
Day 4: Polar Bear Transform Contest
49th Petrozavodsk Programming Camp, Summer 2025, Saturday, August 23, 2025

Problem A. Two Spanning Trees
For two sets of edges A and B we denote their difference by A \ B and symmetric difference by A ⊕ B.
We identify corresponding edges in the graphs.

1. Find any spanning tree T of the first graph. T forms a spanning tree in the second graph; otherwise,
it is an answer.

2. Reformulate the problem as follows: we are required to find a cycle C in the second graph, such
that C forms a forest in the first graph (necessity is evident; for sufficiency, one needs to extend C
to the spanning tree of the first graph).

3. Let e be an edge that does not belong to T . Denote s1(e) to be such a subset of T that {e} ∪ s1(e)
is a cycle in the first graph (the so called fundamental cycle of e). Define s2(e) analogously for the
second graph. Note that s1(e) ⊆ s2(e); otherwise, {e} ∪ s2(e) is the answer.

4. Let E be a set of edges that do not belong to T . Define Cyc1(E) := E ∪
⊕
e∈E

s1(e). It is a cycle or

a union of cycles. Define Cyc2(E) analogously. Reformulate the problem as follows: we are required
to find such a set E of the edges that do not belong to T , that Cyc2(E) forms a forest in the first
graph.

5. Let E be an answer. Let’s write e ∼ e′ in case s1(e) ∩ s1(e
′) ̸= ∅; let’s write e ≈ e′, if there exist

e1, . . . , eN ∈ E such that e ∼ e1 ∼ · · · ∼ eN ∼ e′. Partition E = E1 ⊔ . . . ⊔ Ek according to
the equivalence ≈. E is an answer; therefore, Cyc2(E) doesn’t contain cycles in the first graph; in
particular, Cyc1(E1) ⊈ Cyc2(E). Now express

Cyc2(E) = Cyc1(E1)⊕

⊕
e∈E1

s2(e) \ s1(e)

⊕

 ⊕
e∈E\E1

s2(e)

 .

So there exists either an edge e ∈ E1, such that (s2(e)\s1(e))∩Cyc1(E) ̸= ∅, or an edge e ∈ E \E1,
such that s2(e) ∩ Cyc1(E) ̸= ∅. In both cases, (s2(e) \ s1(e)) ∩ Cyc1(E) ̸= ∅.

6. Let’s build a graph G with the vertex set being those edges of the two given graphs that don’t
belong to T . Draw an undirected edge in G between e and e′ iff e ∼ e′. Draw a directed edge e → e′,
iff (s2(e) \ s1(e)) ∩ s1(e

′) ̸= ∅. Let E be an answer — a subset of G’s vertices. The partition of
E according to the equivalence ≈ is just the partition of the induced graph on E into connected
components. By the previous clause, each connected component has at least one incoming directed
edge.

Therefore, the graph induced on E contains a cycle (a walk that can pass an undirected edge two
ways, a directed edge one way, and passes through at least one directed edge).

7. Let’s find the shortest cycle C in G. Next, we prove that C is an answer (that is, Cyc2(C) forms a
forest in the first graph).

8. Suppose that there are two edges of the form e1 − e2 and e1 → e2 in G. Then simple
casework shows that {e1} ∪ {e2} is an answer (we just need to check that neither of
Cyc1({e1}),Cyc1({e2}),Cyc1({e1, e2}) could be a subset of Cyc2({e1, e2})).

9. Suppose that there are two edges of the form e1 → e2 and e2 → e1 in G. Analogously, {e1} ∪ {e2}
is an answer.

Now we can safely assume that there are no cycles of length 2 in G. In other words, for every e1 and
e2, exactly one of the following holds: there is a directed edge e1 → e2, a directed edge e2 → e1, an
undirected edge e1 − e2, or there are no edges between e1 and e2 at all.
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10. The shortest cycle C in G contains no chords (no edges other than the ones between adjacent vertices
— otherwise, it is easy to show that C is not the shortest one). Partition C = C1 ⊔ · · · ⊔ Cℓ into
connected (via undirected edges) components.

