2025 North America Championship

Solutions

The Judges

May 26, 2025

2025 North America Championship Solutions

A Totient Quotient

Problem

Given a positive fraction § with 1 < a,b < 104, find a “minimal” pair of integers m, n with

2= “;((':22) . Minimality is defined by no square of a prime dividing both m and n, and that no

prime divides them with the same power.

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

Problem

Given a positive fraction § with 1 < a,b < 10%, find a “minimal” pair of integers m, n with

2= “:((':22)). Minimality is defined by no square of a prime dividing both m and n, and that no

prime divides them with the same power.

Small cases

| A\

o Consider a = p?, b = 1 for any prime p: then, the answer is m = p?, n = p since
o(p*) = p3(p — 1) and ¢(p?) = p(p — 1) (can also generalize to a = p>*, b = 1).

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

Problem

Given a positive fraction § with 1 < a,b < 10%, find a “minimal” pair of integers m, n with

2= “:((':22)). Minimality is defined by no square of a prime dividing both m and n, and that no

prime divides them with the same power.

Small cases

| A\

o Consider a = p?, b = 1 for any prime p: then, the answer is m = p?, n = p since
o(p*) = p3(p — 1) and ¢(p?) = p(p — 1) (can also generalize to a = p>*, b = 1).
o Consider a =2, b = 1: then, the answer is m = 2, n = 1 since p(22) =2, ¢(1%) = 1.

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

Problem

Given a positive fraction § with 1 < a,b < 10%, find a “minimal” pair of integers m, n with

2= “:((':22)). Minimality is defined by no square of a prime dividing both m and n, and that no

prime divides them with the same power.

Small cases

| A\

o Consider a = p?, b =1 for any prime p: then, the answer is m = p?, n = p since
o(p*) = p3(p — 1) and ¢(p?) = p(p — 1) (can also generalize to a = p>*, b = 1).
o Consider a =2, b = 1: then, the answer is m = 2, n = 1 since p(22) =2, ¢(1%) = 1.
@ If a= p,b =1 for any odd prime p, then the answer has m divisible by p, n not divisible
by p, and all other primes dividing m and n less than p.
o Similar statement for a = p?**1 b = 1.

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

o lIterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

@ lterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).
@ Two cases (assuming vp(a) > vp(b), but can do the other cases symmetrically):
o Suppose vp(a) = 2k, vp(b) = 1. Then multiply m by pk*1, n by p, and divide a by p?*.

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

@ lterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).
@ Two cases (assuming vp(a) > vp(b), but can do the other cases symmetrically):
o Suppose vp(a) = 2k, vp(b) = 1. Then multiply m by pk*1, n by p, and divide a by p?*.
o Else, suppose vp(a) = 2k + 1,v,(b) = 1. Then multiply m by p*™1, n by 1, divide a by
p?**1 and multiply b by p — 1.
@ Proof: Induction on the maximum prime dividing ab, since each iteration decreases the
maximum prime dividing ab.

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

@ lterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).
@ Two cases (assuming vp(a) > vp(b), but can do the other cases symmetrically):
o Suppose vp(a) = 2k, vp(b) = 1. Then multiply m by pk*1, n by p, and divide a by p?*.
o Else, suppose vp(a) = 2k + 1,v,(b) = 1. Then multiply m by p*™1, n by 1, divide a by
p?**1 and multiply b by p — 1.
@ Proof: Induction on the maximum prime dividing ab, since each iteration decreases the
maximum prime dividing ab.
o Need to keep track of prime factorization of # to do iterations (since numbers can grow
quickly)

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

@ lterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).
@ Two cases (assuming vp(a) > vp(b), but can do the other cases symmetrically):
o Suppose vp(a) = 2k, vp(b) = 1. Then multiply m by pk*1, n by p, and divide a by p?*.
o Else, suppose vp(a) = 2k + 1,v,(b) = 1. Then multiply m by p*™1, n by 1, divide a by
p?**1 and multiply b by p — 1.
@ Proof: Induction on the maximum prime dividing ab, since each iteration decreases the
maximum prime dividing ab.
o Need to keep track of prime factorization of # to do iterations (since numbers can grow

quickly)
o lIteration p takes time O(log p) after precomputing primes (to calculate factorization of p — 1)

