
Optical Linear Algebra for Computational Light Transport

by

Matthew O’Toole

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

c© Copyright 2016 by Matthew O’Toole



Abstract

Optical Linear Algebra for Computational Light Transport

Matthew O’Toole

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2016

Active illumination refers to optical techniques that use controllable lights and cameras to an-

alyze the way light propagates through the world. These techniques confer many unique imaging

capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering

media), but at a significant cost; they often require long acquisition and processing times, rely on

predictive models for light transport, and cease to function when exposed to bright ambient sunlight.

We develop a mathematical framework for describing and analyzing such imaging techniques.

This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant

energy through an unknown environment with the so-called light transport matrix. Performing

active illumination on a scene equates to applying a numerical operator on this unknown matrix.

The brute-force approach to active illumination follows a two-step procedure: (1) optically mea-

sure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is

infeasible in general, because the light transport matrix is often much too large to measure, store,

and analyze directly.

Using principles from optical linear algebra, we evaluate these matrix operators in the optical

domain, without ever measuring the light transport matrix in the first place. Specifically, we explore

numerical algorithms that can be implemented partially or fully with programmable optics. These

optical algorithms provide solutions to many longstanding problems in computer vision and graphics,

including the ability to (1) photo-realistically change the illumination conditions of a given photo

with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence

of complex transport properties and strong ambient illumination, and (3) overcome the multipath

interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-

new imaging regime—optical probing—that provides unprecedented control over which light paths

contribute to a photo.
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Notation

Scalars, Vectors, and Matrices
a Scalar
a Vector

a[m] mth element of the vector a
ai ith vector of a sequence, or block i of a block partitioned vector a
A Matrix

A[n] nth column of the matrix A
A[m,n] Element at row m and column n of the matrix A
Aij Block i, j of a block partitioned matrix A

Vector Operations
|a| Absolute value of vector a
(a)+ Positive component of vector a, i.e. max(a, 0)
(a)− Positive component of negated vector a, i.e. max(−a, 0)
a Complement of binary vector a, i.e. 1− a

arg a Argument vector z of a complex vector a = |a|eiz
a ◦ b Hadamard (element-wise) product between vectors a and b

Matrix Operations
Ab Matrix-vector product, i.e.

∑

n A[n]b[n]
AT Transpose of matrix A
Ak kth power of square matrix A
A−1 Inverse of matrix A
A⊙B Hadamard (element-wise) product between matrices A and B

A† Moore-Penrose pseudoinverse of matrix A, i.e. (ATA)
−1

AT

(where A has full column rank)

Norms

‖a‖p ℓp norm of vector a, i.e. (
∑

m |a[m]|p)
1
p

‖a‖1 ℓ1 norm of vector a, i.e.
∑

m |a[m]|
‖a‖2 ℓ2 norm of vector a, i.e.

√∑

m |a[m]|2
‖a‖∞ ℓ∞ norm of vector a, i.e. maxm |a[m]|
‖A‖F Frobenius norm of matrix A, i.e.

√∑

m,n |A[m,n]|2

‖A‖W Weighted Frobenius norm of matrix A, i.e.
√∑

m,n W[m,n]|A[m,n]|2
‖A‖max Max norm of matrix A, i.e. maxm,n |A[m,n]|
‖A‖p,q ℓp,q norm of matrix A, i.e.

(
∑

m (
∑

n |A[m,n]|p)
q
p

) 1
q
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Additive and Multiplicative Identities
1 Vector of ones
0 Vector of zeros
I The identity matrix

Units
J Joules
m Meters
s Seconds
Hz Hertz, i.e. s−1

W Watts, i.e. J · s−1

dB Decibels (logarithmic unit of measurement)
lm Lumens
1 No Units

Common Scalar Definitions
E Number of epipolar lines (1)
I Number of camera pixels (1)
K Number of iterations (1)
P Number of projector pixels (1)
T Total exposure time (s)
g Sensor gain (1)
σ Standard deviation of read noise (1)
Φ Power of light source (W)
Ψ Number of photoelectrons per unit of radiant energy (J−1)
̺ A projector’s redistribution ratio (1)
τ Transient travel time (s)
ω Transient frequency (s−1)

Common Vector Definitions
a The ambient vector of length I (J)
i The photo vector of length I (J)
m The mask vector of length I (1)
n The noise vector of length I (1)
p The illumination vector of length P (J)

Common Matrix Definitions
M Matrix of size I ×K representing K mask vectors (1)
P Matrix of size P ×K representing K illumination vectors (J)
T The light transport matrix of size I × P (1)
Tω The transient frequency transport matrix of size I × P for frequency ω (1)
Π The probing matrix of size I × P (1)



Chapter 1

Introduction

The interaction between light and matter produces a wide array of complex optical phenomena. On

a clear day, the particles within the atmosphere scatter light of shorter (blue) wavelengths much

more strongly than longer (red) wavelengths to produce a blue sky. At sunset, sunlight must travel a

much longer distance through the atmosphere to reach an observer; thus, light at shorter wavelengths

scatters away before reaching the observer to produce the appearance of an orange or red sun. The

visible spectrum of light appears in rainbows after a rainy day by the way white light disperses

through raindrops. Wavy water surfaces refract and focus light to form caustics along lake and

sea beds. The scattering of light through participating media produces clouds and fog. Despite its

complex nature, this interaction between light and matter is easy to appreciate for its beauty and

is basic to our experience of the world.

The aim of computational light transport is to analyze such interaction with controllable lights

and cameras. The term active imaging refers to sensing devices that use controllable light sources

to probe an environment, by sending a light signal into a scene and detecting the light reflected in

response. This is in contrast with the term passive imaging, reserved for devices that simply detect

the naturally occurring light from an environment. For example, a camera is a device that can act

either passively or actively; modern cameras are commonly built with flash bulbs that can actively

discharge a burst of light when operating under low-light conditions.

Besides flash photography, there is a long history of devices that rely on active illumination. In

the mid-1920s, photoelectric cells captured some of the first “moving photos” by raster scanning a

spot of light across a subject at fast rates [113]. In the 1950s, the introduction of confocal microscopes

increased the resolution of microscopes by means of rejecting all scattered light emanating from the

out-of-focus regions of a volumetric specimen [85]. The finite time required for light to travel from

a source, to a target, and back to a detector—its “time-of-flight”—was used in combination with

the constant speed of light to calculate the distance of objects in the early 1960s [93]. In 1980,

photometric stereo was introduced to compute surface orientation from the appearance of objects

lit under different lighting conditions [136].

Unfortunately, there are several pitfalls when it comes to using active illumination. Many tech-

niques require hundreds or even thousands of measurements [112, 114, 132], producing bandwidth,

3
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storage, and processing issues. Moreover, a common assumption is that these measurements are

repeatable over time (i.e. the scene is static, or the acquisition period is short enough that the scene

appears to be static). These techniques can be inaccurate for complex scenes, particularly when

light “misbehaves” [40]. And outdoors, simply detecting the active illumination in the presence of

overwhelmingly strong sunlight is a challenge [44, 83].

This thesis presents a mathematical framework for describing and analyzing active illumination.

The underpinning principle is the linear relationship between emitted and received light signals,

represented by a scene’s light transport matrix [22, 91]. Analyzing a scene with active illumination is

tantamount to applying a mathematical operator on this light transport matrix. Though the study of

algorithms for performing matrix operations—numerical linear algebra—is remarkably mature [123],

evaluating a matrix operator to analyze the light transport matrix remains a significant challenge

for two simple reasons: the light transport matrix is unknown and is often too large to measure,

store, or analyze directly.

To overcome these practical issues, this thesis draws inspiration from work on analog optical

computing: processing data with light sources, modulators, lenses, and detectors. More than forty

years ago, analog optical computing sought to revolutionize the field of information processing [35, 75].

Its key tenet was that the speed and parallelism of light enables very high data rates, especially for

signal processing and pattern recognition tasks [4]. Although the versatility and rapid advance of

microprocessors ultimately overshadowed optical computing’s early ambitions, the designs studied

were very diverse; examples range from general-purpose optical computers [38] to highly specialized

ones for matrix calculations [5, 72]. This thesis is a first attempt to apply optical computing principles

to computational light transport. Its aim is to demonstrate that one can efficiently analyze the light

transport matrix of real-world scenes by applying concepts from numerical linear algebra to the

optical domain with controllable lights and cameras.

The main contribution of this thesis is a framework for analyzing the transport matrix without

capturing many photos or relying on expensive processing requirements. The thesis proposes solving

longstanding problems in vision and graphics by designing new imaging systems, these systems repre-

sent optical-domain implementations of matrix operations and are thus well founded mathematically,

and these are experimentally shown to push the state of the art. We achieve the ability to

• photo-realistically manipulate the illumination conditions of a given photo with only a handful

of measurements;

• directly acquire photos previously thought impossible to capture in a single shot, in which

specific light paths have been blocked, attenuated, or enhanced;

• accurately capture the 3D geometry of scenes having complex light transport properties;

• efficiently perform active 3D scanning in brightly-lit environments (e.g. under sunlight); and

• overcome the multipath interference problem associated with time-of-flight cameras.
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×=

transport matrix T
I × P

photo i
I × 1

illumination p
P × 1

Figure 1.1: The light transport equation.

1.1 The Light Transport Matrix

A common assumption made throughout computer graphics and vision is the linearity of light

transport. The interaction of light with a scene can be described mathematically in terms of a

simple linear relation known as the light transport equation (Figure 1.1) [22, 91]:

i = Tp (1.1)

where the vector p of length P represents the radiant energy emitted by P controllable light sources

during an exposure period of length T seconds (s), the vector i of length I represents the radiant

energy incident on each of I sensors during the same exposure period, and T is the scene’s I × P

light transport matrix. Element T[m,n] of the transport matrix is a unitless value describing

the fraction of radiant energy transmitted from source n that reaches sensor m. If the matrix

T is known, the light transport equation predicts the appearance of the scene under any given

illumination conditions—with light paths representing various transport phenomena (e.g. caustics,

inter-reflections) all included. Sections 1.2 and 1.3 discuss the components of the light transport

equation in further detail.

But first, we start by describing one of the basic radiometric quantities associated with the light

transport equation: radiant energy. Radiometric quantities that depend on differential areas and

angles (e.g. radiance and irradiance [125]) are omitted from this discussion to highlight a key point:

the light transport equation is an abstract model for the transfer of radiant energy and is completely

independent from the geometric configuration of light sources, sensors, and scenes.

1.1.1 Radiant Energy

Light is composed of photons, elementary particles that carry discrete bundles of energy along light

paths at the speed of light. The energy of a photon E, measured in joules (J), is inversely proportional

to its wavelength (i.e. its “color”):

E =
hc

λ
(1.2)

where the wavelength λ is measured in meters (m), c ≈ 2.998 × 108 m/s is the speed of light, and

h ≈ 6.626 × 10−34 J · s is the Planck constant. Because shorter wavelengths correspond to higher
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energy, “blue” photons (λ ≈ 450 nm) have higher energy than “red” photons (λ ≈ 650 nm). Radiant

energy is the energy of N photons, measured by summing the energy of the N individual photons.

The value of element p[n] in the light transport equation describes the radiant energy emitted by

light source n, and the value of element i[m] describes the radiant energy incident on sensor m. The

light transport equation assumes that the distribution of energy radiated at different wavelengths is

fixed for each light source p[n].

1.1.2 Ambient Light

In addition to the light emitted by controllable sources, uncontrollable light sources (e.g. the sun or

room lighting) can also contribute radiant energy to sensors. This ambient light can be modelled

by adding a vector a of length I to the right-hand side of the light transport equation, where each

element a[m] is the total amount of ambient radiant energy incident on sensor m over the exposure

period T .

1.2 Light Sources and Cameras

1.2.1 Cameras

Most modern digital cameras use CCD (charge-coupled device) or CMOS (complementary metal-

oxide-semiconductor) chips to record radiant energy. Their role is to convert incident radiant energy

into readable digital numbers.

These chips typically contain millions of photosensitive pixels arranged in a regular grid, each

of which acts as a light sensor. A photon striking a pixel can generate an electron through the

physical process known as the photoelectric effect, and the electron emitted in this manner is known

as a photoelectron [51]. This effect can be attributed to a transfer of energy from the absorbed

photon to the emitted photoelectron. The quantum efficiency (QE) of a chip is the ratio of the

number of emitted photoelectrons to the number of absorbed photons, a quantity that depends on

the wavelength of light.

Each pixel accumulates photoelectrons over an exposure time T . Once this time elapses, the

number of photoelectrons are read from each pixel as an amplified analog signal. An analog-to-

digital converter (ADC) quantizes the analog signal into a digital number known as a pixel value.

We describe the measured pixel values of RAW (i.e. unprocessed) images as follows [51]:

î = min { Ψi/g + ioffset + n, imax/g } (1.3)

where the vector i of length I represents the radiant energy generated for each of the I pixels, and the

vector î contains the corresponding pixel values. The vector Ψi represents the number of generated

photoelectrons, where the scalar Ψ is the ratio of the quantum efficiency over the energy of a single

photon (assuming a specific wavelength λ). The controllable scalar g represents sensor gain (the

amplification factor applied to the analog signal); this is controlled by selecting an ISO value (the

standardized industry scale for gain) where larger ISO values correspond to smaller g values. The
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constant ioffset describes a sensor’s black level (the pixel value associated with pure black), and

the scalar imax represents the full-well capacity (the amount of photoelectrons a pixel can hold).

The random vector n represents sensor noise accumulated throughout the sensing pipeline, and is

described in more detail in Section 1.2.3.

Imaging techniques exist to accurately convert pixel values back to radiant energy. Our approach

is to invert Eq. (1.3) by (1) appropriately controlling gain g and exposure time T to avoid pixel

saturation, (2) capturing a single RAW photo, (3) subtracting the scalar ioffset from the photo’s

pixel values, and (4) multiplying the result with scalar g/Ψ. Merging multiple photos, each captured

with different exposure and gain settings, is another well-established approach to accurately measure

radiant energy [23, 51], especially for scenes with a high dynamic range where the ratio between the

largest and smallest radiant energy values is large.

1.2.2 Light sources

Throughout this thesis, we use projectors as our controllable source of illumination, where every

projector pixel is itself a controllable light source.

We frequently use radiant power to describe the rate at which energy is emitted by these light

sources. Radiant power is defined as the rate of emitted (or received) radiant energy per unit time,

measured in watts (W = J · s−1):

Φ =
dE

dt
(1.4)

where time t is measured in seconds. A light source produces total energy ΦT measured in joules

after time T . Luminous power, measured in lumens (lm), is the photometric equivalent to radiant

power [122]. Lumens represent the perceived power of light, accounting for the varying sensitivity

of the human eye to different wavelengths of light.

We rely on three different projector technologies for illumination: DLP (digital light processing),

LCD (liquid crystal display), and MEMS (microelectromechanical systems) projectors. In a DLP

projector, the image is created by selectively reflecting light with an array of mirrors, known as a

Digital Micromirror Device (DMD); each mirror represents a projector pixel that can be rapidly

toggled on or off. A LCD projector passes light through an array of liquid crystal cells, whose

transmittance can be controlled electronically. A MEMS laser projector uses a mirror that can pan

and tilt to scan a laser beam across a scene; as the beam moves across the scene, the projector

modulates the beam intensity to produce the desired image.

1.2.3 Noise

Random fluctuations or uncertainty in physical events (e.g. the detection of photoelectrons) is

known as noise. Camera sensors have three primary sources of noise: read noise, photon noise, and

quantization noise.

n = nread + nphoton + nquantization (1.5)

Each element n[m] is a randomly sampled value that impacts the measured pixel value î[m], as

explained in Eq. (1.3).
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Read noise, nread, is the electronic noise introduced by the sensor prior to analog-to-digital

conversion. The random values of vector nread are typically modelled with a mean-zero Gaussian

distribution having standard deviation σ. This noise is independent at each pixel, and independent

of the signal intensity. The value of the standard deviation σ depends on the gain setting g and the

specifications of the sensor itself.

