supply
» secondary risks for the token economy in case of uncontrolled emission
* human factor risk - tokens can be minted to unvalidated addresses.

The issue is marked as Info—while such functionality creates certain risks, it is a
regular token extension. However, the security team requires additional verification
from the Customer about the awareness of existing risks connected to this
business logic decision.

security@blaize.tech 39

BrainStarter Audit L Blaize.Security

RECOMMENDATION:

1) Verify that the protocol's unrestricted minting functionality is desired and
potential risks are acknowledged - risks of minting to wrong addresses, risks of
minting incorrect amounts, risk of increasing the inflation speed, risk of causing
price volatility after certain amounts minting, etc.

2) Provide the sanitizing measures for the minting process: validation of the
Owner’s assigned, validation of minted token receivers, validation of the minting
schedule, control over the emission rate, and supply growth speed.

3) The better way is to encode restrictions into the smart contract: limits on one-
time minting, supply cap or restrictions on the emission rate, and restrictions on
the receiving addresses. Though the auditors recognize that it will require token
re-deployment, these recommendations are targeted at the Customer’s
awareness of potential risks.

POST-AUDIT.

The Customer verified that this is a desired behavior, as admin is supposed to
arbitrarily mint or burn dopamine from any wallet. Dopamine is not a financial
asset, it's just a marker that will be used in off chain computation. It was a
business requirement to make it an erc20 token so it can be transparently
tracked on chain.

security@blaize.tech 40

BrainStarter Audit L Blaize.Security

o O vewes_|

FUNCTION PARAMETER MISUSE RISK.

BrainsStaking.sol, BrainsReceiptLocker.sol.

In the stakeFor() function, the description for the _lockType parameter suggests
that users should use the Public type since it has no lock period or fees, and other
types will be handled through BrainsReceiptLocker. However, a user might
mistakenly specify a different type. Additionally, the purpose of the Founder type is
unclear if users can simply use Public.

The issue is marked as Info, as while regular users will not benefit from choosing
another option, the tokensale participants may have such an option. However,
since the presale contract and logic are out of the scope of the audit, auditors
require comments from the project’s team. Thus, verification is required so that
tokensale participants will not be able to use the contract directly - otherwise, the
criticality of the issue will be increased.

RECOMMENDATION:

It is recommended to add the following checks:
1. Users directly calling the staking function can only specify Public.
2. BrainsReceiptLocker can only specify PreSale, StrategicOrPrivate, or Seed.
3. Ensure that founders can only stake with the Founder type (e.g., maintain a
list of founders on the contract and enforce that users in this list must use the
Founder type).

POST-AUDIT:

The Customer acknowledged potential risks and verified that users will only use
these contracts through a frontend hosted by the team. If someone tries to use
contracts directly through the blockchain, they do so on their own responsibility.

security@blaize.tech 41

BrainStarter Audit L Blaize.Security

I O vewes_|

ABSENT URI ADDRESS FOR NFTS.

LiquidStake.sol, llliquidStake.sol

Both NFTs implement the default ERC721 functionality inherited from the
OpenZeppelin. However, the default implementation expects the overload of the
_baseUri() and/or tokenUri() methods, as by default, the NFTs uri is empty and
contains only NFT id.

Since both liquid and illiquid NFTs have consequent IDs starting from 0, they
cannot be distinguished without URIs, thus there is no place for metadata.

However, auditors recognize that these are utility NFTs and may not require the
metadata features. Though it will be a substandard behavior, it requires
confirmation from the team.

RECOMMENDATION:

Verify that liquid and illiquid utility NFTs require no metadata features so the URI
can be empty or consist of only the token ID. Or override _baseUri()/tokenUri()
methods and set the URI during the initialization.

POST-AUDIT:

The Customer’s team verified that since NFTs are meant to serve for utility
purposes only, there is no need for metadata.

security@blaize.tech 42

BrainStarter Audit L Blaize.Security

L . o oo

BEST PRACTICES AND CODE STYLE VIOLATIONS, OPTIMIZATIONS

1) Inconsistent Use of Require-Revert and If-Revert Patterns.