Problem Author: Fred Pickel 2025 North America Championship Solutions

A Totient Quotient

@ lterate primes dividing a or b in decreasing order, beginning with (m, n) = (1,1).
@ Two cases (assuming vp(a) > vp(b), but can do the other cases symmetrically):

o Suppose vp(a) = 2k, vp(b) = 1. Then multiply m by pk*1, n by p, and divide a by p?*.

o Else, suppose vp(a) = 2k + 1,v,(b) = 1. Then multiply m by p*™1, n by 1, divide a by

p?**1 and multiply b by p — 1.

Proof: Induction on the maximum prime dividing ab, since each iteration decreases the
maximum prime dividing ab.
Need to keep track of prime factorization of £ to do iterations (since numbers can grow
quickly)

o lIteration p takes time O(log p) after precomputing primes (to calculate factorization of p — 1)

e Total time at most O(max(a, b) - log max(a, b)).

Problem Author: Fred Pickel 2025 North America Championship Solutions

Circle of Leaf

@ You are given a tree of N nodes rooted at node 1.
@ An extra edge is added from every leaf to the root.

@ Count the number of distinct spanning trees that can be constructed by removing some
subset of edges of this new graph.

@ Bounds: N <2-10°

Problem Author: Suhas Nagar 2025 North America Championship Solutions

Circle of Leaf

@ If the number of leaves is L, we need to remove L edges in order to return the resulting
graph into a tree. We also need to ensure that the resulting graph has no cycles.

@ Define a leaf path from a node to be a continuous path that can be taken from a node to
the root via some leaf node (and its corresponding leaf edge). If a node has > 2 distinct
leaf paths, then a cycle will be formed using any two of these paths.

o Consequently, every node must have < 1 leaf paths, and edges must be removed in order
to break paths up before a node is reached. This motivates us towards a dynamic
programming solution where for each node, we keep track of how many ways that it can
either have 0 or 1 leaf paths that still exist.

o Let this quantity be dpl[i][j] for node i having 0 < j <1 leaf paths.

Problem Author: Suhas Nagar 2025 North America Championship Solutions

Circle of Leaf

@ Suppose we know our dp quantities for the children ¢ of node i. Computing dp[/][0] is

dpli][0] = [] (dpL1[0] + dplil[1])
Jj€Ec
@ This is because we can either have no leaf paths from node j or we can have 1 leaf path
and we remove the edge between j and ;.

e Computing dpl[i][1] is a little trickier. We can let the one leaf path from any direct child j
be the leaf path for node /. We can represent this as

dplil[tl = | dplillt]- [(dplKI[0] + dplKI[1])

JEc kec,k#j

o Computing this is expensive, we can use prefix/suffix products to speed this up.

Problem Author: Suhas Nagar 2025 North America Championship Solutions

Circle of Leaf

@ To complete our recursive formula, we can set the base case for any leaf to be:
dplleaf] = [1,1]

@ We can either keep the leaf edge and have one leaf path from each leaf, or we can
immediately remove the leaf edge and have no leaf paths from our leaf to begin with.

@ By computing this recurrence from the leaves upward, our final answer ends up being
dp[0][0], since any subset of edges represented by dp[1][1] has a leaf path to the root
which forms a cycle.

@ The time complexity of this solution is O(N).

Caution
@ If using modular inverse to compute the dp transitions, there are test cases that catch

solutions that attempt to take the modular inverse of 0. There are many solutions that
Problem Author: Suhas Nagar 2025 North America Championship Solutions

Entrapment

Problem

You are given the description of a two-player asymmetric turn-based game, and asked to figure
out optimal play for both players, determine the winner, and play as the winning player. Refer
to the problems statement for the full rules of the game.

| A\

Solution

The full state space of the game is small, so the game can be fully solved. The tricky part is in
implementing everything correctly, as you will be writing a lot of code.
Helpful hints:

@ The total number of possible boards, queries, and positions is small enough that regular
minimax is fine, no alpha-beta pruning required (though memoization is still a good idea).