Photon noise, nphoton, exists because of the discrete nature of electron and photon particles, and

the assumption that the emission or detection of individual photons can be treated as independent

events. Although the expected number of photoelectrons detected by a pixel, Ψi[m], can be any

non-negative real value, the actual number of photoelectrons detected, x[m], must be integer. The

probability of a pixel observing exactly k photoelectrons is described by the Poisson distribution:

Pr (x[m] = k) =
(Ψi[m])ke−Ψi[m]

k!
(1.6)

where e ≈ 2.718 is Euler’s number, k! is the factorial of k, and x = Ψi + gnphoton. The mean

and variance of the Poisson distribution is Ψi. It follows that the mean value of the noise vector

nphoton is zero, and its variance is Ψi/g2. When the number of expected photoelectrons is large, the

probability distribution function can be closely approximated with a Gaussian distribution.

Quantization noise, nquantization, represents the round-off error introduced by the analog-to-

digital conversion step. Specifically, there exists a range of analog signals that produce the same

digital number after quantization, and the vector nquantization is the difference between the original

and quantized signals. Quantization noise can be modelled as a uniformly distributed random value

between −b/2 and b/2, where the scalar b is the least significant bit of the digital pixel value. The

variance of a continuous uniform distribution with spread b is 1
12b

2.

The signal-to-noise ratio (SNR) of î characterizes image quality as the ratio between its digital

pixel value and the standard deviation of its noise:

SNR(̂i) = 20 log10




E
[

î
]

√

Var (n)



 (1.7)

Here, we express this ratio in decibels (dB), a logarithmic unit of measurement typically associated

with SNR. Given the image formation model in Eq. (1.3) and the noise terms in Eq. (1.5), the

expression for the SNR of digital sensors can be expanded to

SNR(̂i) = 20 log10




Ψi/g

√

σ2 +Ψi/g2 + 1
12b

2



 (1.8)

where we assume that the signal î is not saturated, and the constant ioffset representing the sensor’s

black level is subtracted from the measured pixel value. An image with mean SNR 20 dB (i.e. a

10:1 ratio between signal and noise) is considered to be of “acceptable image quality”, and an image

with mean SNR 32.04 dB (i.e. a 40:1 ratio) has “excellent image quality” [100].
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1.3 Light Paths

We adopt the geometric optics model for light transport, where light travels along straight lines

known as rays. When light strikes a surface, light may be reflected or refracted along a new ray. A

light path is a sequence of rays connecting any two points (e.g. source and sensor).

Figure 1.2 illustrates two important light paths in a projector-camera system: direct paths, and

indirect paths. Direct paths are light paths that interact with at most one scene point, whereas

indirect paths interact with two or more scene points. Note that, in practice, a camera pixel records

light from a bundle of direct (and indirect) paths, because the physical area of a pixel is non-zero.

Similarly, a projector pixel emits a bundle of direct (and indirect) paths.

There are two general ways to classify direct paths. A specular direct path occurs when light is

specularly redirected by a scene point (e.g. a mirror reflection). A diffuse direct path occurs when

the light incident on a scene point is reflected at many angles, i.e., it scatters light diffusely.

We also define two new categories to classify different indirect light paths: specular indirect paths,

and diffuse indirect paths. Specular indirect paths are reflected or refracted specularly multiple times,

and scatter diffusely no more than once (e.g. caustics). On the other hand, diffuse indirect paths

scatter two or more times within a scene before reaching a sensor (e.g. diffuse inter-reflections,

sub-surface scattering).

Note that a regular photo of a scene records all radiant energy, regardless of the paths it follows

to reach the sensor. However, this photo can also be viewed as being the sum of multiple latent

images, each representing a different component of light transport (Figure 1.3). For example, a

photo is the sum of a direct component (Figure 1.3(b)) and an indirect component (Figure 1.3(c)).

camera
(I pixels)

projector
(P pixels)

mirror

object

Figure 1.2: Light paths for a projector-camera system. There are many ways for light to
reach the camera. There are direct paths (black), where light travels from the projector, to a single
scene point, and back to the camera. There are also indirect paths (red, green), where light interacts
with multiple scene points before reaching the camera. We also classify indirect paths as being either
specular or diffuse. A diffuse indirect path (red) scatters at two or more diffuse points, and a specular
indirect path (green) interacts with at most one diffuse scene point. Note that the mirror specularly
redirects—rather than scatters—the green light path.
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(a) regular photo

(b) direct component (c) indirect component

(d) diffuse direct (e) specular direct (f) diffuse indirect (g) specular indirect
component component component component

Figure 1.3: Components of light transport. We use a projector and a camera to approximate
different components of light transport for a real scene; more details in Chapter 3 and Section 3.4.
(a) A regular photo of the scene records all light, regardless of how it reaches the sensor. From
left to right, the scene contains a mirror, a bar of soap, and an open book. The mirror specularly
reflects light onto the wall behind the scene; light penetrates the surface of the bar of soap, scatters
multiple times, and exits the surface at another point; some light specularly reflects off the surface
of the soap; and the open book diffusely inter-reflects light between its pages. (b) The direct
component represents all light going from the source, to a point in the scene, and directly back to
the camera. Note that the light reflected by the mirror no longer appears on the wall. (c) The
indirect component includes the light reflected by the mirror, the sub-surface scattering induced by
the soap, and the light inter-reflecting within the open book. (d) The majority of direct light is a
result of diffuse scattering. Here, the bar of soap appears very dark, because its appearance in (a) is
due to specular highlights and sub-surface scattering. (e) The specular direct component captures
the soap’s specular highlight. (f) Diffuse inter-reflections and sub-surface scattering are examples
of diffuse indirect transport. (g) The specular indirect component includes light travelling from the
source, to the mirror, to the wall, and back to the sensor; it also includes light going from the source,
to the wall, to the mirror, and back to the sensor. Because the indirect components are dim relative
to the direct components, we brighten (c), (f), and (g) by a factor of 2.
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1.3.1 Elements of the Light Transport Matrix

The scattering throughput function f(x) represents the radiant energy carried along a light path

x [125]. A property of this function is that it depends only on the geometry of the scene itself, and

not on the power of the light source. For brevity, we omit a discussion on the geometry of these

scattering throughput functions, and instead refer to the in-depth discussion provided by Veach [125].

Each element of the transport matrix T[m,n] describes the ratio of radiant energy transmitted

along a bundle of light paths, and is the solution to an integral of scattering throughput functions:

T[m,n] =

∫

Ωm,n

f(x) dµ(x) (1.9)

where Ωm,n is the space of light paths connecting source n to sensor m, and µ(x) is the corresponding

measure on the space of light paths. In computer graphics, rendering is the process of generating

an image from the description of a scene by solving an integral of a similar form [125].

A physically-realistic scattering throughput function has several properties. The function must

be non-negative (because radiant energy is a non-negative quantity) and must conserve energy:

0 ≤ f(x), 0 ≤ T[m,n] =

∫

Ωm,n

f(x) dµ(x) ≤ 1 (1.10)

The scattering throughput function is also thought to obey the Helmholtz reciprocity principle [125].

Helmholtz reciprocity states that the value of measure f(x) for a light path x does not depend on

the direction light travels along said path (i.e. swapping the position of a projector pixel n and

camera pixel m produces the same value T[m,n]) [114].

1.4 Light Transport Analysis

After more than a decade of graphics and vision research, there is now a large repertoire of numerical

methods available to analyze the matrix T of real-world scenes. Examples include methods for

decomposing [7], transposing [114], approximating [30], or inverting [112] the matrix; methods that

use its properties for image-based rendering [22] or transport-robust shape acquisition [42]; and

imaging techniques that enhance the contribution of specific light transport components [90, 106].

As an introduction to the area, this section focuses on three of the more established works in

computational light transport: image-based relighting [46], triangulation-based 3D scanning [116],

and dual photography [114].

1.4.1 Image-based Relighting

Image-based relighting uses the matrix T and the light transport equation (Eq. (1.1)) to photo-

realistically synthesize images under novel lighting conditions [46]. For synthetic lighting conditions

p, the light transport equation computes a photo of the scene lit under the given lighting conditions.

Figure 1.4 shows an example of image-based relighting for a scene containing only two light sources.
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Image-based relighting of a photo, as first proposed by Haeberli [46]. The light
transport equation can be used to synthesize photos of a scene under novel illumination conditions.
The light transport matrix T used here has size I × 2, representing the I pixels in each photo and
the two lamps within the scene. (a) RAW photo corresponding to column T[1] captured using
illumination p = [1, 0] (left lamp “on”). (b) RAW photo corresponding to column T[2] captured
using illumination p = [0, 1] (right lamp “on”). (c) RAW photo of the scene captured for p = [1, 1]
(both lamps “on”). (d) A photo under synthetic lighting, by adding photos (a) and (b). (e) The
difference between the RAW photo (c) and synthetic photo (d). The residual error is dominated by
photon noise, which is largest in bright regions of the scenes. (f) A weighted combination of photos
(a) and (b), created with the red channel of photo (a) with the blue channel of photo (b).

The visual effects industry uses image-based relighting to seamlessly place actors into virtual en-

vironments [21, 22, 52], by ensuring that the image of the actor is radiometrically consistent with the

lighting within the virtual environment. To achieve this, a rig of cameras and light sources captures

how an actor appears under different lighting directions to construct the light transport matrix. The

image of the actor is then photorealistically relit with Eq. (1.1), before being superimposed onto a

computer-generated scene.

1.4.2 Triangulation-based 3D Scanning

A triangulation-based 3D scanner uses a projector-camera system (Figure 1.2) to infer the shape

of real-world objects [18, 34, 42, 110, 116]. To find the 3D position of a point on the surface of

an object, the method first establishes a one-to-one correspondence between the projector pixel

illuminating the point and the camera pixel observing the same point. Provided that the projector

and camera have known calibration and pose, the 3D rays corresponding to these 2D pixels can be

easily computed. Triangulation is the process of finding the intersection of these two rays to recover
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the 3D point [48].

While triangulation-based 3D scanning has not previously been considered a light transport

analysis technique, it does in fact represent a rudimentary operation on the transport matrix. This

is because the correspondence problem requires identifying the camera and projector pixels that

form direct light paths.

To establish correspondences, the standard approach is to identify the projector pixel n that

transfers the most radiant energy to a particular camera pixel m [116]:

n = argmax
k

T[m, k] (1.11)

This approach assumes direct light paths transfer more radiant energy than indirect light paths, so

that matrix element T[m,n] represents a direct light path.

The diverse application space of 3D scanners includes digitally documenting works of art (e.g.

Michelangelo’s David) [77], enabling users to interact with a computer through gestures and poses

(e.g. Microsoft’s Kinect), replicating objects with 3D printers, and navigating autonomous vehicles

and robots through treacherous environments.

1.4.3 Dual Photography

Dual photography is a method that photorealistically synthesizes an image from the light source’s

point of view, by interchanging the roles of sensors and sources (i.e. lights sources behave like sensors,

and sensors behave like light sources). This method by Sen et al. [114] exploits the Helmholtz

principle, which states that the transfer of radiant energy along a light path does not depend on the

direction of propagation.

According to Eq. (1.1), the radiant energy measured by each sensor m is a weighted sum of

transport elements associated with sensorm (i.e.
∑

n T[m,n]p[n]). In dual photography, the radiant

energy measured by a light source n is instead a weighted sum of transport elements associated with

source n (i.e.
∑

m T[m,n]r[m]), as given by the dual equation:

s = TTr (1.12)

where the matrix TT is the transpose of the light transport matrix, element r[m] is the radiant

energy emitted by sensor m, and element s[n] is the radiant energy detected by light source n. For

projector-camera systems (Figure 1.2), this dual equation computationally interchanges the position

of the projector and camera within the scene. This signifies that the mth row of transport matrix

T is an image of the scene lit by camera pixel m and captured from the projector’s point of view.

1.4.4 Limitations

The main challenge associated with these computational light transport methods (and others) is

that they require the matrix T of a scene to be known [92, 112, 114, 132], which is compounded

by the fact that the transport matrix is often extremely large. For example, the transport matrix
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of a one megapixel camera and a one megapixel projector already contains 1012 elements. Directly

measuring such a matrix with a standard 30 Hz camera would require 106 measurements and over 9

hours of acquisition time, all while assuming that the scene remains perfectly static in the confines of

a darkroom. Moreover, assuming the camera records 8-bit pixel values, the uncompressed transport

matrix requires one terabyte of storage space.

To deal with these issues, a variety of techniques have been proposed to efficiently capture the

matrix [22, 27, 30, 97, 99, 111, 114, 115, 130]. Unfortunately, these techniques often require hundreds

or thousands of high dynamic range photos for complex scenes, can be computationally demanding,

and their performance is hard to characterize in a scene-independent way.

1.5 Overview

One of the key questions addressed in this thesis is how to overcome the bottleneck associated with

computational light transport. Motivated by large-scale matrix computations which have been the

focus of numerical linear algebra since the 1970s [109], our solution involves optical algorithms that

analyze the light transport matrix T without ever measuring the matrix directly. To achieve this,

we design algorithms that require nothing more than the ability to compute matrix-vector products,

the same operation performed by the light transport equation (Eq. (1.1)).

Chapter 2 first introduces the concept of optical linear algebra for analyzing light transport,

using a class of iterative methods known as Krylov subspace algorithms. In numerical linear algebra,

these Krylov subspace algorithms are among the most successful to probe for eigenvectors of large

matrices through matrix-vector products. Chapters 3 to 5 explore a new regime of imaging known

as optical probing, a generalized imaging technique that provides fine-grain control over which light

paths contribute to a single photo. Optical probing makes it possible to manipulate the direct and

indirect light paths within a scene, dynamically scan 3D geometry of objects with complex optical

properties, and even use a low-power light source to scan objects under bright sunlight. Chapter 6

establishes a fundamental link between computational light transport and time-of-flight imaging to

analyze the time light takes to travel along specific light paths.



Chapter 2

Optical Computing for Fast Light

Transport Analysis

We present a first attempt to apply optical computing principles to the analysis of light transport

in a real-world scene. Specifically, we show how to efficiently perform numerical computations on

a scene’s unknown transport matrix (eigenvector analysis, low-rank approximation, inversion) by

doing part of those computations in the optical domain with projectors and cameras.

Recall that real-world transport matrices pose unique challenges for its analysis; they can be

extremely large, making storing and analyzing the full matrix infeasible. Moreover, according to

Eq. (1.1), the only way to get information about the matrix T is by multiplying it with a vector,

i.e., by illuminating the scene with vector p and capturing the product, Tp, in a photo.

Fortunately, very large matrices have long been a subject of study in numerical linear algebra.

In particular, the family of Krylov subspace methods [109] is designed for matrices just like T, i.e.,

very large and unobservable matrices that can only be accessed by computing their product with

a vector. These iterative algorithms are well understood and come with explicit accuracy and

convergence guarantees.

Here we leverage this body of work for light transport analysis by implementing Krylov subspace

methods partially in optics. Our approach is based on a simple principle: treat the scene as a

“black-box subroutine” that accepts any non-negative vector p as “input” and returns as “output”

the vector’s product, Tp, with the unknown transport matrix. Thus, any efficient numerical method

that relies exclusively on matrix-vector products can be readily implemented in optics and used to

analyze T. To do the conversion, we just replace all matrix-vector products with calls to a function

that computes them optically, with illuminate-and-capture operations. This turns Krylov subspace

methods into complete pipelines for analyzing T—as they pursue their numerical objective, they

fully specify how to illuminate the scene and how to process its photos.

Implementing Krylov subspace methods directly in the optical domain has several advantages.

First, the convergence rate of these methods depends only on the distribution of T’s singular values,

not its absolute size. This means that T can be analyzed at full resolution by capturing very

15
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few photos. Second, computations are efficient because the only computationally-expensive step

is multiplying the full-resolution matrix T with a vector—which we do optically. Third, optical

implementations are straightforward because they differ from widely-available numerical software

in just one step, i.e., multiplication with T. Last but not least, by moving this multiplication

to the optical domain we make other computations feasible on the full-resolution T, beyond mere

acquisition—computing eigenvectors of T, computing products with T’s inverse—without having to

acquire the transport matrix first.

We focus on optical versions of two Krylov subspace methods: Arnoldi iteration to acquire a low-

rank approximation of the matrix for image-based relighting (Section 2.2); and generalized minimal

residual (GMRES) to invert light transport (Section 2.3).