Let’s show that Cyc1(C1) is a cycle in the first graph (that is, it is connected). Since there are no
chords in C, for all e1, e2, e3 ∈ C1 the intersection s1(e1) ∩ s1(e2) ∩ s1(e3) is empty. Now, for the
sake of contradiction, suppose the contrary: Cyc1(C1) = Cyc1(C

′
1) ⊔ Cyc1(C

′
1
′) for some nonempty

C ′
1, C

′
1
′. Then there are two edges e′ ∈ C ′

1 and e′′ ∈ C ′
1
′, that are adjacent (linked by an undirected

edge). This yields a contradiction: s1(e′) ∩ s1(e
′′) ⊆ Cyc1(C

′
1), but s1(e

′) ∩ s1(e
′′) ⊈ Cyc1(C1).

For a fixed Cj , define ej and fj so that ej ∈ C, fj ∈ Cj , and there is a directed edge ej → fj (these
conditions define ej and fj uniquely).

Now we finally show that Cyc2(C) doesn’t contain cycles in the first graph. It suffices to show
that ∀C ′ ⊂ C : Cyc1(C

′) ⊈ Cyc2(C). Note that Cyc1(C
′) ⊆ C ∪

⋃
e∈C

s1(e), and the last could be

partitioned into biconnected components Cj ∪
⋃

e∈Cj

s1(e). Therefore, such C ′, if exists, could only be

contained in one component Cj . However,

Cyc2(C) ∩

Cj ∪
⋃
e∈Cj

s1(e)

 = Cyc1(Cj) \ (s2(ej) \ s1(ej)) ,

Cyc1(Cj) is just a cycle, and (s2(ej) \ s1(ej)) non-trivially intersects with it. Therefore, the right
hand side doesn’t contain any cycles, which finishes the proof.

Since the problem doesn’t require finding the answer, the answer is positive iff any directed edge of G
lies on a cycle — that is, iff its endpoints are in the same strongly connected component. Therefore, to
solve the problem, one needs to build graph G and condense it. It can be done in O(m2), or (with slight
modification of G) in O(nm).

Problem B. Christmas Tree
Let’s root the tree in some vertex and solve the problem with subtree dp.

Define U [v][i] as the minimal cost to direct all edges in a subtree of vertex v given that the edge between
v and its parent is directed upwards and there are i vertices reachable from v from the outside of its
subtree.

Define D[v][i] as the minimal cost to direct all edges in a subtree of vertex v given that the edge between
v and its parent is directed downwards and there are i vertices reachable from v.

(By the cost here we mean the contribution to the answer from the nodes in the subtree of v).

Suppose we are now in vertex v, let’s fix some k and suppose we are given that there are k vertices
reachable from v in total.

Having U and D for the children of vertex v, we can run a knapsack-like dp to find h[v][l] — the minimal
cost to direct all edges in a subtree of v so that there are l vertices reachable from v from its subtree,
given that there are k vertices reachable from v in total.

Then D[v][i] is h[v][k] for k = i.

U [v][i] is minimum of h[v][k − i] over all k > i.

For a fixed k a total time to compute h[v][l] over all vertices is ≤ Cn2, so the overall complexity is O(n3).

Problem C. Roman Numerals
Let’s create two arrays, the i-th element of those stores value and priority of the i-th digit (sort the string
representations of the digits, and use binary search, or just use std::map for that). After that, we can
forget about the alphabet.
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First solution

Note that the answer for the query (l, r) is
r∑

i=l

sivi, where vi is the value of the i-th digit, and si is either +1

or −1. To calculate si, consider the stack of maximum records to the right of the i-th digit (formed by the
links to the first element with strictly greater priority to the right). It could be proved by induction that
si equals +1 iff the stack is of even size (for elements with the maximum priority, the stack is considered
to be empty).