@ Using bitboards can make various computations more compact codewise in addition to
being more space and compute friendly.

\

Problem Author: Andy Nguyen 2025 North America Championship Solutions

Geometry Rush

Problem

Starting at (0,0), you can move diagonally (1,—1) or (1,1). You are given two polygonal
curves, one guaranteed to be above you, and the other below you. For both curves, the points
of a curve have non-decreasing x values, and does not self-intersect. You lose if you collide
with either curve along the way. The goal is to reach x = w without losing. Output the
minimum and maximum y values such that you win, or print impossible if you can not win.

Problem Author: Yen-Hsiang Chang and Maya Mei-He 2025 North America Championship Solutions

Geometry Rush

Solution

Since the curves have non-decreasing x values, we can use a two-pointer solution. We will keep
track of the minimum and maximum y values as we move along x, denoted ymin and ymax
respectively. As we increment x, we check every line that includes x and find the
minimum/maximum y values that do not collide with the curves, denoted yjo,, and yhign
respectively. Since you can only move (1,—1) or (1,1), the parity of x and y must be the
same, so we tighten the bounds yjo, and ypign accordingly. Finally, ymi, can be updated as the
maximum of yp,i» — 1 and yjon, and ymax can be updated as the minimum of y,. + 1 and
Yhigh- |f at any point, ymin > ymax it is impossible to win. This gives us a O(n+ m + w)
solution. The problem can also be done via a linear sweep.

Problem Author: Yen-Hsiang Chang and Maya Mei-He 2025 North America Championship Solutions

Humans vs Al

@ You are given a constant k and two integer arrays, A and B
e For a given subsequence, let X = {i|A; > B;} and Y = {i|A; < B;}
@ You want to count the number of non-empty contiguous subsequences such that

>iex(Ai = Bi) = > icy k- (Bj — Aj) under the constraint that an adversary can optimally
move an element from X to Y or vice versa.

e Bounds: 1 < k<100,1<|A|=|B| <2-10°

Problem Author: Jerry Li 2025 North America Championship Solutions

Humans vs Al

Simpler Variant - No Swaps

@ Assume that there is no adversary first

@ We can rewrite the property we want to find instead as counting the number of non-empty
contiguous subsequences such that 3, x A — Bj — > ..y k- (Bj —Aj) >0

o Create a new array C such that G; = A; — B; if A; — B; > 0 otherwise C; = k - (A; — B)).
Create another array PC which stores the prefix sums of C.

@ This problem now reduces to counting the number of pairs (i, /) such that i < j and

PC; < PC;. This can be done many ways; one way is to use some order statistic tree while
iterating over PC.

Problem Author: Jerry Li 2025 North America Championship Solutions

Humans vs Al

e Adding the adversary back in, we now need the following observation: for a given
subsequence, if | X| = 0, then the adversary will not swap. Otherwise, the adversary swaps
an i € X such that A; — B; = manex(Aj = BJ)

@ We can now fix the index s being swapped. This happens over contiguous subsequences
such [/, /] such that i <'s <j and s is the smallest index such that
As — Bs = max{(:iAk — Bk.

@ The index being swapped subtracts a constant amount from the subarray with respect to
s, which we can factor in when taking the difference of the prefix sum.

o Doing this naively is still O(n?).

Problem Author: Jerry Li 2025 North America Championship Solutions

Humans vs Al

Solution cont.

@ One way to speed this up is to use some data structure that allows us to do queries of the
form: count the number of values in the subarray [/, /] that are greater than or equal to
some query value g. This is usually done online using a persistent order statistic tree or a
wavelet tree.