2.1 Computing with Light

2.1.1 A Simple Example: Optical Power Iteration

We begin with the toy problem of computing the principal eigenvector of a square transport matrix

T. A non-zero vector v is an eigenvector of a square matrix T if it satisfies the following equation:

Tv = λv (2.1)

where λ is a scalar known as the eigenvalue associated with eigenvector v. The principal eigenvector

of a matrix produces the eigenvalue with the greatest absolute value, |λ|.
Here, we show how to implement power iteration in optics. Power iteration is a simple numerical

algorithm for estimating the principal eigenvector of a square matrix. The algorithm assumes that

the absolute value of the principal eigenvector is strictly larger than all other eigenvalues [123]. When

implemented optically, it estimates the principal eigenvector of T without advance knowledge of the

matrix and without directly capturing any of its elements.

Power iteration uses the fact that the sequence p,Tp,T2p,T3p, . . . converges to T’s principal

eigenvector for any initial vector p not orthogonal to the principal eigenvector v (i.e. pTv 6= 0).

The numerical algorithm simply generates this sequence for a fixed number of iterations using the

boxed matrix-vector product shown in Algorithm 1:

Algorithm 1 The power iteration algorithm.

Numerical Implementation:

In: matrix T, iterations K
Out: principal eigenvector of T

1: p1 = random vector
2: for k = 1 to K

3: ik = Tpk

4: pk+1 = ik/‖ik‖2
5: return pk+1

Optical Implementation:

In: iterations K
Out: principal eigenvector of T

p1 = positive vector
for k = 1 to K

illuminate scene with vector pk

capture photo & store in ik
pk+1 = ik/‖ik‖2

return pk+1
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photo
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Figure 2.1: Power iteration with a projector and a camera.

p1 p2 p3

p4 p50 p100

Figure 2.2: Optical power iteration in action. We first arranged the camera and projector
to share the same viewpoint. We started with a constant illumination vector p1, shown above, so
the first photo of the scene was captured under constant illumination. That photo became the next
illumination vector, p2, also shown above. The illumination vectors change very little after about
50 captured photos, indicating that a good approximation of T’s principal eigenvector was found.

Implementing power iteration in optics amounts to replacing this matrix-vector product shown in

the numerical implementation of Algorithm 1 with the illuminate-and-capture operation shown in

the corresponding optical implementation. This is only possible when the transport matrix is square,

i.e., when illumination vectors and captured photos are the same size.

The optical implementation turns the power iteration algorithm into an illumination procedure

with a feedback loop. The procedure repeatedly captures a photo, converts it to a unit vector, and

uses it to illuminate the scene. See Figure 2.1 for a diagram of this procedure. Figure 2.2 shows an

example of using it to compute the principal eigenvector of the full-resolution transport matrix for

a real scene.

Although very simple algorithmically, optical power iteration highlights an important point about

our general approach: the efficiency of image acquisition is directly related to the convergence

properties of the underlying numerical algorithm—the faster it converges, the fewer photos its optical

implementation needs to capture.

From a numerical standpoint, power iteration is not an efficient algorithm for computing eigen-

vectors. It computes just one eigenvector, albeit the principal one, and the approximation error

decreases by a factor of |λ2|/|λ1| at each iteration, where λ1 and λ2 are the top two eigenvalues of
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T [123]. The algorithm may converge very slowly when T’s top two eigenvalues are similar, and

may not converge at all if they are identical. Naturally, these limitations are shared by its optical

counterpart.

To analyze light transport efficiently, we focus on much more efficient numerical algorithms from

the class of Krylov subspace methods.

2.1.2 Optical Krylov Subspace Methods

Krylov subspace methods represent some of the most important iterative algorithms for solving

large linear systems [109]. Their relevance for light transport comes from the existence of powerful

methods for analyzing large sparse matrices, like T, be it square or rectangular.

Briefly, the Krylov subspace of dimension k is the span of vectors produced by power iteration

after k steps:

p1 p2 p3 · · · pk+1

m m m
Tp1 T2p1 · · · Tkp1

. (2.2)

While individual algorithms differ in their specifics, Krylov subspace methods take an initial vector

p1 as input and, in their kth iteration, compute a vector in the Krylov subspace of dimension k. The

important characteristic of these methods is that they do not require direct access to the elements

of T; all they need is the ability to multiply T, and potentially its transpose, with a vector. This

makes them readily implementable in optics.

Optical matrix-vector products for general vectors Unlike power iteration, general Krylov

subspace methods require multiplying T with vectors that may contain negative elements. Even

though we cannot illuminate the scene with “negative light”, implementing such products optically

is straightforward. We follow the approach outlined by Goodman [35], and express a general vector

p as the difference of two non-negative vectors (p)+ and (p)−:

p = (p)+ − (p)− (2.3)

Tp = T(p)+ −T(p)− . (2.4)

To implement Eq. (2.4) optically, we use two illuminate-and-capture operations: one to compute

T(p)+ and one to compute T(p)−. We subtract the two captured photos to get the product with p.

This differencing operation has the additional benefit that it automatically eliminates contribu-

tions from ambient light, represented by vector a (Section 1.1.2). This is because the same amount

of ambient light is recorded in both photos, namely T(p)+ + a and T(p)− + a.
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Figure 2.3: Camera-projector arrangements. We use three degrees of freedom in our arrange-
ments: number of distinct viewpoints (one or two); ability to compute products with TT (yes or
no); and type of illumination, i.e., projecting patterns directly onto the scene as in (a), or displaying
them on a screen, as in (b). Four of the eight possible arrangements are shown above.

Symmetric vs. non-symmetric transport matrices The convergence behavior of Krylov

subspace methods depends quite significantly on whether or not T is a symmetric matrix [78].

We restrict ourselves to the symmetric case, where convergence is well understood, by choosing

appropriate projector-camera arrangements.

There are two general ways to enforce symmetry when implementing Krylov subspace methods

in optics. The first is to make sure that T itself is symmetric. This can be done with the coaxial

arrangement of Figure 2.3(c) and is quite common [112, 142]. We also assume that the projector

and camera resolutions match. Interchanging the position of the projector and camera in a coaxial

system by definition produces the same light transport matrix, because it neither changes the point

of view of the projector or the camera; therefore, according to Helmholtz reciprocity, the value of

elements T[m,n] and T[n,m] must be the same (i.e. TT = T). This arrangement is also quite

limited because it does not allow any viewpoint variations between the projector and camera.

A second way to enforce symmetry is to apply the methods to a different matrix whose symmetry

is guaranteed:

T∗ = TTT . (2.5)

Optically multiplying T∗ with a vector, however, involves matrix-vector products with both T and

its transpose:

T∗p = TT(Tp) . (2.6)

A single camera-projector pair is not enough to compute both products optically. For this, we use

the arrangement of Garg et al. [30] shown in Figure 2.3(d). This arrangement uses two camera-

projector pairs and enables two distinct project-and-capture operations. The first camera-projector

pair computes the result of the light transport equation, Tp (Eq. (1.1)); in Figure 2.3(d), this

operation “illuminates from the left, captures from the right”. By swapping the positions of the

camera and projector, the second camera-projector pair optically evaluates the dual equation, TTr

(Eq. (1.12)); in Figure 2.3(d), this operation “illuminates from the right, captures from the left”.
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Algorithm Step 1 Step 4 Step 5

Power iteration p1 = positive vector pk+1 = ik/‖ik‖2 return pk+1

(Section 2.1.1)

Arnoldi p1 = non-zero vector pk+1 = ortho(p1, . . . ,pk, ik) return [i1 · · · iK ][p1 · · ·pK ]T

(Section 2.2) pk+1 = pk+1/‖pk+1‖2

GMRES p1 = target photo i pk+1 = ortho(p1, . . . ,pk, ik) return [p1 · · ·pK ][i1 · · · iK ]†i
(Section 2.3) pk+1 = pk+1/‖pk+1‖2

Table 2.1: The Krylov subspace methods we implement, along with their differences from power
iteration. In the numerical steps listed above, the function ortho() projects the last vector ik in
its parameter list onto the subspace orthogonal to the columns of P = [p1 · · ·pk]; the orthogonal

projection of ik is given by the formula pk+1 = ik − P(PTP)
−1

PTik. See the relevant sections for
a discussion of the specific algorithms and their optical implementation.

Rank and sparsity of transport matrices The performance of Krylov subspace methods also

depends on the rank and sparsity of the light transport matrix, properties that depend on the

projector-camera arrangement, the scene, and—most importantly—the light paths they induce.

Light paths that scatter only once (e.g. direct paths, specular indirect paths) produce sparse

high-rank transport matrices. These light paths interact with only one diffuse point within the scene.

Ordinarily, only one specular path connects this diffuse scene point to the camera (i.e., only one

camera pixel observes this point), and a single specular path connects the same diffuse point to

the projector (i.e., only one projector pixel illuminates this point). This one-to-one correspondence

between projector pixels and camera pixels creates a sparse high-rank transport matrix.

Light paths scattered by two or more scene points (e.g. diffuse indirect paths) produce dense

low-rank transport matrices. A diffuse point observed by a camera pixel receives light from many

other diffuse scene points lit by different projector pixels; this creates a many-to-many mapping

between projector pixels and camera pixels. Moreover, two nearby diffuse points observed by two

adjacent camera pixels receive similar contributions of light; as a result, many rows of the transport

matrix are linearly dependent on each other.

Consider imaging a convex, diffuse object with the arrangement illustrated in Figure 2.3(a).

Since the object is convex, this arrangement produces only direct light paths. As a result, the

corresponding transport matrix is high-rank and sparse. Note that displaying a projector pattern

directly onto the object will transfer it to the photo in the form of a distorted texture, i.e., it transfers

a projector’s high-frequency content to the camera.

Placing a display screen (a diffuser) between the projector and the scene, as illustrated in Fig-

ure 2.3(b), produces a very different response for the same diffuse object. Because this arrangement

now produces diffuse indirect paths, the transport matrix is low-rank and dense. Displaying a

pattern onto a screen transfers only low frequencies to the camera in the form of shading.

General scenes make acquisition much more challenging by bridging the gap between these two

extremes, i.e., by reducing rank and sparsity in Figure 2.3(a) and increasing them in Figure 2.3(b).

Note that T would be sparse and high-rank for (b) if the object was a perfect mirror, because light

transport would consist of only specular indirect paths.
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Arnoldi and GMRES Krylov subspace methods come in many flavors depending on the numer-

ical objective (eigenvalue estimation, solution of linear systems, etc.); type of matrix (symmetric,

non-symmetric, positive definite, etc.); and error tolerance. We explore two of these methods here:

Arnoldi iteration and GMRES.

When implemented in optics, Arnoldi and GMRES follow the same basic loop as optical power

iteration. They capture a photo, process it, project the result back onto the scene, and repeat for

a fixed number of iterations. Both methods differ from power iteration in just three steps. These

differences are summarized in Table 2.1.

2.2 Optical Arnoldi for Transport Acquisition

We now show how to efficiently capture low-rank approximations of full-resolution transport matrices

with the Arnoldi method.

The Arnoldi method can be thought of as a much more efficient version of power iteration. At the

kth iteration, the algorithm has enough information to estimate the top k eigenvectors (or singular

vectors) of a matrix rather than just one of them. Unlike power iteration, Arnoldi does not estimate

these eigenvectors directly. It generates a sequence of orthogonal vectors, p1, . . . ,pk, whose span

approximates the span of the top k eigenvectors. This approximation, which tightens as k increases,

makes it possible to compute a rank-k approximation of the matrix without direct access to its

elements. We refer the reader to Saad [109] for the basic theory behind the Arnoldi method and to

[36, 117] for a convergence analysis and detailed error bounds on its rank-k approximation.1

Algorithm 2 Optical Arnoldi for rank-K transport acquisition.

For symmetric T:

In: iterations K
Out: rank-K approximation of T

1: p1 = non-zero vector
2: for k = 1 to K

3:

illuminate with (pk)+ and (pk)−
capture photos (ik)+ and (ik)−
ik = (ik)+ − (ik)−

4: pk+1 = ortho(p1, . . . ,pk, ik)
pk+1 = pk+1/‖pk+1‖2

5: return [i1 · · · iK ][p1 · · ·pK ]
T

For non-symmetric T:

In: iterations K
Out: rank-K approximation of T

p1 = non-zero vector
for k = 1 to K

left-illuminate with (pk)+ and (pk)−
right-capture photos (dk)+ and (dk)−
dk = (dk)+ − (dk)−

rk = dk/‖dk‖2
right-illuminate with (rk)+ and (rk)−
left-capture photos (sk)+ and (sk)−
sk = (sk)+ − (sk)−

pk+1 = ortho(p1, . . . ,pk, sk)
pk+1 = pk+1/‖pk+1‖2

return [d1 · · ·dK ][p1 · · ·pK ]
T

Two optical implementations of Arnoldi are shown in Algorithm 2, one for symmetric and one for

non-symmetric T. For a symmetric T, the implementation amounts to substituting three steps in

1Note that another often-used method, Lanczos, is the Arnoldi method optimized for symmetric matrices.
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Figure 2.4: Arnoldi iteration with two projectors and two cameras.

Figure 2.5: Image-based relighting. To create the relighting results shown above, just forty
photos were used to acquire 700K × 100K transport matrices with the optical Arnoldi algorithm.
Note the complex shadows cast by the hat (both sharp and soft), the complex highlights on the hair
and the shadows it casts, and the many shadows, caustics and indirect lighting effects in the glass
scene. The entire process (photo capture, matrix reconstruction, relighting) took four minutes on a
standard PC for each scene.

power iteration’s optical implementation with the corresponding steps from Table 2.1. Because the

vectors generated by Arnoldi contain negative values, we use two illuminate-and-capture operations

per matrix-vector product, one for their positive and one for their negative component. The optical

implementation for non-symmetric transport matrices uses two sets of illuminate-and-capture opera-

tions, applied to T and TT respectively, in order to implement Eq. (2.6). Therefore, we capture four

photos per Arnoldi iteration when T is non-symmetric. Figure 2.4 shows the schematic diagram for

this case, Figure 2.5 shows relighting results after reconstructing T, and Figure 2.6 shows photos

captured during the run.

The optical Arnoldi algorithm can be thought of as building two bases simultaneously: an or-

thogonal basis for the subspace of illumination vectors and a basis for the subspace of photos. For a

symmetric T, the illumination basis contains all vectors the algorithm used to illuminate the scene;

the photo basis contains all photos it captured. In the non-symmetric case, the illumination basis

contains the left-illumination vectors (first row of Figure 2.6) and the photo basis the right-captured

photos (second row of Figure 2.6). The matrix itself, returned in the algorithm’s last step, just

multiplies these two bases together.
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p1 p10 p40

d1 d10 d40

s1 s10 s40

Figure 2.6: Optical Arnoldi in action for the hat scene rendered in Figure 2.5. We used the non-
symmetric configuration in Figures 2.3(d) and 2.12(a), with the left camera-projector pair behind a
display screen. The photo and illumination vectors contain both positive (red) and negative (blue)
values. We started with a constant positive left illumination vector (p1) so the first photo captured
with the right camera (d1) was positive as well. This photo was then projected onto the scene
with the right projector. Note that since the left camera views the scene from behind the display
screen, which is essentially a diffuser, its photos contain mainly low frequencies (s1). We produced
the relighting result in Figure 2.5 by estimating a low-rank T from ten Arnoldi iterations (i.e., 40
photos).

Scene relighting To render a scene under a novel illumination vector p, we rewrite Eq. (1.1)

in terms of the captured illumination and photo bases. The equation for the non-symmetric case

becomes

i = [d1 · · ·dK ][p1 · · ·pK ]
T
p . (2.7)

This equation can be thought of as a two-step relighting procedure: first we compute p’s coordinates

in the left-illumination basis by projecting p onto it; then we linearly combine the right-captured

photos to obtain the relighting result, i.

2.2.1 Relation to Prior Work on Transport Acquisition

We discuss related work from a numerical perspective in terms of four properties—T’s rank, sparsity,

row space, and symmetry.