Let’s answer the queries offline, iterating over them in the increasing order of the right boundary. Note that
for a fixed right boundary r, all si are the same, regardless of the left boundary. Once r is incremented, all
signs in the interval (p, r) are multiplied by −1, where p is the first element to the left of r with priority
at least pr.

Therefore, one could store the contributions of the digits in a lazy segment tree, that supports subsegment
sum and subsegment multiplication. The complexity is O((n+ q) log n+ (n+m) logm).

Second solution

Consider the tree of maximums. Each vertex in it is responsible for some semi-interval [l, r). The root
of the tree is [0, n). For a vertex [l, r) with l < r, let i ∈ [l, r) be the leftmost element with maximum
priority. Then the vertex [l, r) has the left child [l, i) and the right child [i+ 1, r).

For a query [l, r+1), let i be the leftmost digit with maximum priority. Split the query into two queries of
the form [l, i) and [i+1, r+1). These two new queries correspond to either prefix or suffix of some vertex
in the maximum tree. To handle the queries that are prefixes or suffixes of some vertices, we traverse the
tree and answer the queries that correspond to the prefix or suffix of the current segment upon leaving
the vertex (so it’s also offline).

Let’s calculate the answers on prefixes of all vertices in the maximum tree. Consider a vertex that is
responsible for some semi-interval [l, r). Traverse both of its children [l, i) and [i+ 1, r), and assume that
the answers to [l, j) and [i+ 1, j) are stored in the j-th position of some data structure. Then to convert
these answers to the answers for [l, j) prefixes, one needs to add −value(dl . . . di−1) (it is stored in the
(i− 1)-th position of the data structure) to the answers in the right half.

The answers for suffixes are calculated analogously, but one needs to be more careful with signs. For
example, the author’s solution passes into recursion the sign with which the answers should be stored.

To handle these operations, one needs a segment tree with range addition and queries of the value in a
point. One also needs a sparse table or a maximum segment tree to calculate the tree of maximums in
O(n log n). The total complexity is also O((n+ q) log n+ (n+m) logm).

Problem D. Disjoint Set Splitting
Note that some prefix of the answers is 1, and the remaining suffix is 0. Assume that all the answers
are 1. Then some queries would be decoded incorrectly, but it would never happen before the first zero.
Therefore, the queries could be answered offline, assuming all the answers are zero, and then calculating
the actual answers.

To handle the offline problem, find for each edge the first time it is removed (using either hashmap, map,
or sorting and binary search; the fastest jury solution uses binary search and sorting, though it might be
possible to make hashmap even faster), and then add the edges in the reversed order of their removal
times. To find the first time of the graph being connected, one might use disjoint set union structure. The
complexity is O((n+m+ q)(logm+ α(n))) or O((n+m+ q)α(n)) depending on the implementation.

Problem E. Maximum Segment Sum
Let’s store the current maximal sum on suffix cur. Then we either do cur → cur + 1 or
cur → max(cur − 1, 0). So we are walking on Z numbered as ..., 3, 2, 1, 0, 0, 1, 2, 3, .... Then we can find
the number of ways for cur to not exceed k in O(nk ) by the reflection principle (by precomputing some
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sums on binomial coefficients firstly). So we can solve the problem in O

(
n∑

k=1

n
k

)
= O(n log(n)).

Problem F. This Time I Will Be Lucky
Let’s calculate the answer f(a, b), then we have a formula f(a, b) = max(0, (a−b+a·f(a−1, b)+b·f(a, b−1))/(a+b)),
then we can calculate f(a, b) in O(ab). How to do better. Let’s only consider states (i, j) such that
| bi−aj
a+b | <= K. (Close to the diagonal). Initialize other values by zero. Then we can solve in O(max(a, b)·K).

Then we will have the mistake at most (a + b)·(probability we are going out of this neighbourhood
diagonal at some moment). By considering the random walking ξ which makes + a

a+b with p = b
a+b

and − b
a+b with p = a

a+b , showing that ξa+b = 0 with probability at least 1
a+b+1 and using the Azuma

inequality it can be shown that the mistake is at most 4(a+ b+1)2e
−2K2

max(a,b) . So K = 2000 will be enough
for this problem. (Even K = 700 is enough by the way).