@ Then, for a given s, let i be the largest index such that A; — B; > As — Bs and i < s. Let
J be the smallest index such that A; — Bs < A; — Bj and j > s. We can iterate over the
smaller of [/ + 1, s] and [s,j — 1], using the query structure to count the number of
subarrays that satisfy our properties.

@ By choosing the smaller of the two sides to iterate over, we can bound the number of
queries by O(nlog n).

@ Another approach is to store the queries and process them offline, using some smart
sorting and a point add, range sum data structure, of which there are many.

Problem Author: Jerry Li 2025 North America Championship Solutions

Mob Grinder

@ A mob grinder is an N x M grid consisting of conveyor belts that move the mobs on it up,
right, down, or left (depending on their orientation).

@ The top-right corner of the grid is empty, and the goal is such that if a mob is on the grid,
it will eventually be moved to the top-right corner by the conveyor belts.

@ You are given N and M, along with constants U, R, D, L.

@ Your goal is to output a valid mob grinder of size N x M such that it contains U conveyor
belts going up, R going right, D going down, and L going left (or state that it is
impossible.)

@ Bounds: 1< N-M<10°, U+ R+D+L=N-M—-1

Problem Author: Mark Sturtevant and Omkar Bhalerao 2025 North America Championship Solutions

o First, note that if there are fewer than N — 1 U’'s or fewer than M — 1 R’s, a solution is
impossible.

@ Now, consider an arbitrary path from the bottom-left corner to the top-right corner made
up of R's and U's that divides the grid into two sections. This path contains exactly N — 1
Usand M —1R's.

@ Key insight: all cells in the top-left section can be filled in arbitrarily with R's and D's, and
all cells in the bottom-right section can be filled arbitrarily with L's and U'’s.

@ This gives rise to a solution: first subtract out N —1 U's and M — 1 R’s.

@ Then, select a path from the bottom-left to the top-right corner that divides the grid into
two sections of the correct sizes based on the number of U's, R's, L's, and D's remaining.

@ Lastly, fill in the two sections as described earlier.
@ The time complexity of this solution is O(N - M).

Problem Author: Mark Sturtevant and Omkar Bhalerao 2025 North America Championship Solutions

Most Scenic Cycle

@ You are given a graph G = (V, E), which is biconnected — or as the problem says, robustly
connected

e G is regionally connected - there exists some set of simple cycles F (called regional cycles)
in G with the following properties (though you are not provided F):

o |FI=I|E|—|V|+1

o Every edge is part of one or more cycles in F

o The existence of at least one shared edge between two cycles a € F and b € F implies that
one and only one unbroken path of connection exists between a and b

e The dual graph of the regional cycles—where each regional cycle is connected to another if
they share an edge—is a tree.

@ Each edge in G has an integer weight associated with it

@ Find the sum of edge weights, of the cycle in G whose sum of edge weights is maximum

4

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

02<V<2-10°
0 2< E<4.10°

Graph structure notes 1/3

@ The fact that there are exactly |E| — |V/|+ 1 cycles in F, and that all edges in E are part
of one or more cycles in F, guarantees that F is a cycle basis, i.e. a set of cycles which
can completely represent all of G's cycles by symmetric differences

@ Shorter way of explaining G's connection properties: G is a planar graph whose dual graph
(ignoring the “outer region”) is a tree.

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

Graph structure notes 2/3

@ In the example pictured: black nodes and edges form G; pink nodes and edges are regional
cycles of G and their connections with one another

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

Graph structure notes 3/3

@ For purposes of explanation, a biconnected and regionally-connected graph will be called a
BCRCG (biconnected, regionally-connected graph).

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

e Let G’ = G, and repeatedly simplify G’ with two types of operations:
o Contraction — if a node in G’ has two and only two edges of weights a and b to nodes ¢ and
d, replace them with a single edge connecting ¢ and d with a weight of a + b.
o Merge — if two edges of weights a and b connect the same pair of nodes in G’, record the
fact that a + b is a possible cycle length in G, and delete the edge of lesser weight.