An important distinction between methods is the rank and sparsity of matrices they acquire, and
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this distinction is implicit in the choice of a light source and scene. Techniques geared toward sparse

high-rank matrices [30, 98, 114] rely on T’s ability to transfer both high and low frequencies from

the illumination domain to the camera domain; techniques acquiring dense low-rank matrices [22,

27, 130] assume that high-frequency illumination does not propagate to the camera domain. Optical

Arnoldi is primarily applicable to dense low-rank matrices. These are often representative of natural

settings, where illumination comes from point or area sources and where mirror reflection and sharp

shadows do not dominate light transport.

The choice of illumination ensemble used to acquire the transport matrix is critical because it

controls the basis for T’s row space. To maximize efficiency, this ensemble should allow accurate

reconstruction of T’s rows from as few illumination vectors as possible. Many ensembles have

been used for this purpose, including Haar wavelets [97], Hadamard patterns [111] and single-source

illuminations [27]. For instance, Wang et al. [130] use the low-rank configuration in Figure 2.3(b) and

single-source illumination vectors to reconstruct T’s rows with the kernel Nyström method. These

illumination ensembles have been scene independent in all previous work on transport acquisition.2

For low-rank matrices, no scene-independent ensemble is optimal. The optimal ensemble under the

Frobenius norm is scene dependent and consists of T’s singular vectors [123]. This is precisely the

ensemble optical Arnoldi approximates.

Garg et al. [30] and Wang et al. [130] used coaxial camera-projector arrangements to exploit

the fact that knowing a subset of both rows and columns of T makes it easier to reconstruct the

rest. Numerically, however, symmetry has much more fundamental effect on a matrix, as it affects

its eigenstructure. While we use similar camera-projector arrangements, our choices are guided

primarily by numerical convergence considerations.

Sen et al. [115] and Peers et al. [99] recently used compressed sensing techniques to reconstruct

individual rows of T. These methods are complementary to our own, as they apply to a different

matrix class—sparse, high-rank matrices—for which a low-rank approximation might lead to ren-

dering artifacts. The scene-independent ensembles of these methods, however, are inefficient for

capturing dense low-rank matrices. They are also very expensive computationally and depend on

the size of T. Here, by seeking to maximize the “information content” of each captured photo,

optical Arnoldi makes the number of iterations required for convergence dependent on T’s singular

value distribution, not its size.

Computing transport eigenvectors Eigenvectors and singular vectors of real-world transport

matrices have been used for compression [81] and to accelerate rendering [79]. In all cases, they were

computed after acquiring T. With optical Arnoldi, we analyze light transport in reverse: we first

construct a basis that approximates the span of the top K transport eigenvectors, and then use that

basis to reconstruct the matrix.

2Although techniques have been proposed for sampling vectors from within an ensemble in a scene-dependent way
(e.g., [27]), the ensemble itself is fixed and independent of the scene.
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2.3 Optical GMRES for Inverse Transport

We now consider an optical solution to the following problem. We are given a target photo i and

seek an illumination vector p that produces it. Mathematically, this can be expressed as a solution

to Eq. (1.1) where the unknown is p, not i; that is, we want to compute the following:

p = T†i (2.8)

where the matrix T† is the Moore-Penrose pseudoinverse of a potentially singular matrix T.

Generalized minimal residual (GMRES) is a Krylov subspace method that iteratively solves this

problem for unobservable matrices without inverting them, using just matrix-vector products [109].

As shown in Table 2.1, the method is almost identical to Arnoldi: the only difference is its initial

vector (it is always i) and its return value, which is a solution to the least-squares problem:

p = argmin
x

∥
∥
∥[i1 · · · iK ][p1 · · ·pK ]

T
x− i

∥
∥
∥
2

, (2.9)

where ik and pk are computed in the kth Arnoldi iteration. In essence, GMRES builds a rank-K

approximation of T and then inverts it to compute p.

Despite its apparent simplicity, GMRES is an extremely powerful algorithm. It applies to any

matrix (low-rank, high-rank, dense, sparse, etc.) and converges rapidly for arbitrary non-singular

symmetric matrices [78]. Intuitively, GMRES does this by “exploring” only a portion of T’s row

space, i.e., the subspace that is precisely suitable for inverting the initial vector i.

The optical implementation of GMRES is identical to Arnoldi’s. We simply run optical Arnoldi

with a photo i as the initial illumination vector and, after the algorithm terminates, we solve Eq. (2.9)

computationally (Step 5 of GMRES in Table 2.1).3

In principle, it should be possible to use optical GMRES to invert light transport efficiently for

any full-rank transport matrix, regardless of sparsity and size. This, for instance, would allow us

to infer the illumination that produced a given photo of a scene, even when both the scene and the

illumination are very complex. Figures 2.7, 2.8 and Section 2.5.2 show initial demonstrations of such

a capability on both high-rank and low-rank matrices, at high resolution.

For singular transport matrices two possibilities exist: there may be many different illuminations

that can produce a given photo (Eq. (1.1) has multiple solutions) or none at all (Eq. (1.1) is infeasi-

ble). When many solutions exist, optical GMRES can efficiently return one of them, although not

necessarily the one used to produce the original photo. When no solutions exist, it will return the

best-possible approximation lying within the rank-K subspace it built.

2.3.1 Relation to Prior Work on Inverse Transport

Implicit in all prior work is the assumption that to invert light transport we must first acquire T.

Grossberg et al. [37] consider this problem under the assumption of no indirect transport. This

3 The solution to Eq. (2.9) may contain negative elements. We just clamp them to zero, at the cost of increas-
ing residual errors. Another possible approach is to add a non-negativity constraint and solve the equation using
MATLAB’s lsqnonneg() function.
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makes T maximally sparse and full rank, and therefore easy to capture and invert. To deal with

non-negligible (but still small) indirect illumination, Wetzstein and Bimber [132] capture the full-

resolution T, enforce sparsity by thresholding, and invert it with a sparse-system solver. For more

significant indirect lighting effects, Ng et al. [92] and Bai et al. [7] rely either on low-resolution or on

sparse transport matrices to make brute-force acquisition tractable. In other applications, Zhang and

Nayar [142] compute T† to account for projector defocus and Seitz et al. [112] use it to decompose

an image of a diffuse scene into the contribution of individual light bounces. Both approaches rely

on low-resolution transport matrices and brute-force acquisition.

Here we show that acquiring T is not necessary as long as we pursue a more modest goal—rather

than solve inverse light transport for every possible input photo, which is equivalent to computing

T† and hard, we use optical GMRES to solve it for specific ones, which is much easier. Moreover,

GMRES can be generalized to handle many input vectors/photos at a time [45].

Left

Right

(a) (b) (c)

Left

Right

(d) (e) (f)

Figure 2.7: Inverse light transport for a high-rank T. A top view of our setup is shown
in (a). We used two camera-projector pairs to create the arrangement of Figure 2.3(d), and placed
a fresnel lens and an LCD backlight diffuser (both circled) in front of the right pair. We then
displayed the SIGGRAPH logo (b) onto the scene with the right projector and captured a photo
with the left camera. A photo of the scene under this illumination is shown in (c) and the top view
of the scene in (d). Note the evidence of complex low-rank and high-rank transport in this photo
(diffused regions and distorted/replicated/broken-up logo, respectively). We then provided the photo
in (c)—with no additional information—to optical GMRES to test its ability to reassemble the logo
we actually displayed. The result of optical GMRES is shown in (e): the logo is reconstructed
successfully although some ringing exists. It took 20 iterations of optical GMRES, i.e., 80 photos,
to get this result. Displaying the image in (e) onto the scene with the right projector produces a
left-camera photo that is indistinguishable from the one in (c). The difference between those two
photos, amplified 50×, is shown in (f). This suggests T is mildly singular, confirming the ringing.
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Figure 2.8: Optical GMRES in action for the inverse transport task of Figure 2.7. Although
GMRES operates in full color, we show only the red channel with its positive (red) and negative
(blue) components. The algorithm begins by displaying the input photo in Figure 2.7(d) with the
left projector. The last row shows the GMRES solution after the corresponding iteration.

2.4 Implementation

Cameras and projectors We use either one or two coaxial camera-projector pairs, each composed

of an NEC LT30 DLP projector, a beamsplitter, and a Canon EOS 5D Mark II camera with a 50 mm

f/1.2 lens, chosen for its light-gathering abilities. The projectors are calibrated geometrically and

radiometrically relative to the cameras. See Figures 2.7(a) and 2.12(a) for typical arrangements.

We operate each projector at 85 Hz and capture photos with a 1/13 s exposure time at ISO 100.

The only exception is when taking photos of the display screen, which is typically quite dim, where

we use ISO 200 instead (e.g., for the left camera in Figure 2.12(a)).4 We capture only low dynamic

range photos and use a fixed exposure level for each run of our algorithms. To control it, we

adjust the lens aperture and the maximum intensity of projector pixels so that photos taken under

maximum illumination have an intensity at most 80% of the maximum possible. Beyond arranging

4To increase contrast even further for photos of the screen, one can block the aperture of the “inactive” projector
(i.e., left projector in Figure 2.12(a)).
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the cameras and projectors; adjusting exposure; choosing a photo resolution; and choosing the

number K of Arnoldi iterations, there are no user-tunable parameters in our implementation. To

minimize defocus in all experiments, we kept the scene within the camera’s depth of field as much

as possible.

Optical Arnoldi Numerical packages for large matrices typically allow the matrix-vector calcula-

tion function to be passed as a parameter. To acquire T, we simply pass a function that implements

matrix-vector products with two illuminate-and-capture operations. For example, acquisition of a

symmetric T with the PROPACK package [74] for MATLAB amounts to one line of code:

[V,D] = LANEIG(opt-prod , I,K, “LM”)

where opt-prod() is a function that computes optical vector products with T and LANEIG() solves

the eigenvalue problem5 Tv = λv. The implementation for a non-symmetric T is similar:

[U,S,V] = LANSVD(opt-prod , opt-prod-t , P, I,K, “L”)

where opt-prod-t() computes optical vector products with TT and LANSVD() performs singular

value decomposition.

Optical matrix-vector products Our implementation essentially amounts to implementing the

opt-prod() and opt-prod-t() functions for use in MATLAB. Given an illumination vector p supplied

by MATLAB, we reshape it into a 2D image and divide it by the maximum absolute pixel value

to bring it to the range [−1, 1]. We then implement Eq. (2.4) directly, by splitting the vector into

its positive and negative components; multiplying each component by the maximum intensity of

projector pixels; capturing one photo per displayed component; and taking the difference of the two

photos. The differencing operation removes any contributions from ambient light. We multiply the

result with the maximum absolute pixel value of p.

Since demosaicing large RAW photos is computationally expensive, we capture and store them

on disk but do not return them as vectors to MATLAB. Instead, we return the 362× 234 thumbnail

images contained in the RAW files, which are linear, demosaiced, and small enough to fit in main

memory. Steps 3 and 4 of optical Arnoldi and GMRES thus operate on a (362× 234)2 version of T.

High-resolution acquisition and relighting Even though the illumination vectors in Steps 3

and 4 of optical Arnoldi are computed from low-resolution thumbnails, the RAW photos we capture

do enable high-resolution acquisition and relighting. For relighting in the non-symmetric case, we

simply replace in Eq. (2.7) the low-resolution basis for T’s photo subspace with a high-resolution one:

i = [dh
1 · · ·dh

K ][p1 · · ·pK ]
T
p (2.10)

where dh
k is the RAW photo captured in the kth Arnoldi iteration. To reconstruct a high-resolution

T, we replace the matrix returned in Step 5 of the algorithm with the matrix in Eq. (2.10).6

5Strictly speaking, LANEIG() and LANSVD() use the Lanczos method.
6While thumbnails make each Arnoldi iteration more efficient, computing illumination vectors directly from demo-

saiced RAW photos may lead to lower reconstruction error for a given number of iterations.
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Color handling Mismatches in the spectral response of projectors and cameras can lead to cross-

talk between color channels. To avoid such issues in the Arnoldi method, the scene is lit with

grayscale illumination patterns by converting each illumination vector to grayscale prior to projection.

For GMRES, we capture each color channel with a separate illuminate-and-capture operation.

Timings Our entire relighting pipeline consists of running optical Arnoldi for K iterations, demo-

saicing the high-resolution photos it captured, and computing the relit images with Eq. (2.10). We

use an Apple iMac with a 2.8 GHz Intel Core i7 processor and 16 GB of memory for all capture,

processing and display. Optical Arnoldi for a non-symmetric T runs at a rate of 12 seconds per iter-

ation, including all processing and photo acquisition. Demosaicing also takes 12 seconds to process

the positive and negative components of dk captured in each iteration. We use an image resolution

of 1080× 720 for all relighting results, with each image taking 0.3×K seconds to compute.

2.5 Results

2.5.1 Acquiring Transport Matrices with Optical Arnoldi

Ground-truth comparisons Although optical Arnoldi computes rank-K matrix approximations

at the resolution of cameras and projectors, it is not possible to capture ground-truth matrices of that

size for evaluation. To validate our algorithm and compare against other low-rank approximation

methods, we acquired low-resolution transport matrices for the four scenes shown in Figure 2.9. We

deliberately chose these scenes to exhibit a variety of challenging lighting effects, including shadows,

inter-reflections, caustics, etc.
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Figure 2.9: Error comparisons for five methods applied to scenes shown above. We used the non-
symmetric arrangement in Figure 2.12(a) for the Waldorf, Bull and Flower scenes. Since the left
projector was behind a diffuser, the transport matrix for these scenes was dense; the SVD error
profiles suggest the rank is not very low for Bull and Flower because of mirror reflections from the
glass objects in those scenes. For Juice, we used the symmetric arrangement in Figure 2.3(c), with
light projected directly onto the scene. The transport matrix in this case was 256× 256 and, as the
SVD error profile indicates, has a high rank.
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To capture the ground-truth matrix, we treated the left projector as a low-resolution display

with 32×32 or 16×16 superpixels. We used the full set of Hadamard illumination patterns because

of their good noise properties [111] and captured photos at thumbnail resolution (362× 234).

The accuracy and efficiency of a particular acquisition technique can be measured by how well

the ground-truth matrix can be reconstructed after a certain number of steps. We compute the

relative reconstruction error under the Frobenius norm after k iterations:

ǫk =
‖Tk − T̂‖F

‖T̂‖F
, (2.11)

where T̂ is the ground-truth matrix and Tk is the transport matrix computable after k iterations.

We report this error for Tk computed five different ways:

• running k iterations of optical Arnoldi;

• acquiring k random rows and columns of the transport matrix and then using the Nyström

method of Wang et al. [130];

• applying the kernel Nyström method [130] to the same input, with its exponent parameter

chosen to minimize ǫk (this represents the best-case scenario for that method);

• acquiring k photos under the discrete cosine transform (DCT) illumination basis (i.e., a brute-

force technique);

• computing the best rank-k approximation of T̂ numerically using singular value decomposition

(this is optimal under the Frobenius norm).

To assess the relative performance of these methods in the absence of measurement noise, we

simulated photo acquisition for the four scenes shown in Figure 2.9. Specifically, instead of capturing

more photos as needed by each method, we used the ground-truth transport matrix to compute them.

The plots in Figure 2.9 show that optical Arnoldi’s convergence rate under noiseless conditions is

close to optimal, and significantly faster than the Nyström methods. Note that it should be possible,

in principle, to reconstruct T̂ perfectly once the number of iterations becomes equal to the number

of rows in T̂ (i.e., 1024). We found that this was not the case with Nyström because it depends

on a pseudoinverse tolerance parameter that does not guarantee perfect reconstruction when T̂ is

singular. This is the case in the Waldorf and Bull scenes, as can be seen by SVD’s error profile.

Finally, note that brute-force acquisition can outperform other methods in some cases (e.g., Juice).

Figure 2.9 also shows comparisons under noisy conditions for the Flower and Juice scenes. In

this case, all photos were captured rather than simulated. Since the single-source illuminations

required by the Nyström methods (i.e., only one superpixel is on) produce very dim images, we

doubled the exposure time of the photos provided to Nyström. Thus, the total exposure time in

Figure 2.9 is the same after k iterations for the Nyström methods and for optical Arnoldi (the latter

captures twice as many photos per iteration).7 Despite the increase in the per-photo exposure time

7We consider constant total exposure time a more accurate baseline, given the different illumination conditions
required by the Nyström methods. See Figure 2.10 for a comparison with a constant number of photos.