Problem G. Far Away
Let’s build DSU on our graph, and read the queries. If xi and yi are in the same component of size ≤ 20000
then answer is NO. Then let’s 300 times select the vertex u randomly and run bfs from it, and for all
queries with dist(u, xi) + dist(v, xi) ≤ 20000 update answer as NO. For all other queries respond YES. If
the answer for a query is NO, then it is either the first case, or there are at least 10000 vertices u that
makes our answer for this query NO. So the probability we fail for a query is at most ( 9

10)
300 ≈ 1.9 ·10−14.

So the probability we solve the problem wrong is at most 5.7 · 10−9.

Problem H. Absolutely Flat
Let b be an array of nonnegative integers. Fix a family of q segments, and define f(b) to be the sum of
oscillations of b on those segments.

For an array b and a nonnegative integer x, define another array bx, such that bxi =

{
0, bi ≤ x

1, bi > x
. It is

easy to see that f(b) =
∞∑
x=0

f(bx).

Now suppose that a is an array of nonnegative integers, where some elements are missing (we denote them
below by ?). Define g(a) to be the minimum of f over all arrays of nonnegative integers b that match a.

It is easy to see that g(a) ≥
∞∑
x=0

g(ax), where ax consists of 0, 1, and ?. In fact, there holds an equality

(that is, the 01-principle works).

Proof

For two arrays c and d, let’s write c ≤ d and min(c, d) in a componentwise meaning.

Let bx be an optimal array that matches ax (that is, bx consists of zeroes and ones, matches ax, and f(bx)
is minimized). Define bx+1 analogously.

For any two arrays c and d of zeroes and ones, there holds an inequality
f(c) + f(d) ≥ f(min(c, d)) + f(max(c, d)) (which can be easily verified by considering q = 1).
Therefore, f(bx) + f(bx+1) ≥ f(min(bx, bx+1)) + f(max(bx, bx+1)). On the other hand, bx and bx+1

were the optimal arrays, and min(bx, bx+1) also matches ax. Hence f(bx) = f(min(bx, bx+1)) and
f(bx+1) = f(max(bx, bx+1)). Hence one can replace bx+1 with min(bx, bx+1). By induction, it could be
assumed that b0 ≥ b1 ≥ b2 ≥ . . . , which is what we wanted.

Proof ends

The solution in O(n(q+n) log n) goes as follows: by coordinate compression, one can assume that all the
elements are from 0 to n− 1. Now we need to deal with O(n) arrays, consisting of zeroes and ones. f(b)
is just the number of segments (from the given family of size q), such that they contain both 0 and 1.
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If any segment already contains both zeroes and ones, then it is surely included in the cost, and we can
dispose of it.

Note that it is never beneficial to fill some segment of ? with zeroes, provided both left and right
of the segment are guarded with ones. For that reason, we can assume that the array is of the form
???000???111???000???111???, and any segment from the given family contains either only zeroes and
questions, or only ones and questions.

We need to cut these segments of questions between zeroes and ones somewhere, and the cost of a cut
placement is the number of segments that contain strictly inside at least one such cut (no segment could
contain more than two cuts inside though).

The problem now could be solved via dynamic programming with a minimum segment tree, since the cost
of placing cuts depends only on the pairs of two consecutive cuts.

To optimize the complexity, one needs to use the observation from the proof: for arbitrary x, it is safe to
assume that bx+1 ≤ bx ≤ bx−1. Let’s write a recursive function solve(l, r, cuts), which returns the
minimum cost of cuts placement, provided they are placed according to the boundaries, passed in the cuts
array. The function should be called with parameters l = 0, r = n, cuts are the segments of question
marks in the array a. The function works as follows: first of all, it solves the problem for x = l+r

2 , and
restores the answer. Then it splits all the requirements in the cuts array, and passes them to solve(l,
x-1) and solve(x+1, r). Segments of size ≤ 1 in cuts should be erased, since their contribution can be
deduced independently of the dynamic programming.