@ Stop when neither operation can be used on G’ anymore. Record self-loop weights as cycle
lengths, if any. Output the maximum-recorded cycle length.

v

Diagram of available operations
.‘COO(’-chUon _
po e

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

What the solution does

@ Because G''s regional cycles are connected like a tree, some regional cycles are "leaf
cycles"

o Every time a leaf cycle is "merged away", if the only cycle that shared an edge with it
becomes a leaf cycle, then that cycle can have its degree-2 nodes contracted, and it can also
then be "merged away"

o Because the dual of G’ is a tree, there always exists at least two leaf cycles to "merge away"
via our operations, unless one regional cycle remains

o If one cycle remains, said cycle can either be contracted until it is a self-loop, or, if it has two
edges remaining, merged to form a graph of one edge connecting two nodes

@ So, the only two ways one stops being able to merge and contract on G’, are the only
situations in which G’ stops being a BCRCG:

e One node with a single self-edge remains
o Two nodes remain, with one edge connecting them (*the only exception to an above bullet
point on this slide)

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Most Scenic Cycle

Time complexity

o Every merge removes one edge -> O(|E|) merges

e Every contraction removes one edge and one node -> O(|V/|) contractions

@ Every merge between a pair of nodes which leaves only one edge between said pair, makes
at most two more contractions possible.

@ Every contraction may make a merge possible

We can use queues and hash tables to efficiently determine what can be merged and what
can be contracted

Expected runtime: O(|E| + |V|)

Problem Author: Dereene Goodwin 2025 North America Championship Solutions

Ornaments on a Tree

@ You are given a tree of N nodes, rooted at node 1.
@ Each node either has a value a; already written on it or is empty.

@ You want to assign values to the empty nodes such that for every node, the sum of values
on that node and its children does not exceed a constant K, and that the total sum of

values in the tree is maximized.
@ Bounds: 1< N <2-10%0< a;, K < 10°

Problem Author: Omkar Bhalerao 2025 North America Championship Solutions

Ornaments on a Tree

o First, consider the case where there are no pre-written values on the nodes.

@ Claim: There exists an optimal solution which has as much value as possible assigned to
the leaf nodes.

@ To show this, we use an exchange argument. Consider an optimal solution where this is
not the case.

@ Then, there must be a leaf node with value less than K and whose parent has value
greater than 0;

@ We can then transfer value from the parent to the leaf to obtain an optimal solution for
which this is true.)

Problem Author: Omkar Bhalerao 2025 North America Championship Solutions

Ornaments on a Tree

@ Once the leaves have as much value as possible assigned to them, note that their parents
now effectively each have a restriction on the maximum value that can be assigned to
them.

@ We can use a similar exchange argument from earlier to show that there exists an optimal
solution with as much value as possible assigned to the parents (given these new
restrictions).

@ Continuing this argument recursively up the tree naturally gives rise to a solution: greedily
assign as much value as possible to the nodes, going from the bottom up.

@ Once you reach a parent, you can update all of its children, and from there, their values
are fixed.

Problem Author: Omkar Bhalerao 2025 North America Championship Solutions

Ornaments on a Tree

@ How do we deal with nodes with values pre-written on them?

@ If the node you're on has a child with a pre-written value, you just treat it as though you
can't change it.

o If there's a node with a pre-written value above you, you just take that restriction into
account when you process the pre-written node.

@ Thus, the algorithm from earlier does not change very much, and the time complexity is

still O(N).

Problem Author: Omkar Bhalerao 2025 North America Championship Solutions

Polygon Partition

Problem

@ You are given a polygon that doesn't have any lattice points on the boundary.
@ Partition semi-integer points on boundary into two sets with equal sum.

@ The sum is taken over floor of the non-integer coordinate.

Problem Author: Nathan Nguyen and Lewin Gan 2025 North America Championship Solutions

Polygon Partition

@ You can transform this problem from arbitrary polygons to a simplified polygon where:
All vertices are at half-integer coordinates (e.g. (x.5,y.5)).

o All edges are axis aligned.

o The set of n; of the points on the boundary is the same as the original polygon.