Chapter 2. Optical Computing for Fast Light Transport Analysis 31

for the Nyström methods, their input images are still very noisy. Arnoldi, on the other hand, uses

illumination vectors with much broader spatial support (e.g., see Figure 2.6) and therefore has some

of the advantages of the Hadamard patterns.

Since noise is present in all photos of Flower and Juice—including those we used for ground-

truth capture—perfect reconstruction of T̂ cannot be guaranteed. Indeed, no method other than

SVD, which depends only on T̂, achieves perfect reconstruction. As in the noiseless case, Arnoldi

performs substantially better than the Nyström methods. Its convergence rate resembles that of

SVD, although it converges to a non-zero reconstruction error. This is expected because it computes

matrix-vector products with noisy 8-bit camera pixels rather than noiseless floating point arithmetic.

Relighting results and discussion Figure 2.10 shows relighting results for a point light source,

and Figures 2.5, 2.11 show results for several more scenes. Unlike the ground-truth experiments,

these scenes are relit with high-resolution, (362× 234)× (1080× 720) transport matrices.

These results suggest that it is possible to create good-quality relit images from a small number

of captured photos, even in the presence of complex light transport phenomena. Clearly, since

we acquire a rank-K approximation of the transport matrix from 4K captured photos, high-rank

transport components cannot be acquired if K is very small. This is evident in the second row of

the Hat scene in Figure 2.11, where a rank-10 approximation cannot reproduce the light passing

through holes in the hat’s brim. These are reproduced much better with a rank-50 matrix. The

Crystal scene in the same figure is more challenging, with numerous mirror reflections and light

transported to the backdrop in complex ways. The result is a significant difference between the

rank-10 and ground-truth photos.

(a) (b)

(c) (d)

Figure 2.10: Relighting results for the Flower scene in Figure 2.9 under point-source illumination.
We computed T after (a) 10, (b) 20, and (c) 50 iterations of optical Arnoldi (i.e., 200 photos,
200/13 s total exposure time). In (d) we show an image relit with the matrix T computed by kernel
Nyström from 100 row and 100 column samples (200 photos, 400/13 s total exposure time).
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Figure 2.11: First row: Relighting results under complex illumination with a rank-10 transport
matrix. Second row: We use spatially-localized lighting and a rank-10 matrix to identify inaccura-
cies in high-rank light transport. Third row: Actual photo of the scene captured under the same
illumination with identical exposure settings. Fourth row: Difference between actual photo and
the relit image above it. Fifth row: Relighting with a rank-50 matrix.
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An interesting property of optical Arnoldi is that even when the relit images are not entirely

correct, as in the Crystal scene, they are still visually plausible. This is mainly due to the scene-

dependent basis. All relit images are linear combinations of photos of the scene itself.

We deliberately did not use high dynamic range photos for experiments. This makes noise appar-

ent in some of our photos (both real and rendered). The purpose was to illustrate the performance of

the optical-domain approach in a challenging setting. Cameras and projectors have limited dynamic

range, are subject to noise, and represent numbers with limited precision. As such, optical matrix-

vector products cannot be considered as accurate as matrix-vector products done with floating-point

arithmetic. Nevertheless, we observe that despite these unavoidable issues, the presence of noise does

not cause additional rendering artifacts. For example, the ground-truth photos in Figure 2.11, which

were captured with the same exposure settings as Arnoldi’s, appear noisier than the rendered ones.

The good behavior of optical Arnoldi comes from the overall stability of Krylov subspace methods

in the presence of matrix-vector product errors [118].

2.5.2 Inverting Light Transport with Optical GMRES

The experiment in Figures 2.7 and 2.8 showed the ability of GMRES to invert light transport at high

resolution for a high-rank T. To test GMRES for a low-rank T, we consider the problem of creating

an “illumination impostor”, i.e., using one light source (a projector) to simulate the complex lighting

effects produced by another (a flashlight). This experiment is described in Figure 2.12.

The experiment shows that GMRES is able to invert light transport at high resolution in a very

challenging setting, with complex occlusions, shadows and inter-reflections. This would not have

been possible with existing methods without capturing the full T first. Note that even though the

illumination that GMRES estimates is similar to the one we used, it is not exactly the same. The

photo of the scene it produces, however, matches that of the flashlight-illuminated scene very well.

This means that T has a whole subspace of feasible illuminations that produce the same photo—and

GMRES just found one of them.

2.6 Relation to Work in Optical Computing

Numerical linear algebra with optics In discrete analog optical processing, matrices and vec-

tors are encoded by transparency masks or spatial light modulators [35]. Athale and Collins [5]

showed how a sequential arrangement of such elements (along with light sources, lenses and detec-

tors) can be used to implement matrix multiplication optically.

For more complex operations, the idea of using optical feedback loops for processing was well

established [10]. Kumar and Casasent [72] describe several optical feedback loops for computing

eigenvectors of a matrix, including power iteration. Rajbenbach et al. [105] computed matrix inverses

optically by implementing the Neumann series in a feedback loop. Our approach can be thought of

as a re-interpretation of this general approach, where the matrix is encoded implicitly by the scene

and where all other optical elements are replaced by cameras, projectors and a PC. In this respect,

it is a hybrid system [9].
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Figure 2.12: Simulating one light source with another. We used a non-symmetric arrangement
with a display screen between the left camera and the scene (a). We then placed a toy on the other
side (b) and used a flashlight (circled) to illuminate it. We captured a photo with the right camera
(e, bottom) and gave it as input to optical GMRES. The goal was to get the left projector to
illuminate the scene exactly like the flashlight. A left-camera photo of the display screen under
flashlight illumination is shown in (e, top). This photo was not given to GMRES. It took GMRES
20 iterations to compute it (h, top). Note how the illumination computed by GMRES correctly
replicates the shadows in the input photo, both hard and soft. The plot (c) shows the relative ℓ2
reconstruction errors of the flashlight illumination (top of (e)-(h)) and plot (d) shows the errors for
the input photo (bottom of (e)-(h)).

We refer readers interested in exploring this area to the review articles of Leith [75] and Ambs [4]

as well as the critical analysis of Psaltis and Athale [104] on the feasibility of using linear optics for

numerical calculations.

Context-aware illumination Wang et al. [131] recently used the coaxial arrangement in Fig-

ure 2.3(c) to enhance the appearance of a real-world scene in real time. Their idea is to illuminate

the scene with a processed version of the live video in which certain features, like edges, have been

enhanced. Their approach cannot be considered a form of optical computation because it explicitly

prevents feedback loops. No photo is captured when the scene is illuminated by their context-aware

light source.

Perhaps closer in spirit to our work is the dynamic contrast enhancement technique of Amano

and Kato [3]. To enhance the contrast of a real-world planar scene under room illumination, they

capture a photo, contrast-enhance it, and project it back onto the scene in a simple feedback loop.

Contrary to our work, their analysis is done per pixel and assumes no indirect light transport.
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2.7 Inexact Krylov Subspace Methods

As demonstrated empirically in Figure 2.9, sensor noise negatively affects the convergence properties

of Krylov subspace methods. This is because the optical implementation of the matrix-vector product

cannot be computed exactly.

Although the effect of noise on Krylov subspace methods is beyond the scope of this work, we

note that Simoncini and Szyld [119] developed a general framework for understanding the properties

of Krylov subspace methods under inexact arithmetic. Instead of exact matrix-vector products as

in Eq. (1.1), the theory assumes each step of a Krylov subspace method computes the following

product:

i = (T+E)p (2.12)

where the error matrix E changes every time a matrix-vector product is evaluated. Krylov subspace

methods are remarkably robust with respect to inexact matrix-vector products; the theory explains

that the norm of the error, ‖E‖, can even grow as the Krylov iteration progresses without degrading

the solution, and provides computable criteria to bound ‖E‖ at each step so that the residual norm

of the solution falls below some tolerance.

2.8 Summary and Contributions

We introduced the idea of performing numerical computations on the full-resolution transport matrix

in the optical domain. We have shown the following:

• computations often assumed to require complete acquisition of the matrix T—such as comput-

ing eigenvectors or inverting light transport—can actually be done efficiently without it;

• numerical methods are widely available for use in the optical domain; and

• these methods also bring with them a wealth of numerical research that can potentially be

transferred to the optical domain as well.

Our efforts were specifically aimed at low-rank approximation and inverse light transport. Al-

though we believe the low-rank constraint can be a powerful one, clearly many transport phenomena

cannot be represented by low-rank matrices. The question of how to bridge the gap between the

low-rank constraint we exploit and the sparsity constraints employed recently [99] is wide open. One

advantage of optical GMRES (at least for inverse transport) is that it can operate regardless of

matrix rank, a feature that also applies to the optical computing technique presented in the next

chapter.



Chapter 3

Optical Probing by Primal-Dual

Coding

We observe that a much more general imaging regime exists for active illumination, one that operates

almost exclusively in the optical domain. This regime, which we call optical probing, is an extension

of matrix probing, a topic in numerical mathematics concerned with efficiently estimating the trace

or diagonal of very large unobservable matrices of any rank, like T [8, 121]. Optical probing enables

direct acquisition of photos that seem to violate the scene’s light transport equation (e.g. the ability

to capture a photo of the diagonal elements of matrix T). These photos have a bilinear, rather than

linear, relationship to conventional photos and appear as though the transport matrix of the scene

itself has been manipulated. Unlike techniques that rely on exotic technologies [68], optical probing

is realized with standard components (i.e., a camera, a projector, and a controllable pixel mask).

More specifically, optical probing acquires photos governed by the following transport probing

equation (Figure 3.1):

i = (Π⊙T) 1 (3.1)

where the symbol ⊙ denotes the element-wise multiplication of two equal-sized matrices. According

to this equation, a photo is formed by multiplying element-wise the scene’s transport matrix with a

probing matrix Π (with unitless elements) and then multiplying the result with a constant vector of

all ones.1 Intuitively, the probing matrix can be thought of as a generalized illumination condition:

it is under the complete control of the image acquisition process, it is known, and can be arbitrary.

In contrast to conventional active illumination where there are P degrees of freedom for controlling

the output photo (i.e., the size of the illumination vector p), the probing matrix has I × P degrees

of freedom (the number of elements it contains). This gives tremendous flexibility over image

acquisition, well beyond what is implied by the light transport equation.

To achieve this, optical probing exerts simultaneous control over two aspects of the image for-

1The probing matrix as defined in Eq. (3.1) describes the transfer of radiant energy in relative terms, and does
not describe the absolute amount of radiant energy transmitted to the photo. In Chapter 5, we introduce a scalar
γ, measured in joules, that scales the unitless elements of Π to ones that represent absolute radiant energy, i.e., γΠ.
Until then, we simply assume γ = 1 and omit this scalar entirely.

36
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Figure 3.1: The transport probing equation.

mation process: it controls the scene’s illumination (the primal domain) and it modulates the light

arriving at individual pixels on the camera’s sensor (the dual domain). To acquire a photo, we

project a sequence of patterns onto the scene while the sensor is exposed to light. At the same time,

a second sequence of patterns, derived from the first and applied in lockstep, modulates the light

received at individual sensor pixels. Capturing a photo by optical probing therefore involves two

basic choices—what primal-domain patterns to use for scene illumination and how to convert them

into dual-domain patterns for modulating the sensor.

Optical probing is closely related to optical imaging techniques used in microscopy, namely con-

focal imaging [15], aperture correlation [134] and differential spinning disk microscopy [84]. These

widely-employed techniques increase the optical resolution and contrast of microscopes by eliminat-

ing out-of-focus light. They are a special case of optical probing where the primal- and dual-domain

patterns are binary, and either coincide or are complements of each other. To our knowledge, they

have not been used for one-shot imaging in standard photography settings, although “synthetic”

implementations of aperture correlation have been demonstrated by Levoy and colleagues [26, 76].

These implementations keep optical processing to a minimum and rely on substantial image acqui-

sition and computational processing to synthesize individual photos. In contrast, we rely almost

exclusively on optical processing; analyze the general case, where primal and dual codes may differ;

and introduce the transport probing equation as a general image formation model for optical probing.

This equation characterizes the space of possible photos and their relationship to a scene’s transport

matrix.

Optical probing can also be thought of as a combination of illumination coding, which operates

exclusively in the primal domain [111, 126] and coded-exposure photography, which operates in the

dual [55, 89, 133]. These coding techniques have been applied very successfully in recent years but

have not been combined for one-shot photo acquisition. Like many coded-exposure methods, we use

relay optics and a display panel to modulate the light arriving at sensor pixels without having to

access the camera’s interior.

As an initial feasibility test of the optical probing framework, we present results from a prototype

system where a camera and a projector share the same viewpoint. We show how to capture photos
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where the direct component of light transport is missing, and where components of direct or indirect

illumination are selectively attenuated or enhanced. Compared to recent primal-domain methods

with similar goals [90, 112, 142], a major advantage of our approach is that it is independent of

the frequency content of light transport, the reflectance of the scene’s surfaces, and the rank of

its transport matrix. It thus applies to fully-general scenes where a mixture of indirect transport

phenomena may occur—including diffuse inter-reflections, specular reflections, caustics, sub-surface

scattering, etc.

This chapter’s investigation into optical probing is limited in two respects, however, one concep-

tual and one practical. On the conceptual side, while optical probing and the transport probing

equation apply to any camera-projector arrangement, all our experimental results rely on the cam-

era and projector being coaxial. From a practical standpoint, our initial prototype system is built

with off-the-shelf hardware, significantly restricting the rate by which primal- and dual-domain pat-

terns change; we compensated by capturing photos with an exposure of several seconds, with all the

disadvantages this entails (slightly-increased noise, static scenes, etc.).

3.1 Probing Light Transport

We begin by taking a closer look at the transport probing equation and its relation to light transport

analysis. The question of how to implement it is considered in the following sections.

In a typical photography setting we may know very little—or nothing at all—about how the scene

transports incident light. This black-box view of the scene and of its transport matrix leaves just

one way to get information about them, i.e., by capturing one or more photos. Unfortunately, there

is a fundamental dimensionality gap between the transport matrix T and the photos it can produce:

the transport matrix has I × P elements whereas each photo can only provide I measurements.2

We therefore have an extremely limited bandwidth for acquiring information about T. The key

advantage of the transport probing equation is the control it offers over how the elements of T are

mapped onto a photo’s limited pixels.

To gain further intuition about the space of allowable mappings, it is helpful to consider the

probing equation in the special case when the probing matrix is binary and has only one non-zero

element per row (dark squares in Figure 3.1). Multiplying element-wise such a matrix with T leaves

only one non-zero element on each row, equal to the corresponding element of the transport matrix.

Multiplication with a constant vector then transfers it unaltered to the photo. Thus, by choosing

different binary probing matrices we can directly acquire different I-dimensional slices of the I × P

transport matrix. Table 3.1 shows several such examples, along with other probing operations made

possible with non-binary probing matrices.

2This gap is even larger when considering physical properties beyond just radiant energy, such as polarization state
[31], phase [102], and time-of-flight [68].
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Table 3.1: Probing the transport matrix. Probing makes it possible to compute general linear
mappings from transport matrix elements to camera pixels without having to capture (or even ap-
proximate) the full transport matrix first. Row 1: Capture a conventional photo under illumination
p (Eq. (1.1)). Row 2: Capture a conventional photo under illumination p (Eq. (3.1)). Rows 1 and
2 coincide when Π[m,n] = p[n]. Rows 3: Capture the diagonal of T. Note that the function δ() is
the discretized version of the Dirac delta function, i.e., δ(x) = 1 for x = 0, and δ(x) = 0 otherwise.
Rows 4: Capture the wth off-diagonal of T. Rows 5: Sample one element from each row of T
according to a given sampling vector a. Row 6: Capture a linear combination of two elements
in each row, according to sampling vectors a and b. Rows 7: Capture a photo that simulates
conventional photography under illumination p of a scene whose transport matrix is T̂ = A ⊙ T,
where A is another user-defined probing matrix (e.g. one of the probing matrices from Rows 1-6).
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Figure 3.2: Basic light paths. (a)-(b) Element T[m,n] of the transport matrix takes into account
all light paths that begin at projector pixel n and terminate at sensor pixel m. Two such paths
are shown: inter-reflections (blue) and sub-surface scattering (red). (c) For coaxial arrangements,
the direct transport path (red) always contributes to the diagonal element, T[m,m]. This element
may also include contributions from back-scattering (blue) and retro-reflection paths (green) which
also begin and end at the same pixel. (d) In coaxial arrangements it is also possible to distinguish
between long- and short-range transport paths by the distance |m− n| between their endpoints.