The protocol employs different styles for error handling: some contracts use
require statements with an error instead of string messages for validation, while
others use if statements followed by a reverting call. Although both approaches
are valid and can be used, this inconsistency can lead to confusion and make
the codebase harder to read and maintain.

Adopt a single style for error handling across the entire codebase.

2) Redundant Public Burn Function.

Brains.sol.

The contract defines a burn function that triggers the internal _burn() to remove
tokens from the sender’s balance. However, this function is redundant because
the contract inherits from ERC20Burnable, which already provides a public burn
function. Having redundant functions increases the code size unnecessarily.

Remove the redundant burn function from the contract, as ERC20Burnable
already provides the functionality.

3) Redundant imports.

UnlockFeeCalculator.sol.

The contract includes an import statement for hardhat/console.sol, which is
used for testing and debugging purposes. This import should be removed before
deploying the contract to the mainnet to ensure the production code is clean and
free from unnecessary dependencies.

security@blaize.tech 43

BrainStarter Audit L Blaize.Security

4) Use of Magic Numbers.

UnlockFeeCalculator.sol: getUnlockFeeAmount().

The function uses several magic numbers without explanations or descriptive
variable names. Magic numbers can make the code difficult to read, understand,
and maintain, as the purpose of these numbers is not immediately clear.

Replace magic numbers with named constants or variables, and provide
explanations or comments to clarify their purpose.

5) Missing Events for State Changes

BrainsStaking.sol: setLiquidStakeThreshold();

BrainsReceiptLocker.sol: exchangeTokensAndStake()

Certain state-changing functions in the contract do not emit events to log the
changes. Events are crucial for tracking state changes on the blockchain,
providing transparency, and allowing off-chain applications to respond to these
changes.

Note: While the stakeFor function includes events that track staking, these
events do not indicate that the staking occurred as a result of a token exchange
from the exchangeTokensAndStake function. That’s why
exchangeTokensAndStake needs additional events.

Add events to log state changes.

6) Lack of Validation.

6.1) Brains.sol: initialize().

In the initialize function, the _yearlyMintLimit parameter is assigned to the main
storage without any validation. This could potentially lead to an incorrect or
undesirable mint limit being set, which might impact the functionality and
security of the contract.

Add appropriate validation checks for _yearlyMintLimit during the initialization

process. This could include checks to ensure the value is within a reasonable
range or meets certain criteria.

security@blaize.tech 44

BrainStarter Audit L Blaize.Security

6.2) llliquidStake.sol, LiquidStake.sol: initialize().
The initialize function grants the DEFAULT_ADMIN_ROLE to the provided
defaultAdmin address without any validation.

Implement validation checks for the defaultAdmin address in the initialize
function to ensure it is not a zero address.

6.3) BrainsStaking.sol: setLiquidStakeThreshold().
The setLiquidStakeThreshold() function lacks validation for the _threshold
parameter.

Adding validation checks will ensure that the parameter meets the expected
criteria and prevent potential issues from invalid values.

7) Optimization Opportunity.

BrainsStaking.sol: getUserTotalStakedAmount().

The function retrieves the tokenld variable within a loop inside the getter
function. If this getter is called by other contracts, it would be more gas-efficient
to move the tokenld variable declaration outside of the loop. This optimization
reduces gas usage and enhances performance when the function is called
multiple times, particularly by other contracts.

8) Inconsistent Return Values in Getter Functions.

BrainsStaking.sol: getllliquidStakelnfo(), getLiquidStakelnfo().

The functions have different return values, leading to inconsistencies in how
stake information is retrieved. The first getter does not return stakeType and
lockType, while the second getter includes these fields. Additionally, the second
getter does not handle cases where the amount is zero or returns an ‘exists’ flag
like the first getter. This inconsistency can lead to confusion and inefficient use of
the functions.

security@blaize.tech 45

BrainStarter Audit L Blaize.Security

Considering modifying the getllliquidStakelnfo() function to also return
stakeType and lockType for consistency with getLiquidStakelnfo() and adjust
the getLiquidStakelnfo() function to return an exists flag and handle cases where
the amount is zero by returning all zero values, similar to how
getllliquidStakelnfo() handles it.