]

Technically, this simplified polygon can intersect itself, but what's important is that it is a
closed path.

@ This doesn't need to be done explicitly, but it's just used to visualize the solution.

Problem Author: Nathan Nguyen and Lewin Gan 2025 North America Championship Solutions

Polygon Partition

@ Consider the polygon as directed counter-clockwise (so outer bottom edge is left to right).

o Consider horizontal and vertical edges separately.
@ For horizontal edges, they either go left to right or right to left.
o

If we consider any integer vertical line (e.g. a line x = X where X is an integer), it will
intersect an even number of horizontal edges.

@ These edges will alternatively go right to left and left to right from top to bottom.

@ If we consider the taking the n; values of right to left points, and subtract n; values of left
to right points, we will get a value equal to length of the vertical line inside the polygon.

@ Since our polygon is very well-formed, summing this over all integer vertical lines will give
us the area of the polygon.

Problem Author: Nathan Nguyen and Lewin Gan 2025 North America Championship Solutions

Polygon Partition

We have (sum right to left) - (sum left to right) = area of polygon.

For vertical edges, we can do the same thing.

We have (sum down to up) - (sum up to down) = area of polygon.

We can combine these two equations to get:

(sum right to left) - (sum left to right) = (sum down to up) - (sum up to down)
This means (sum right to left) + (sum up to down) = (sum left to right) + (sum down to

up)

This is exactly the partition we want, and works for the original polygon.

Problem Author: Nathan Nguyen and Lewin Gan

2025 North America Championship Solutions

Popping Balloons

Problem
Given a ternary array S with n = |S| < 2-10°, randomly remove elements from the array until

the result is sorted. Compute the expected number of seconds required until this happens
(modulo 998,244, 353).

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

Given a ternary array S with n = |S| < 2-10°, randomly remove elements from the array until
the result is sorted. Compute the expected number of seconds required until this happens

(modulo 998,244, 353).

Some Observations

@ When the process ends, it ends on a non-decreasing subsequence of S.

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

Problem

Given a ternary array S with n = |S| < 2-10°, randomly remove elements from the array until
the result is sorted. Compute the expected number of seconds required until this happens
(modulo 998,244, 353).

Some Observations

| A\

@ When the process ends, it ends on a non-decreasing subsequence of S.

@ Let X be a random variable dictating the length of the remaining array at termination.
Then,

of non-decreasing subsequences of length k

(®)

PriX > k] =

\

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

Problem

Given a ternary array S with n = |S| < 2-10°, randomly remove elements from the array until
the result is sorted. Compute the expected number of seconds required until this happens
(modulo 998,244, 353).

Some Observations

| A\

@ When the process ends, it ends on a non-decreasing subsequence of S.

@ Let X be a random variable dictating the length of the remaining array at termination.

Then,
of non-decreasing subsequences of length k

(®)

e Our final answer is n —E[X] = n—Y"]_; Pr[X > K].

PriX > k] =

\

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

@ Need to compute number of non-decreasing subsequences of each length quickly, but this
is not obvious for a general array!

o ldea: Divide & Conquer FFT, leveraging S being ternary.

v

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

@ Need to compute number of non-decreasing subsequences of each length quickly, but this
is not obvious for a general array!
o ldea: Divide & Conquer FFT, leveraging S being ternary.
@ For a subrange [a,b) and 0 < i < j <2, let f, (i,], k) be the number of non-decreasing
subsequences of length k contained in [a, b), starting with value /, and ending with value
J.

o Can construct polynomial £, 5 ; j(x) with k'th coefficient being f, (i, j, k).

@ Then, just need to multiply appropriate polynomials to merge (conquer) two ranges.

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

@ Need to compute number of non-decreasing subsequences of each length quickly, but this
is not obvious for a general array!

o ldea: Divide & Conquer FFT, leveraging S being ternary.

