Борелівська сигма-алгебра
Борелівська сигма-алгебра — це мінімальна сигма-алгебра, така, що містить всі відкриті підмножини топологічного простору (відповідно, вона містить і всі замкнуті). Елементи даної сигма-алгебри називаються борелівськими множинами.
Якщо не обумовлене протилежне, як топологічний простір виступає множина дійсних чисел.
Борелівська сигма-алгебра зазвичай виступає в ролі сигма-алгебри випадкових подій ймовірнісного простору.
У борелівській сигма-алгебрі на прямій або на відрізку міститься велика кількість «простих» множин: всі інтервали, напівінтервали, відрізки і їх злічені об'єднання. Алгебра була названа на честь Бореля.
- Функція Бореля — відображення одного топологічного простору в інший (зазвичай обидва є просторами дійсних чисел, для якого прообраз будь-якої борелівської множини є борелівська множина).
- Всяка борелівська множина на відрізку є вимірною щодо міри Лебега, але зворотне невірно.
Розглянемо функцію на відрізку , де — функція Кантора. Міра образу множини Кантора рівна , а значить, міра образу її доповнення також рівна . Функція монотонна, значить, вона вимірна і існує обернена до неї функція. Оскільки міра образу канторової множини ненульова, в ній можна знайти невимірну множину . Тоді образ при відображенні буде вимірним (оскільки він лежить в канторовій множині, міра якої нульова), але не буде борелівською (оскільки інакше була б вимірною як прообраз борелівської множини при вимірному відображенні).
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — 4-е изд. — Москва : Наука, 1976. — 544 с. — ISBN 5-9221-0266-4.(рос.)