RECOMMENDATION:

Consider correcting all listed issues to increase code readability and logic
optimization.

POST-AUDIT:

Fixed Issues:

1. Redundant Burn Function: Removed in Brains.sol.

2. Redundant Imports: Cleaned up in UnlockFeeCalculator.sol.

3. Missing Events: Added in BrainsStaking.sol and BrainsReceiptLocker.sol.
4. Inconsistent Return Values: Standardized in BrainsStaking.sol.
Unresolved Issues:

Inconsistent Error Handling, Lack of Validation, Optimization Opportunity.
Magic Numbers: UnlockFeeCalculator.sol still uses the magic number 100;
wasn’t replaced with a named constant.

security@blaize.tech 46

BrainStarter Audit

CODE COVERAGE AND TEST RESULTS FORALL FILES, PREPARED
BY BLAIZE SECURITY TEAM

Brains

A

<

) N N N N N N N NN

Deployment

Should init correctly (305ms)

Upgrading

Should upgrade the contract

Should upgrade the contract only by owner

Operations

Should allow everyone to burn tokens

Should allow batch transfer

Shouldn't allow batch transfer with invalid arrays length
Should only allow the owner to mint tokens

Should not allow minting after 5 years since deployment
Should not allow minting more than the yearly limit
Should allow minting up to the yearly limit

Should allow minting next year after the first year's limit is reached

Should not allow minting more than the yearly limit

BrainsReceiptLocker

v/

security@blaize.tech

Exchange and stake

Should exchange tokens and stake (93ms)

Blaize.Security

47

BrainStarter Audit L7 Blaize.Security

BrainsStaking

llliquid stakes

Should allow to stake tokens (for other address)

Should allow to unstake tokens staked in illiquid type stake
Shouldn't allow to burn and mint illiquid stakes by everyone
Shouldn't allow to transfer illiquid stakes

Should allow to burnilliquid stakes by manager

C (XS

Should not allow to unstake tokens staked inilliquid type stake when invested in
StrategicOrPrivate round because of months difference

A

Should not allow to unstake tokens staked in illiquid type stake when invested in
Seed round because of months difference

v/ Should not allow to unstake tokens staked in illiquid type stake when invested in
Founder round because of months difference

v/ Should only allow to unstake tokens with fee when staked in illiquid type stake
and invested in 1 round (44ms)

Liquid stakes

<

Should allow to burn liquid stakes by manager

v/ Should not allow to unstake tokens staked in liquid type stake because of
months difference

A

Shouldnt allow to mint and burn liquid tokens by everyone

<

If staked more than threshold, should create illiquid stake with the remainder

v Should update the illiquid stake if staked less than threshold and adds a new
stake still below threshold

v/ When user already has existing illiquid stake and now stakes more than
threshold, should create new liquid stakes and should keep the illiquid stake if
there is remainder (41ms)

v/ Should allow to stake tokens when liquid threshold is set

security@blaize.tech 48

BrainStarter Audit L7 Blaize.Security

v/ When user already has existing illiquid stake and now stakes more than
threshold, should create new liquid stakes and burn the illiquid stake if there is
no remainder (52ms)

v/ Should allow to unstake liquid before matured with fee

Operations
v/ Should withdraw different tokens from staking by owner (38ms)
Scenarios
v Unstake flow (90ms)
v/ Shouldn't mintilliquid stake by default (53ms)
v/ Staking with threshold changes to bigger value (71ms)
v/ Staking with threshold changes to smaller value (liquid) (65ms)
v/ Staking with threshold changes to smaller value (illiquid) (60ms)
v/ Lock type staking check (illiquid, threshold 0)
v/ Lock type staking check (liquid) (60ms)
v/ Flow with 3 users (82ms)
Dopamine
Deployment
v/ Should init correctly