Probing matrices for light transport calculations Observe that we can re-write the transport

probing equation as

i = T̂ 1 (3.2)

by setting T̂ = Π ⊙ T. This brings it into the familiar form of Eq. (1.1) and suggests a physical

interpretation for the acquired photo: i is the photo we would have captured by conventional pho-

tography if the scene had transport matrix Π⊙T and was illuminated uniformly. Viewed this way,

Π re-scales the elements of the transport matrix individually for the purpose of image acquisition.

Each element of the transport matrix describes the transport of radiant energy along a distinct

collection of light paths from the illumination source to the sensor (Figures 3.2). By re-scaling these

elements, the probing matrix gives the ability to directly acquire photos in which light transport

along specific paths has been enhanced, attenuated, or blocked entirely. See Table 3.2 for several

examples of imaging tasks, along with their associated probing matrices.

3.2 Photography by Optical Probing

Let us now look at how to capture photos governed by the transport probing equation. The key

ingredient is an ability to simultaneously modulate light at its source (the projector) and its destina-

tion (the sensor). We first consider a naive algorithm that serves as an existence proof and illustrates

the basic properties of the approach.
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Acquisition Goal Expression for Element Π[m,n]

Capture direct plus retro-reflection and back-
scattering (Figure 3.2(c))

(m = n)

Capture all other indirect (Figure 3.2(a)) (m 6= n)

Capture long-range indirect (Figure 3.2(d)) (|m− n| > w)

Capture short-range indirect (Figure 3.2(d)) (|m− n| ≤ w) ∧ (m 6= n)

Transport masking: block all light paths from ob-
ject B to object A but leave other paths unaffected

(m 6∈ A) ∨ (n 6∈ B)

Local de-scattering: capture direct plus high-
frequency retro-reflection and back-scattering

(m = n)− (m = n+ 1)

Transport-domain filtering: use a filter kernel f to
modulate transport paths according to their dis-
tance from the direct component

(m = n+ w)f [w]

Table 3.2: Probing matrices useful for light transport calculations in coaxial arrangements. We
slightly abuse notation in the expressions for Π[m,n]: logical operations (equality, inequality, set
membership) are treated as functions returning 1 if true and 0 if false. For transport masking,
we assume that the objects A and B are specified as sets of pixels on the image plane. The first
five operations can be thought of as applying a binary mask to the transport matrix (e.g., the
matrix shown in Figure 3.3(b)). The last two operations involve cross-correlations along rows of the
matrix. Note that unlike methods that rely on assumptions about the frequency content of light
transport [90], none of the above operations do so, with the exception of local de-scattering. The de-
scattering expression was proposed by Fuchs et al. [26] to remove back-scattering contributions that
are constant in the neighborhood of the direct component. To our knowledge, transport masking and
filtering have not been considered previously. For non-coaxial arrangements, the same relations
apply with one modification: nmust be equal to a[m], where vector a encodes stereo correspondences.
These relations are less useful when stereo correspondences are unknown.

3.2.1 Naive Approach: Path Isolation

Since we have complete control over which projector pixels emit light and which sensor pixels receive

it, we can control in a very precise way the light transport paths that contribute to a photo. In

particular, by turning on a single projector pixel and unmasking a single sensor pixel we guarantee

that only the transport paths between those two pixels will contribute to the photo. The naive

algorithm, shown in Algorithm 3, applies this basic idea in a time-multiplexed fashion: it allocates a

time slice τ within the exposure period to every possible combination of projector pixel n and sensor

pixel m, and uses Π[m,n] for the projector pixel’s intensity during that time slice. This ensures

that transport paths that are “active” during a particular time slice will contribute radiant energy

to the final photo precisely as described in Eq. (3.1).

Path isolation is an extremely inefficient approach for two reasons. Firstly, every element of the

probing matrix gets equal time even though its value may be zero. Since many probing matrices

of interest are sparse (e.g., see Tables 3.1 and 3.2), the sensor would not be integrating any light

at all for much of the exposure time. An obvious improvement is to allocate time proportionally

to Π[m,n]. This solution, for the special case where the Π is the identity matrix, describes the
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basic confocal microscopy technique3 [15]. A second—much more serious—issue is that only one

pixel integrates light at any given point in time. Given that a typical image may contain millions

of pixels, the short time slices mean that light received at a pixel would fall well below the additive

noise floor under typical photography conditions.

3The coaxial arrangements used in confocal imaging guarantee that the diagonal of the transport matrix contains
all direct (a.k.a. in-focus) paths.
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Figure 3.3: Transport matrix of a complex scene lit by a projector (coaxially-aligned with the
camera). (a) A photo of the scene. From left-to-right, the scene contains a glass unicorn, a pair of
bell peppers, a translucent wax disk, a V-wedge between a pair of books, a mirror reflecting light
onto the wall, a gumball dispenser and a green bell pepper. (b) Since the complete transport matrix
is too large to capture and visualize, we show a 2D slice of the matrix for the row highlighted in
(a). The slice was acquired with a coaxial arrangement using the method of Schechner et al. [111].
Element T[m,n] in this slice represents light paths that originate from projector pixel n and reach
camera pixel m in the highlighted row, shown as yellow circles in (a). Note that non-zero elements
in this slice mostly concentrate around the diagonal. This indicates that most light is transported
between nearby camera/projector pixels. Nevertheless, the matrix does include several interesting
structures, magnified in (c)-(f). (c) Caustics from the glass unicorn appear as “streaks” in the
transport matrix. (d) Sub-surface scattering from the yellow and red bell peppers produces a thick
band along the diagonal, with isolated white specularities on the diagonal itself. (e) Inter-reflections
from the V-wedge appear as fans of light. Dark regions in these fans are due to occlusion, which
blocks inter-reflection paths in certain directions. (f) Mirror reflections produce high-frequency,
off-diagonal structures.
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Figure 3.4: Image formation pipeline for a single photo captured by optical probing. The sequence
of mask and projector patterns, {pk} and {mk}, are computed in a preprocessing step. Patterns in
the primal and dual domains are changed synchronously.

3.2.2 Optical Matrix Probing

Acquisition schemes that make efficient use of the sensor are highly desirable. For this, we turn

to work in numerical linear algebra [8]. Let {pk} and {mk} be two sequences of column vectors

corresponding to a decomposition of the probing matrix into a sum of rank-1 matrices:

Π =
K∑

k=1

mk(pk)
T

(3.3)

This allows us to re-write the probing equation as a sum identical to the pipeline in Figure 3.4:

(Π⊙T) 1 =

P∑

n=1

Π[n] ◦T[n] (3.4)

=

P∑

n=1

(
K∑

k=1

mkpk[n]

)

◦T[n] (3.5)

=

K∑

k=1

(

mk ◦
P∑

n=1

T[n]pk[n]

)

(3.6)

=
K∑

k=1

mk ◦T pk (3.7)

Here we used T[n] to denote the nth column of T, and pk[n] to denote the nth element of pk. It

follows that every decomposition of the probing matrix into a sum of rank-1 matrices provides a

candidate sequence of illumination patterns {pk} and masks {mk} for optical probing.

Stochastic diagonal estimators Not all rank-1 decompositions are equally efficient. Bekas

et al. [8] study this problem for the case where the probing matrix is the identity matrix I. This

matrix allows us to acquire the diagonal of T (third row of Table 3.1 and first row of Table 3.2).

The main idea is to consider rank-1 decompositions of the identity matrix created by an infinite

sequence of random vectors {pk} drawn from a distribution with mean zero and unit variance:

(I ⊙ T) 1 = lim
K→∞

1

K

K∑

k=1

pk ◦Tpk (3.8)

They show that the provably-optimal convergence rate is achieved when these randomized vectors

are drawn from the Rademacher distribution, whose elements have a 50% chance of being either
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+1 or −1.4 Moreover, as shown in Appendix B.1.2, this distribution minimizes the variance of the

K-term estimate of diagonal element T[m,m]:

1

K

P∑

n=1,m 6=n

T[m,n]2 (3.9)

Therefore, to double the accuracy of our estimate of T[m,m] we must use twice as many vectors.

Importantly, Eq. (3.9) tells us that this accuracy depends on the transport matrix itself and thus on

the type of indirect transport within a scene: it is low when the total intensity of non-zero elements

along a row of T is distributed over many elements (e.g., diffuse inter-reflections) and high when it

is concentrated at a few isolated ones (e.g., caustics).

Stochastic estimators for general probing Generalizing the above estimator to the case of a

general probing matrix Π is trivial in some respects and non-trivial in others. On the trivial side,

extracting the wth off-diagonal of T, as shown in the fourth row of Table 3.1, simply requires a mask

that is a w-shifted version of the illumination pattern:

(Π ⊙ T) 1 = lim
K→∞

1

K

K∑

k=1

shift(pk, w) ◦Tpk (3.10)

More generally, left-multiplying both sides of Eq. (3.8) by Π gives the following:

(Π ⊙ T) 1 = lim
K→∞

1

K

K∑

k=1

Πpk ◦Tpk (3.11)

This expression is straightforward to implement optically (see Algorithm 3). Unfortunately, the

optimality guarantees of the Rademacher distribution do not extend to general probing matrices.

4Although not described in these terms, aperture correlation [134] uses this sequence for extracting the diagonal
of T. This was proposed well before its optimality was established.

Algorithm 3 Basic algorithms for optical probing photography.

Path isolation:

In: exposure time T , probing matrix Π

Out: photo equal to (Π⊙T) 1

1: τ = T/IP

2: open camera shutter

3: for m = 1 to I
4: unmask pixel m
5: for n = 1 to P

6:
turn on projector pixel n for
time τ with intensity Π[m,n]

7: mask all pixels

8: close shutter

9: return captured photo

Optical matrix probing:

In: exposure time T , probing matrix Π,
K illumination vectors {pk}

Out: photo equal to (Π⊙T) 1

1: τ = T/K

2: open camera shutter

3: for k = 1 to K
4: apply mask mk = Π pk

5: project vector pk for time τ

6: close shutter

7: return captured photo
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Negative values Up to now we have ignored the fact that the illuminations and masks may

contain negative values which are not physically realizable. Negative values may occur because of the

random vector sequence being used or because Π itself contains negative values. Correct treatment

of such cases requires capturing at most two photos followed by a (computational) subtraction. In

particular, by expressing pk and mk as a difference of two non-negative vectors, it is possible to

break each term in Eq. (3.3) into four terms, two of which are positive and two of which are negative.

The first two terms are used during the exposure period of the positive photo and the last two of

the negative one:

positive terms
︷ ︸︸ ︷

[ (mk)+(pk)+
T

︸ ︷︷ ︸

#1

+ (mk)−(pk)−
T

︸ ︷︷ ︸

#2

] −

negative terms
︷ ︸︸ ︷

[ (mk)−(pk)+
T

︸ ︷︷ ︸

#3

+ (mk)+(pk)−
T

︸ ︷︷ ︸

#4

] (3.12)

where pk = (pk)+ − (pk)− and mk = (mk)+ − (mk)−. It follows that implementing a K-vector

optical probing sequence with both positive and negative values requires capturing two photos using

a 2K-long sequence during each photo’s exposure.

Fortunately, useful probing matrices exist that produce strictly non-negative illuminations and

masks. This makes it possible to probe efficiently with just one photo. Two important examples

are capturing an indirect-only photo of the scene (second row in Table 3.2) and capturing the

direct component plus one-half the indirect (i.e., contrast-enhancing the direct component). See

Appendix B.1.1 for a brief derivation of how Rademacher sequences can be replaced by non-negative

Bernoulli sequences in such cases.5

3.3 Implementation

Hardware Figure 3.5 illustrates our hardware setup. We use an Epson PowerLite G5000 3-LCD

projector, a disassembled Barco E-2320 PA monochrome LCD panel, a 50R/50T Edmund Optics

beam splitter, two spherical plano-convex relay lenses, a Canon EOS Rebel XSi camera, a 2.67 GHz

Intel Core i7 workstation with 3 GB of RAM and two NVIDIA GeForce 9500GT graphics cards.

The polarizers on each side of the Barco LCD display had been removed for another project; we

reassemble the LCD display by positioning it between two linear polarizing sheets. We also place a

linear polarizer in front of the 3-LCD projector so that the projector illumination has a consistent

polarization state. We operate the projector at resolution 1024× 768 and use two VSYNC-enabled

borderless OpenGL windows to control the projector and LCD at a 60 Hz refresh rate. Pattern

generation is done through MATLAB.

The rightmost relay lens in Figure 3.5 focuses light from the scene onto the LCD display. The

display attenuates this incident light using a 1600×1200 resolution pattern. The leftmost relay lens,

along with the camera’s own 50 mm focal length lens, is then used to capture a focused image of the

LCD display. The focal length of the leftmost relay lens was 330 mm in all experiments; the other

relay lens was 330 mm in all experiments except one (Figure 3.8), where a 220 mm focal length lens

5According to Eq. (3.3), if Π’s rank is low applying non-negative factorization also yields efficient non-negative
illuminations and masks.
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Figure 3.5: Photo and diagram of our optical probing prototype. We use a pair of relay lenses and
an LCD panel with its backlight removed to modulate the light reaching the camera’s sensor. To
acquire an optically probed photo, we project a sequence of illumination patterns onto the scene and
simultaneously display a sequence of modulation patterns on the LCD panel. The camera’s shutter
remains open throughout this process.

was used. These relay lenses were slightly larger than the active area of the LCD display (15 cm

versus 10 cm) and positioned asymmetrically, with the leftmost one much closer to the display. We

align the projector and camera using a beamsplitter to ensure a coaxial arrangement.

Calibration All experiments require a coaxial camera and projector and aligned projector and

LCD patterns. We do this as follows. We temporarily place a diffuser on the LCD panel; focus

the image of the scene onto the diffuser by adjusting the position of the rightmost relay lens; align

the projector to produce a coaxial arrangement; and move and resize the OpenGL windows so that

the pixels of the projector and LCD panel overlap from the camera’s perspective. Since we relied

on binary patterns for our experiments, no radiometric calibration was required. For more general

probing experiments, where illuminations and/or masks are not binary, radiometric calibration of

both the LCD panel and projector becomes necessary.