@ For a subrange [a,b) and 0 < i < j <2, let f, (i,], k) be the number of non-decreasing
subsequences of length k contained in [a, b), starting with value /, and ending with value

J-

o Can construct polynomial £, 5 ; j(x) with k'th coefficient being f, (i, j, k).
@ Then, just need to multiply appropriate polynomials to merge (conquer) two ranges.

o After computing fy p...(x), add them all together and scale coefficients by (Z) to get final
answer.

Problem Author: Misha Ivkov 2025 North America Championship Solutions

Popping Balloons

@ Need to compute number of non-decreasing subsequences of each length quickly, but this
is not obvious for a general array!
o ldea: Divide & Conquer FFT, leveraging S being ternary.
@ For a subrange [a,b) and 0 < i < j <2, let f, (i,], k) be the number of non-decreasing
subsequences of length k contained in [a, b), starting with value /, and ending with value
J.

o Can construct polynomial £, 5 ; j(x) with k'th coefficient being f, (i, j, k).
@ Then, just need to multiply appropriate polynomials to merge (conquer) two ranges.
o After computing fy p...(x), add them all together and scale coefficients by (Z) to get final
answer.
o Intended time complexity: O(10nlog? n) (the constant factor is based on the alphabet
size).

Problem Author: Misha Ivkov 2025 North America Championship Solutions

SLA Tomography

@ Given a list of integers of length n, representing the amount of resin left at each level of
the process (refer to problem statement for more details), output the minimum width of a
design that would result in these resin amounts

@ Bounds: 1 < N <10° and 0 < x < 10°

Problem Author: Mark Sturtevant 2025 North America Championship Solutions

SLA Tomography

@ We create the design from the bottom up. The design will have resin pools and separating
columns that don't have any on top.

@ Let us define x as the number of columns that can still have resin added to them without
draining away.

@ We claim these x columns are in one group. If they are not, we can merge the two groups,
remove one separating column, and get a better answer.

@ If the resin amount for the next layer is r and r < x, then we need to increase the width
by 1 as we need to break the pool of x columns into two groups of x — r and r.

@ If the resin amount for the next layer is r and r > x, then we need to increase the width by
r — x as we need to add r — x columns to the current group to account for the next layer.

Problem Author: Mark Sturtevant 2025 North America Championship Solutions

Solar Farm

Problem

Given an integral radius r and integer width and height w and h, find integers / and j such that
@ a rectangle of width i - w and height j - h fits inside a circle of radius r, and

@ the product 7 - j is maximized.

Problem Author: Andy Nguyen 2025 North America Championship Solutions

Solar Farm

Solution

Define (i) to be the largest integral value j such that an i - w by j - h rectangle fits in the
circle. Then we want to find the i that maximizes f (/).
Concerns:

@ While (i) has a closed form, the bounds are large enough to prevent just calculating this
over all possible values of /.

e f(i) is NOT unimodal, so naive ternary search, for example, will not return the correct
answer.

@ The bounds are also large enough that one must be careful not to run into precision issues;
in particular, safe sqrt must be used.

Problem Author: Andy Nguyen 2025 North America Championship Solutions

Solar Farm

Solution cont.

Approach:
@ Assume WLOG that w > h.

@ Observe that while (/) is not unimodal, if we define F(/) to be the largest REAL value j
whose corresponding rectangle fits in the circle, then F (/i) IS unimodal. F(i) is also easy
to maximize because if we also relax i to be real, then then the best choice of i is the one
that results in a square with diagonal 2r, and the best integral choice of i has to be either
the integer just above this or the one just below this.

@ Using the above, we can show that the i that maximizes f(i) and the i that maximizes
F(i) are at most O(4/r) apart.

@ Because of this, we can start from the value of / that maximizes F (/) and search on either
side within bounds that we calculate either in advance via pen and paper or on the fly via
evaluating f(/) and F(/) as part of binary searches.

Problem Author: Andy Nguyen 2025 North America Championship Solutions

This Is Spartal

e Given an array V, you repeat the following process K times
@ Sort V in non-decreasing order
Q Set V{ =V
© For every i > 2 in order, set V! = V; — V/

K is far too large (up to 10%®) for direct simulation to work, but we can reduce the problem
significantly.