It is also possible to implement the solution in O((n + q) log nα(n)), since the dynamic programming
solution requires only queries of adding 1 on suffix and querying global minimum, which could be done
with DSU.

Problem I. Two Permutations
Define pi,j as the number of k ≤ i such that pk ≤ j and qi,j analogously.

We can obtain q from p if and only if for every 1 ≤ i ≤ n, 1 ≤ j ≤ n, pi,j ≥ qi,j .

It is necessary because every correct operation can only decrease the values of pi,j .

To prove that it is sufficient we give an algorithm how to obtain q from p.

Suppose p ̸= q and x is the minimal number such that p−1(x) ̸= q−1(x).

Notice that p−1(x) < q−1(x) since pq−1(x),x ≥ qq−1(x),x.

Let’s say pk is the minimal number such that p−1(x) < k ≤ q−1(x) and pk > x. (such pk always exist
because pq−1(x) > x).

Notice that for p−1(x) ≤ l < k and x ≤ y < pk, pl,y > ql,y. Indeed, let’s assume the opposite, pl,y = ql,y.
Then qq−1(x),y > pq−1(x),y, which is a contradiction.

So we can swap x with pk.

Then repeat this process until p−1(x) = q−1(x).

Then we move on to a larger value of x.

For a given x we can iterate over all values from x+ 1 to pq−1(x) and every time when the current value
v is between x and pq−1(x) in the permutation p, we can swap x with v.

The overall complexity of this algorithm is O(n2).

Problem J. One Permutation
The sequence ak is concave (2ak ≥ ak−1 + ak+1).

The proof goes as follows:

ak is the LCS of p and 1, 2, ..., n, 1, 2, ..., n, ..., 1, 2, ...n (k times).
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This LCS can be found as the longest path in a graph on a grid n× kn with edges of weights 0 and 1 as
in classical DP for the LCS problem.

We can draw two such grids n× (k− 1)n and n× (k+ 1)n so that they will have a common center, then
consider the optimal paths corresponding to ak−1 and ak+1, then they will intersect and we can flip them
to obtain some two paths in two n× kn grids with the sum of lengths ak−1 + ak+1, so 2ak ≥ ak−1 + ak+1.

For each 0 ≤ λ ≤ n and 1 ≤ k ≤ n, define g(λ, k) as the maximum over all partitions of p into k
subsegments (cost of the partition − kλ).

Define f(λ) as the maximum of g(λ, k).

Define k(λ) as the maximal 1 ≤ k ≤ n such that g(λ, k) = f(λ).

Then f(λ) and k(λ) for a given λ can be found in O(nlog(n)) by dynamic programming with a Fenwick
tree. dp[i] is a maximal pair over all k over all partitions of the prefix p1, ..., pi into k subsegments such
that the lis of the last subsegment ends in pi (cost of partition − k λ, k).

Define λ(k) as the maximal 0 ≤ λ ≤ n such that k(λ) ≥ k. Actually, λ(k) = ak − ak−1 so it’s enough to
find k(λ) for 0 ≤ λ ≤ n.

Notice that λ(0) = n, λ(n) = 1, k(λ) ≤ 1 + n/λ and k(λ+ 1) ≤ k(λ).

Using these properties, all values of k(λ) can be found by D&C in O(
√
n) queries to find it for one λ (we

will visit only O(
√
2−hn) on the h-th level of recursion from the bottom), so the overall complexity is

n
√
nlog(n).

Problem K. Game on Board
In the end all numbers divisible by gcd and at most maximum will appear because gcd will appear by
Euclidean algorithm (If x and y (x > y) appears at some moment, then x− y appears at some moment),
and so max,max − gcd,max − 2gcd, ..., gcd will appear. So we know the number of moves till the end
(max/gcd− n) and just want to check whether this number is divisible by 3 or not.
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