Codes robust to misalignment Even after calibration, the illumination and mask patterns in

our prototype are not aligned with pixel accuracy. Moreover, despite driving the projector and the
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LCD panel with the same vertical synchronization signal, the two devices do not refresh in perfect

synchrony. These misalignments forced us to operate at a reduced spatio-temporal resolution. To

account for temporal misalignment, we interleave black images on the LCD panel before and after

displaying each mask pattern, reducing the effective optical probing display rate to 20 Hz. To deal

with pixel misalignment, we rely on reduced-resolution, 64 × 48 optical probing sequences and use

four times as many codes (included in our code counts for experiments). In particular, we replace

every pair pk,mk in the optical probing sequence with a four-code sequence pkl,mkl, that eliminates

artifacts due to misaligned pixel boundaries (Figure 3.6). This sequence exposes the center 1
4

th
of

reduced-resolution pixels and then shifts both the illumination pattern and the mask three times to

expose the complete coarse-resolution pixels. The sum of the four mask patterns, mkl, produces the

original dual code mk. Together with the black masks, we get the following twelve-code sequence:

Code #: 1 2 3 4 5 6 7 8 9 10 11 12
Primal code: pk1 pk1 pk1 pk2 pk2 pk2 pk3 pk3 pk3 pk4 pk4 pk4

Dual code: 0 mk1 0 0 mk2 0 0 mk3 0 0 mk4 0

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Codes robust to pixel misalignment. Column 1: Images of a scene taken with a
mask/projection pattern pair defined on a coarse pixel grid. The projector and mask patterns are
identical in (a), i.e., pk = mk, whereas in (d) they are complements of each other. Misalignment
artifacts appear as dark or bright pixels near coarse pixel boundaries. For example, the inset in (d)
contains bright ghosting artifacts located near these boundaries, a result of the mask not blocking all
direct light from the scene. Column 2: Photo of the scene corresponding to one member, (pkl,mkl),
of the 12-code sequence we use to implement the codes in Column 1. Each code in the sequence

samples the center 1
4

th
of each coarse pixel to avoid exposing the region near its boundary. The

mask/projection pattern pair shown in Column 2 is shifted four times during the sequence. These
shifts expose the area blocked by the previous codes in the sequence. The other eight codes in the
sequence are blank frames captured with a mask consisting of all zeros. Column 3: Summing the
photos corresponding to the 12-code sequence results in the photos shown in (c),(f). Note the lack
of bright ghosting artifacts near the boundary of coarse pixels.
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Figure 3.7: Contrast-enhancing the direct component of a coke bottle filled with milky water, which
strongly scatters light. Left to right: A photo of the scene lit by white illumination contains full
direct and indirect; the scene with 50% indirect illumination uses 64 mask and illumination codes;
25% indirect illumination uses 128 codes, 12.5% indirect uses 256 codes, and 6.25% indirect uses 512
codes. The plot on the right examines the intensity of two points in the scene, a point lit mostly
by indirect (green), and a point lit mostly by direct (red). As we reduce the percentage of indirect
light, the intensity of the point on the background decreases slightly, indicating a small indirect
component. In contrast, the intensity of the point on the bottle diminishes, an indication of the
strong indirect transport effects within the bottle.

Figure 3.6 demonstrates the effect of using this 12-code sequence for indirect-only imaging. For

high code resolutions, the center 1
4

th
of each pixel may no longer mask the misaligned pixels. This

imposes a maximum working resolution to any optical probing setup (ours is 64× 48). This means

that all light paths within a coarse pixel are clumped together in the photos we capture.

Image capture and adjustment We capture 4272 × 2848 resolution RAW photos and decode

them using DCRAW. We then rotate, flip, tone map and white balance the photos. We use gamma

correction with γ = 2.2 for tone mapping and manually choose a white object in each photo to set

the white point through MATLAB.

3.4 Results

Single-photo enhancement of direct component We first consider the problem of capturing

single photos in which the direct component has been contrast-enhanced. Figure 3.7 shows the

captured RAW images for a scene containing a coke bottle filled with milky water. The milky

medium scatters light entering within the coke bottle, producing a strong indirect lighting effect.

To do this, we generate a sequence of projector and mask patterns using the Bernoulli distribution.

These codes satisfy pk = mk, have elements that are 1 with probability p and 0 with probability 1−p,

and converge to a probing matrix with value p along the diagonal and p2 everywhere else. Since this

matrix attenuates the direct component by a factor of p, the mean brightness of direct-enhanced

photos changes with p too. To keep it approximately constant in Figure 3.7, we compensate for

reductions in p by increasing exposure time, i.e., using more codes.
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milky water

(a) scene under ambient
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(b) chart under white
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(c) direct + 1
16 indirect
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16
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(e) de-scattered confocal

photo

Figure 3.8: Imaging a resolution chart through a tank of milky water with optical probing. (a) A
tank filled with water and a small amount of milk scatters light. The objective is to image a resolution
chart taped to the back side of the tank using no more than two photos. (b) Illuminating the scene
with a white illumination pattern produces an image with poor contrast because of back-scattering.
(c) A contrast-enhanced direct photo, obtained using the same procedure as in Figure 3.7, uses 1024
mask and illumination patterns. This produces a photo where the indirect component is reduced.
(d) Enhancing the first off-diagonal of the transport matrix involves using a shifted version of the
codes used in (c), according to Eq. (3.10). (e) By subtracting the off-diagonal-enhanced photo in (d)
from the direct-enhanced photo in (c), we obtain a de-scattered confocal photo. This significantly
enhances contrast relative to the original floodlit image in (b).

De-scattering from two shots Fuchs et al. [26] describe an approach for imaging through scat-

tering media that combines confocal imaging and de-scattering. It requires scanning a line across

the scene and capturing, storing and analyzing many photos. We do this in just two shots by

implementing their procedure optically.

For this experiment, we replace the rightmost 330 mm focal length lens with a 220 mm focal

length lens and focus the camera and projector onto a resolution chart through a tank of milky

water (Figure 3.8). We then take two photos in order to implement the probing matrix for local

de-scattering in Table 3.2. The first photo captures the direct-enhanced component, corresponding

to the direct plus 1
16

th
indirect, as in Figure 3.7. The second captures the first off-diagonal of the

transport matrix plus 1
16

th
of contributions not on that off-diagonal (Eq. (3.10)). The difference

of the two photos corresponds to a matrix with 1 on the diagonal and −1 on the first off-diagonal.

Note that this difference greatly enhances the contrast relative to the floodlit image.

Just like in our direct enhancement experiment, we control the exposure level of our photos by

the number of mask/projection pattern pairs used to capture them. Since we expect the diagonal

entries of the transport matrix to be smaller than those of Figure 3.7 because of scattering, we

double the total exposure time using 1024 codes.
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scene under white light indirect component direct + back-scatter +
retro-reflection

Figure 3.9: Left to right: Photo of scene under white light, indirect component of scene captured
by a single RAW photo, direct component computed by subtracting the indirect image from the
scene under white light. No processing was done on the photos, other than a resize, flip, white
balance, gamma correction and crop. All scenes use 512 mask and illumination codes, with the
exception of Row 4 which uses 1024 codes. Row 1: A disco ball produces specular indirect transport
across the scene, with diffuse inter-reflections occurring near the edge of the floor. Optical probing
cleanly separates the photo into its direct component and its indirect component, which contains
inter-reflections and specularities. Row 2: A scene composed of two styrofoam balls inside a glass
container generates specular reflections, sub-surface scattering and caustics. We used small aperture
to photograph this scene in order to avoid pixel saturation due to caustics. The photo is slightly
noisier as a result. Row 3: A coke bottle filled with milky water strongly scatters light that enters
the bottle. Row 4: Observe that the direct component contains none of the light that is reflected
by the mirror (left) onto the vase (right) and the wall. However, the mirror does not appear black in
the direct photo even though it has little to no direct component. This is because of back-scattering
and retro-reflection (Figure 3.2(c)): light leaves a projector pixel, hits the mirror at a point, diffusely
reflects off the wall, then hits the mirror at the same point, and returns to the same pixel. This light
path will always contribute to the diagonal of the transport matrix and cannot be distinguished from
direct illumination using methods that rely purely on intensity, and without regard to arrival time.
Note that according to Eq. (3.9), the variance of stochastic diagonal estimation may be higher for
indirect specular transport than for diffuse transport. To compensate for this, we used 1024 codes
for this scene.
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Figure 3.10: Demonstration of Nayar et al.’s direct and indirect separation technique [90]. (a) The
scene contains a mirror (left), a diffuse backdrop (middle), and a translucent candle (right). (b)
The first step of the procedure involves capturing a photo i1 of the scene lit by a high-frequency
binary projection pattern (e.g. a checkerboard pattern). The separation procedure assumes every
pixel i1[m] either receives all of the direct light (e.g. region highlighted in yellow) or none of the
direct light (e.g. region highlighted in red). At the same time, the procedure also assumes that
all pixels i1[m] always receive a constant fraction α of the indirect light; for example, since only
α = 1

2 of the projector pixels are “on” in a checkerboard pattern, all pixels are assume to receive
exactly half of the indirect light present in (a). (c) The procedure captures another K− 1 photos of
the scene under shifted versions of the same projection pattern. (d) For comparison purposes, this
RAW photo is lit by the complement version of the illumination pattern used in (b). Note that the
region highlighted in yellow now receives no direct light, and the region highlighted in red receives
all of the direct light. (e)-(f) The next step is to compute the minimum and maximum brightness
observed at each camera pixel across all K photos. The minimum pixel value is assumed to be half
of the indirect component, and the maximum pixel value is assumed to be the direct component
plus half of the indirect component. (g) Amplifying the values in (e) by a factor of 1

α produces the
indirect component. However, the separation method fails for regions containing specular indirect
transport (e.g. the pixels containing specular reflections); these regions violate the assumption that
pixels always receive exactly α of the indirect light. (h) Computing the difference between (f) and
(e) produces an estimate of the direct component.

Separating indirect and direct components in the presence of specular indirect transport

Figure 3.9 shows several examples of capturing photos that contain only indirect or direct light. Each

scene contains a variety of effects, including sub-surface scattering, caustics, specular reflections, and

diffuse inter-reflections. Direct images are computed by subtracting the indirect image from an image

of the scene under white illumination.

The mask and projector patterns are similar to those used for direct enhancement: pk is drawn

from the Bernoulli distribution and mk = 1−pk, resulting in a probing matrix that has 0 along the

diagonal and p(p− 1) everywhere else. We use p = 0.5 in our experiments because it maximizes the

magnitude of the probing matrix.
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Figure 3.11: (a) A disco ball ornament placed on top of a wax disk and in front of an open book.
The scene is lit by projecting a white pattern. Observe that the open book causes diffuse inter-
reflections, the wax disk exhibits strong sub-surface scattering, whereas the disco ball produces spec-
ular reflections across the scene. (b) Optical probing produces a direct component from two photos.
This removes light due to inter-reflections, sub-surface scattering and specular inter-reflections even
though significant specular indirect transport effects are present. (c) We also obtain the indirect
component in a single RAW photo. The LCD panel always transmits a small amount of light, even
when all pixels are set to 0; to correct for this, we compute the difference between the indirect
photo and a second photo where all the dual codes are set to 0 (not shown here). By capturing the
indirect illumination of the scene under shifted high-frequency patterns, it is possible to separate
(d) specular indirect transport (due to mirror reflections) from (e) diffuse indirect transport (due
to inter-reflections and sub-surface scattering).

A similar, multi-photo approach to computing the indirect and direct components of a scene

was first proposed by Nayar et al. [90]. They show that the direct and indirect components can

be efficiently measured using high-frequency illumination patterns (Figure 3.10). This, however,

assumes the presence of low-frequency indirect transport (i.e. the indirect component of every

row of the transport matrix T is a low-frequency signal), meaning that shifting a high-frequency

illumination pattern across a scene produces no change in the indirect component. Nayar et al.’s

method works well for diffuse indirect transport effects such as diffuse inter-reflections and sub-

surface scattering, but fails in the presence of specular indirect transport effects like caustics and

specular reflections.

Separating diffuse and specular indirect transport The indirect-only probing matrix (Ta-

ble 3.2) removes any influence of the diagonal on images from the scene. To further analyze the

indirect component, we apply the approach of Nayar et al. [90] only to the indirect component. To do

this, we use probing to optically “simulate” conventional photography on the indirect-only transport

matrix, as described in the last row of Table 3.1; here, we set the matrix A to be the indirect-only

probing matrix, and the pattern p to be a high-frequency illumination pattern (e.g. a checker-

board). The mask and illumination codes of this probing matrix are a slightly modified version of

the indirect-only probing matrix, where we multiply pattern p with each illumination code.

Following the approach illustrated in Figure 3.10, we capture four indirect-only photos illumi-

nated by a shifting high-frequency pattern p to separate specular indirect light (specularities and

caustics) from diffuse indirect light (inter-reflections and sub-surface scattering). Four “black” pho-

tos were used to counteract the transmissivity of the LCD panel.
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Figure 3.11 shows that our algorithm successfully separates the specular indirect reflections of

the disco ball from the inter-reflections and sub-surface scattering of the book and the scattering

wax disk, respectively. The number of the codes for this experiment was 128 per photo.

Separating diffuse and specular direct transport The polarization state of light provides a

visual cue that enables the separation of diffuse and specular reflections [135]. Specular reflections

preserve the polarization state of light, whereas diffuse reflections do not. As a result, two crossed

linear polarizers can be used to block all specular direct light from contributing to a photo: one

to polarize the illumination at its source, and the other to filter out any linearly-polarized light

emanating from the scene. Computing the specular direct component requires subtracting this

photo from a regular photo of the scene. We refer to Wolff and Boult [135] for a comprehensive

discussion on polarization and reflectance.

This same approach can be used to also recover the diffuse direct component, as demonstrated

in Figure 1.3. The approach is simple: probe for direct light paths while using polarizers to block

all specular direct paths. (Note that the separation results achieved in Figure 1.3 uses the optical

probing prototype proposed in Chapter 4.)

3.5 Discussion

Limitations of our prototype Our prototype system is fixed to an optical bench, uses a restric-

tive coaxial camera-projector arrangement, is limited to displaying mask and illumination patterns

at 20 Hz, has spherical aberrations, and uses a relatively low-contrast projector and LCD. There

is also a small amount of light that transmits through the LCD panel which becomes visible over

long exposures; compensating for this light requires a second photo with the mask set to black. Our

single-photo experiments assume no ambient light, though ambient light can be eliminated using

two photos.

Comparison to mask-less multi-image acquisition An alternative way of implementing op-

tical probing is to capture a separate photo for each illumination pattern without using any mask,

and then perform masking and integration computationally rather than optically. Such an approach

might seem advantageous because it does not require hardware for optical masking and because

individually-captured photos might be useful for other purposes. In Appendix A.1, we use an exam-

ple to show that the utility of such photos is far less clear when acquisition time is taken into account.

This is because high-speed multi-image acquisition is limited by additive sensor noise whereas opti-

cal probing is photon limited, and mainly constrained by the display rate of projectors and masks.

Looking forward, we expect display technologies to improve much faster than additive sensor noise,

conferring further advantage to our all-optical approach. Indeed, using a DMD for masking enables

far higher display rates without moving outside our photon-limited regime.
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3.6 Summary and Contributions

We introduced optical probing as a general imaging technique that offers fine-grain control over how

light paths contribute to a photo. Probing is another example of an optical algorithm, requiring

little or no post-processing after acquisition. We showed that optical probing

• greatly increases the available degrees of freedom in photography and allows direct acquisition

of photos that cannot be captured in one shot by conventional methods;

• provides the ability to attenuate or enhance different light transport components (e.g. Fig-

ures 3.7, 3.8, and 3.9); and

• and can be combined with other computational methods to analyze light transport (e.g. Fig-

ure 3.11).

Although these probing results used a coaxially-aligned projector-camera system, the probing pro-

cedure itself is not restricted to any configuration of lights and cameras. In particular, the next

chapter considers non-coaxial systems by bringing epipolar constraints into the formulation.
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Structured Light Transport

The assumption that light travels along direct paths is actually quite common in computer vision.

While this assumption works well in many cases, we’ve seen that light propagation through natural

scenes is actually a much more complex phenomenon: light reflects and refracts, it undergoes specular

and diffuse inter-reflections, it scatters volumetrically and creates caustics, and may do all of the

above in the same scene. Analyzing all these phenomena with lights and cameras in general positions

(e.g. non-coaxial arrangements) is a hard, open problem—and is even harder when the scene is

dynamic and light transport changes unpredictably. It is also a major factor preventing broader use

of active illumination, including structured-light techniques used for triangulation-based 3D scanning

(Section 1.4.2) which largely assume direct or diffuse indirect light transport [18, 34, 42, 110].

Working from first principles, we show that two families of light paths dominate image forma-

tion in a non-coaxial projector-camera system: epipolar paths, which satisfy the familiar epipolar

constraint and contribute to a scene’s direct image, and non-epipolar paths which contribute to its

indirect. Crucially, while the contributions of these paths are hard to separate computationally once

an image has been captured, the paths themselves can—once again—be blocked optically before

acquisition takes place.