Operations

Should allow everyone to burn tokens

Should allow owner burn tokens for everyone by burnByAdmin
Should allow batch transfer

Shouldn't allow batch transfer with invalid arrays length

Should only allow the owner to mint tokens

AN N NN

Should only allow the owner to transfer tokens

security@blaize.tech 49

BrainStarter Audit L7 Blaize.Security

UnlockFeeCalculator

Seed

N

Should not allow to withdraw at all for first 12 months

<

Should allow to withdraw after 12 months with a fee (57ms)
/" Should allow to withdraw after 25 months without the fee

Strategic/Private

N

Should not allow to withdraw at all for first 12 months

A

Should allow to withdraw after 12 months but with a fee

N

Should allow to withdraw after 25 months without the fee

Founder

A

Should not allow to withdraw for first 24 months
PreSale

Should allow to withdraw after 1 months with 85% fee
Should allow to withdraw after 2 months with 85% fee
Should allow to withdraw after 3 months with 80% fee
Should allow to withdraw after 5 months with 80% fee
Should allow to withdraw after 6 months with 75% fee
Should allow to withdraw after 8 months with 75% fee
Should allow to withdraw after 9 months with 70% fee
Should allow to withdraw after 11 months with 70% fee
Should allow to withdraw after 12 months with 65% fee

Should allow to withdraw after 13 months with 60% fee

NN N NN VU N U N N

Should allow to withdraw after 14 months with 55% fee

security@blaize.tech 50

Rampstater Audit

C QS S7 Q0 OO <

security@blaize.tech

Should allow to withdraw after 15 months with 50% fee
Should allow to withdraw after 16 months with 45% fee
Should allow to withdraw after 17 months with 40% fee
Should allow to withdraw after 18 months with 35% fee
Should allow to withdraw after 19 months with 30% fee
Should allow to withdraw after 20 months with 25% fee
Should allow to withdraw after 21 months with 20% fee
Should allow to withdraw after 22 months with 15% fee
Should allow to withdraw after 23 months with 10% fee
Should allow to withdraw after 24 months with 5% fee
Should allow to withdraw after 25 months with 0% fee
Should allow to withdraw but with a fee

Should allow to withdraw without a fee when matured

U Blaize.Security

51

BrainStarter Audit W Blaize.Security

RESULTING COVERAGE

FILE % STMTS % BRANCH % FUNCS
Brains.sol 100 91.67 100
BrainsReceiptLocker.sol 100 78.57 80
BrainsStaking.sol 98.81 92.5 96.15
Dopamine.sol 100 83.33 85.71
LiguidStake.sol 85.71 62.5 62.5
LockedStake.sol 87.5 70 66.67
UnlockFeeCalculator.sol 95.83 95.45 100

NATIVE TESTS OVERVIEW

The BrainStarter team supplied native tests for the audited contracts. While tests have good
quality, the test coverage is partial with some contracts on 85%+ or even 63%+, leaving
certain areas of the provided contracts uncovered. It is highly recommended to support the
test coverage on 90%+ level, aiming the industry standard of 95%. It is also recommended
to have not only unit tests, but main scenarios and edge-cases as well.

security@blaize.tech 52

BrainStarter Audit L Blaize.Security

Disclaimer

The information presented in this report is an intellectual property of the
customer, including all the presented documentation, code databases, labels,
titles, ways of usage, as well as the information about potential vulnerabilities
and methods of their exploitation. This audit report does not give any warranties
on the absolute security of the code. Blaize.Security is not responsible for how
you use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working product will be
compatible with any software, system, protocol or service and operate without
interruption. We do not claim the investigated product is able to meet your or
anyone else’s requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and relocations of
the code within the contracts that are the subjects of this report.

You should perceive Blaize.Security as a tool, which helps to investigate and

detect the weaknesses and vulnerable parts that may accelerate the technology
improvements and faster error elimination.

security@blaize.tech 53