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

This Is Spartal

Observation 1: Elements reach 0 very quickly

@ By brute forcing small cases, you may observe that many elements reach 0 (and can
therefore be ignored) after a very small number of iterations. We can show some bounds
on this as follows:

@ Suppose that we had 59 buckets, and we put an element v into bucket if 2/ < v < 21,
Suppose each bucket i has b; elements in it.

Suppose that elements v; and v are in the same bucket j and v/ has already been
calculated

Since v/ < v; < vj41 we know that either v/ is in bucket j or v/ dropped out of bucket j.

If v is still in bucket j, then v/, is guaranteed to drop out of bucket j (imagine the leading
bits cancelling each other out). This means that between every pair of elements in the same
bucket, at least one will drop.

This means that in a single iteration, | 2| elements will drop out of bucket i every iteration.
We can simulate the worst case of this by putting 10° elements in bucket 59 and computing
the number of iterations before as many elements as possible drop to 0. We see that it take
166 iterations before N reaches 59.

00 O

00

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

This Is Spartal

Can we go further?

@ K is still too large to effectively simulate, but we can actually find another bound on
reducing N even further by constructing worst cases.

© Suppose that we had 3 elements and we wanted to reduce down to 2 elements.
@ |If our sequence is 1 x y, x will always reduce to 0 in at most x iterations.
© In order for y to not reduce down to 0 earlier, we need y — x — (x — 1) — (x — 2)... > 0 so we

want x = /2y.

@ The maximum value of y is 1018

so we can compute this as the worst case

@ We can use this small case to inform how we would reduce N 4+ 1 — N, and we can see
that an upper bound on the number of iterations to do this will be around V/1018N!.

@ To get from N =60 to N = 3, we can set an upper bound of 2000000 iterations.

o Unfortunately, reducing further would take at least 10° iterations which is too expensive,
even with a small value of M.

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

This Is Spartal

Handling N = 3

@ Now we need to handle the problem when N =3 and K is large, but we can actually
simulate many iteration steps at once.

@ Suppose that we have the sequence [a, b, c| and the order of elements does not change.
@ After one iteration: [a, b—a, ¢ — b+ 3]
@ After two iterations: [a, b —2a, ¢ — 2b+ 33]
© After three iterations: [a, b— 3a, ¢ — 3b + 64]

@ We can observe a very clear pattern: if we have to simulate k iterations where the order of
elements doesn't change, we get that our array will always look like
[a, b— ka, c — kb+ @3]

@ However, this expression can overflow even though the array values cannot. This can be
circumvented by using Python, or by rearranging the third term as ¢ — §(2b — (k+1)a).

@ Finally, since the order of elements can change, we can simulate as many steps as it would
take until the order changes, sort the terms again, and repeat this process.

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

This Is Spartal

@ Simulate 2000000 "slow" steps, making sure to ignore elements that become 0 during the
process.
@ At this point, N = 3. Simulate "fast" steps until K =0 or N = 1. An approximation for

the number of iterations before relative order changes is min(g, o

@ Since this process is similar to the Euclidean Algorithm, this will terminate in log max v
steps.

@ The time complexity looks like O(166 * N log N + 2000000 * 60 * log 60 + log max v). This
might seem slightly higher than what would fit in a 1 second time limit, but not every
iteration runs on the same value of N. In fact, using the tighter bounds from earlier slides
and writing a program to compute the work for each iteration shows us that the amount of
work is less than 2 % 108. Since these bounds are infeasible to achieve in practice, the
solution runs comfortably.

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

This Is Spartal

This process will compute the greatest common divisor (gcd) of every numbers since it operates
very similarly to the Euclidean Algorithm. This fact was not needed to solve the problem,
although it could motivate the solution idea of "fast" steps.

Problem Author: skylinebaby and Suhas Nagar 2025 North America Championship Solutions