Using this idea as a starting point, we show how to realize this type of control over light transport

with the help of optical probing. Here we apply a generalized technique, which we call Structured

Light Transport (SLT), to four imaging problems and derive their associated mask and projection

patterns:

• non-epipolar (indirect-only) imaging: capture an image that records only indirect light;

• two-shot epipolar (direct-only) imaging: capture two images whose difference contains

only the direct light;

• indirect-invariant structured light: given any conventional structured-light pattern used

for 3D shape acquisition, capture a view of the scene under that pattern that is guaranteed to

be invariant to indirect light; and

• one-shot multi-pattern imaging: given any S ≥ 2 conventional structured-light patterns

55
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used for 3D shape acquisition, capture one image that contains S separate views of the scene

“packed” into it, each corresponding to a different structured-light pattern.

Little is currently known about how to solve these problems in the general setting we consider.

Our solutions, while firmly rooted in computer vision, operate exclusively in the optical domain

and require no computational post-processing: our implementation is a physical device that just

outputs live video. This video is optionally processed after acquisition by standard 3D reconstruction

algorithms [110] which can be oblivious to the complexity of light transport occurring in a scene.

The device itself is a novel combination of existing off-the-shelf components—a conventional video

camera operating at 28 Hz, a pair of synchronized DMDs operating at 2.7 kHz to 24 kHz for sensor

masking and pattern projection, and optics for coupling them.

From a practical point of view, this work offers four main contributions over the state of the

art. First, it is the first demonstration of an “indirect-only video camera,” i.e., a camera that out-

puts a live stream of indirect-only video for general scenes—exhibiting arbitrary motion, caustics,

inter-reflections and numerous other transport effects. Prior work on indirect imaging was either

constrained to static scenes [129], or assumed diffuse indirect transport [2, 90] and accurate 2D mo-

tion estimation [2]. Second, we show how to capture—with just one SLT shot—views of a scene that

are invariant to indirect light. This is particularly useful for imaging dynamic scenes and represents

an advance over direct-only imaging [90], which requires at least two images. Third, we show that

any ensemble of structured-light patterns can be made robust to indirect light, regardless of the

patterns’ frequency content. This involves simply switching from conventional to SLT imaging—

without changing the patterns or the algorithm that processes them. As such, our work stands in

contrast to prior work on transport-robust structured light, which places the onus on the design of

the patterns themselves [11, 17, 41, 42]. Fourth, we show that SLT imaging can turn any multi-

pattern 3D structured-light method into a one-shot technique for dynamic shape capture. Thus

an entire family of previously-inapplicable techniques can be brought to bear on this much-studied

problem [29, 54, 65, 110, 141] in order to improve depth map resolution and robustness to indirect

light. As a proof of concept, we demonstrate in the reconstruction of dense depth and albedo from

individual frames of monochrome video, acquired by combining indirect-invariant SLT imaging and

conventional six-pattern phase-shifting.

While SLT imaging builds on the optical probing work of Chapter 3, its premise, theory, appli-

cations, and physical implementation are different.

4.1 The Stereo Transport Matrix

We begin by relating scene geometry to the light transported from a projector to a camera in general

position.

Anatomy of the stereo transport matrix Since a projector and a camera in general position

define a stereo pair, their transport matrix is best understood by taking two-view geometry into

account. More specifically, we classify the elements of T into three categories based on the geometry

of their transport paths (Figure 4.1):
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• Epipolar elements, whose projector and camera pixels are on corresponding epipolar lines.

These are the only elements ofT whose transport paths begin and end on rays that can intersect

in 3D. By performing stereo calibration [49] and vectorizing patterns and images according

to Figure 4.2, these elements can be made to occupy a known, time-invariant, block-diagonal

subset of the transport matrix.

• Non-epipolar elements, whose projector pixel and camera pixel are not on corresponding

epipolar lines. Non-epipolar elements are significant because they vastly outnumber the other

elements of T and never account for direct transport. This is because their transport paths

begin and end with rays that do not intersect, so light must bounce at least twice to follow

them.

• Direct elements, whose camera and projector pixels are in stereo correspondence, i.e., they

are the perspective projections of a visible surface point. Direct elements are where direct

surface reflection actually occurs in the scene; although they always lie within T’s epipolar

blocks, their precise location is scene dependent and thus unknown. Indeed, locating the direct

elements is equivalent to computing the scene’s instantaneous stereo disparity map (Figure 4.3).

We can therefore express every image of the scene as a sum of three components that arise from

distinct “slices” of the transport matrix:

i = TD p
︸ ︷︷ ︸

direct image

+ TEI p
︸ ︷︷ ︸

epipolar
indirect image

+ TNE p
︸ ︷︷ ︸

non-epipolar
indirect image

(4.1)

where the I × P matrices TD,TEI and TNE hold the direct, epipolar indirect, and non-epipolar

elements, respectively, and are zero everywhere else.

camera
(I pixels)

projector
(P pixels)

epipolar plane
of image pixel m

epipolar
line

epipolar
line

m
r
n

q

Figure 4.1: Light transport in a stereo projector-camera system. Light can reach pixel m on
the image in one of three general ways: by indirect transport from an arbitrary pixel n on the
corresponding epipolar line (green path); by indirect transport from a pixel q that is not on that
line (red path); or by direct surface reflection, starting from projector pixel r on the epipolar line
(black path).
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Figure 4.2: The light transport equation when
patterns and images are vectorized so that con-
secutive pixels on corresponding epipolar lines
form subvectors pe and ie, respectively. The ma-
trix T is also partitioned into E×E submatrices,
where each submatrix Tef is known as a block
and E is the number of epipolar lines. Under
this vectorization scheme, block Tef describes
transport from epipolar line f on the pattern to
epipolar line e on the image. Blocks Tee, shown
in green, contain the epipolar elements.

epipolar block Tee

direct
elements
at time k

indirect
element
at time k

image
pixel ie[m]

projector
pixel pe[r]

projector
pixel pe[n]

elements corresponding
to stereo disparity m − r

Figure 4.3: Structure of an epipolar block Tee.
Element Tee[m, r] describes transport from pro-
jector pixel pe[r] to image pixel ie[m]. This el-
ement is direct if and only if the scene point
projecting to both pixels is the same, i.e., the
point’s stereo disparity is m − r. The set of di-
rect elements therefore represents the scene’s in-
stantaneous disparity map. Conventional stereo
algorithms attempt to localize this set while as-
suming that the transport matrix is zero every-
where else—both inside and outside its epipolar
blocks.

4.2 Dominance of Non-Epipolar Transport

Although in theory all three image components in Eq. (4.1) may contribute to scene appearance,

in practice their contributions are not equal. The key observation underlying our work is that the

non-epipolar component is very large relative to the epipolar indirect for a broad range of scenes:

i ≈ TD p
︸ ︷︷ ︸

direct image

+ TNE p
︸ ︷︷ ︸

non-epipolar indirect image

. (4.2)

We call this the non-epipolar dominance assumption. The transport matrix is much simpler when

this assumption holds because we can treat it as having a time-invariant structure with two easily-

identifiable parts: the epipolar blocks, which contribute only to the direct image, and the non-

epipolar blocks, which contribute only to the indirect.

To motivate this assumption on theoretical grounds, we prove that it holds for two very gen-

eral scene classes: (1) scenes whose transport function for indirect elements is square-integrable

and (2) generic scenes containing pure specular reflectors and transmitters. These two cases can

be thought of as representing opposite extremes, with the former covering diffuse indirect trans-

port phenomena such as diffuse inter-reflection and diffuse isotropic subsurface scattering [60] and

the latter covering specular indirect transport such as caustics. In particular, we prove the following:
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Figure 4.4: Experimental validation of non-epipolar dominance for a scene containing diffuse,
translucent, refractive and mirror-like objects. From left to right: (1) View under an all-white
projection pattern. (2) View when just one white vertical stripe is projected onto the scene. The
many bright regions in this image occur because the stripe illuminates the book’s pages in three
different ways: directly from the projector, by diffuse inter-reflection from the opposite page, and
by specular reflection via the mirror. Their existence makes the scene hard to reconstruct with
conventional techniques such as laser-stripe 3D scanning [18]. A magnified view of these regions is
shown in the inset on the right. (3) View for another vertical stripe, part of which falls on the candle.
The stripe appears very broad and poorly localized there, because of strong sub-surface scattering.
(4) View when just one projector pixel illuminates the scene. Camera pixels along the epipolar line
receive light travelling along both direct and epipolar indirect paths; note that, unlike (2), these
camera pixels receive no light travelling along non-epipolar indirect paths. (5) View when a single
pixel illuminates a point on the candle.

Proposition 1. If TNE and TEI are discretized forms of transport functions that are square-

integrable and positive over the rectified projector and image planes, then

limǫ→0
TEI p

TNE p
= 0 (4.3)

where division is entrywise, 0 is a vector of zeros, and ǫ is the pixel size for discretization.

Proposition 2. In a generic scene, a specular transport path does not intersect any of the k-bounce

specular transport paths that originate from the corresponding epipolar line for k ≥ 1.

See Appendix B.2 for proofs. Intuitively, both propositions are consequences of a “dimensionality

gap”: the set of transport paths contributing to the epipolar indirect image has lower dimension than

the set of paths contributing to the non-epipolar image (Figure 4.1). Thus contributions accumulated

in one image are negligible relative to the other in generic settings.

On the practical side, we have found non-epipolar dominance to be applicable quite broadly; see

Figures 4.4 and 4.5 for a detailed analysis of non-epipolar dominance in a complex scene, Figures 4.15

to 4.16 for more examples, and [94] for videos confirming the assumption’s validity.
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Figure 4.5: Left: The epipolar block Tee for epipolar line e of Figure 4.4. We show Tee using
the conventions of Figure 4.3, i.e., its rth column comes from an image of the scene acquired with
only projector pixel pe[r] turned on. Middle: To assess the image contribution of non-epipolar

transport, we acquire the block sum
∑E

f=1 Tef and compare it to block Tee—observe that non-
epipolar contributions indeed far surpass the epipolar indirect ones. To acquire the block sum, we
capture images of the scene while sweeping a vertical stripe on the projector plane (see [94] for a
video of the captured image sequence). The rth column of the block sum is given by the pixels on

epipolar line e when the stripe is at pe[r]. Right: Horizontal cross-section of Tee and
∑E

f=1 Tef for
two image pixels. Observe that Tee’s cross-section (blue) is sharp and unimodal whereas the block
sum’s (red) is trimodal for one pixel and very broad for the other.

4.3 Imaging by Structured Light Transport

The rich structure of the stereo transport matrix cannot be exploited by simply projecting a pattern

onto the scene. This is because projection gives no control over how light flows through the scene:

all elements of T—regardless of position—will participate in image formation. To make full use of

T’s structure, we structure the flow of light itself.

Our starting point is the optical probing procedure outlined in Chapter 3. Two basic questions

arise when considering the probing equation (Eq. (3.1)) for image acquisition and shape recovery:

(1) what should Π be, and (2) how to design an imaging system that implements the equation?

We previously restricted optical probing to static scenes and projector-camera arrangements that

share a single viewpoint, none of which apply here. Below we focus on the first question—designing

Π—and discuss live imaging of dynamic scenes in Section 4.4.

Conventional structured-light imaging To gain some insight, let us re-cast as a probing oper-

ation the act of projecting a pattern p and capturing an image i. Applying the vectorization scheme

of Figure 4.2 to the light transport equation and re-arranging terms we get for epipolar line e:

ie =

E∑

f=1

Tef pf =

[ E∑

f=1

(1pT
f )

︸ ︷︷ ︸

block of
probing matrix

⊙ Tef
︸ ︷︷ ︸

block of T

]

1 (4.4)
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Π1(p): projection of pattern p Π2(p): indirect-invariant structured light
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Figure 4.6: The four basic probing matrices used in Chapter 4. Their block structure mirrors the
structure of T in Figure 4.2.

where E is the number of epipolar lines. Eq. (4.4) implies that projecting p is equivalent to probing

with the matrix Π1(p) shown in Figure 4.6. Observe that if we capture images for a whole sequence

of projection patterns—as is often the case in structured-light systems—the non-epipolar blocks of

the probing matrix will be different for each pattern. Indirect transport will therefore contribute to

each captured image differently in a way that strongly depends on the particular pattern. This makes

structured-light 3D scanning difficult when indirect transport is present because its contributions

cannot be easily identified and removed.

Indirect-invariant structured light The contribution of indirect transport becomes much easier

to handle if we ensure it is the same for every pattern. Since this contribution is dominated by the

non-epipolar blocks of the transport matrix, we can achieve (almost) complete invariance to indirect

transport by probing with a matrix whose non-epipolar blocks are independent of p. In particular,

probing with the matrix Π2(p) in Figure 4.6 yields

ie =

[

(1pT
e ) ⊙ Tee

]

1

︸ ︷︷ ︸

direct image (depends on p)

+

[ E∑

f=1,f 6=e

Tef

]

1

︸ ︷︷ ︸

indirect image (ambient)

. (4.5)

The image in Eq. (4.5) has two properties: (1) its direct component is identical to the direct compo-

nent we would get by projecting p conventionally onto the scene, and (2) its non-epipolar component

is independent of p. This independence essentially turns indirect contributions into an “ambient
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light” term that does not originate from the projection pattern.1 To see the practical significance of

this independence, Figure 4.13 compares views of a scene under conventional and one-shot indirect-

invariant structured light, for the same projection pattern.

An important corollary of Eq. (4.5) is that indirect-invariant structured light images can be

acquired for any sequence of patterns—regardless of frequency content or other properties—using

the corresponding sequence of probing matrices.

Non-epipolar imaging A notable special case of indirect-invariant structured light is to set p to

zero (matrix Π3 in Figure 4.6). This yields an image that has no contributions from direct transport.

Moreover, almost all indirect light will be recorded when non-epipolar dominance holds.

Epipolar-only imaging The exact opposite effect can be achieved with a probing matrix that

is zero everywhere except along the epipolar blocks (matrix Π4 in Figure 4.6). When non-epipolar

dominance holds, images captured this way can be treated as (almost) purely direct.

One-shot, multi-pattern, indirect-invariant structured light All four probing matrices in

Figure 4.6 produce views of the scene under a fixed illumination pattern p. With probing, however, it

is possible to capture—in just one shot—spatially-multiplexed views of the scene for a whole sequence

of structured-light patterns, p1, . . . ,pS . The probing matrix to achieve this can be thought of as

defining a “projection pattern mosaic,” much like the RGB filter mosaic does for color (Figure 4.7).

Moreover, we can confer invariance to indirect light by defining the mosaic in terms of probing

matrices rather than conventional patterns.

Specifically, suppose we partition the I image pixels into S sets and let b1, . . . ,bS be binary

vectors of size I indicating the pixel membership of each set. The matrix

Π5(p1, . . . ,pS) =

S∑

s=1

[
bs 1T

]
⊙Π2(ps) (4.6)

interleaves the rows of S indirect-invariant probing matrices. Thus, probing with this matrix yields

an image containing S sub-images, each of which is a view of the scene under a specific structured-

light pattern in the sequence.

1 Other examples of ambient terms with identical behavior include image contributions from the projector’s black
level and contributions from light sources other than the projector. Because such terms are often unavoidable yet
easy to handle, many structured-light algorithms are designed to either recover them explicitly or be robust to their
existence [110]. Non-zero ambient terms do, however, reduce contrast and may affect SNR.

color filter mosaic 6-pattern mosaic 6-pattern indirect-invariant mosaic

RR

G

G

G B

p1 p2 p3

p4 p5 p6

Π2(p1) Π2(p2) Π2(p3)

Π2(p4) Π2(p5) Π2(p6)

Figure 4.7: Example layouts for color RGB, monochrome 6-pattern, and monochrome 6-pattern
indirect-invariant structured light imaging.
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4.4 Live Structured-Light-Transport Imaging

Optical probing is possible by (1) opening the camera’s shutter, (2) projecting pattern qk onto

the scene, (3) using a pixel mask mk to modulate the light arriving at individual camera pixels, (4)

changing the pattern and mask synchronously K times, and (5) closing the shutter. We implemented

this procedure in Chapter 3 for single-image acquisition and low-resolution probing matrices using

an LCD panel for pixel masking, an SLR camera for image acquisition, and K ∈ [100, 1000].

Although the results were promising, LCDs are not suitable for video-rate (30 Hz) probing: they

refresh at 30-200 Hz, limiting K to an unusable 1-6 masks/projections per frame; and they have low

transmittance, requiring long exposure times.

The approach here, on the other hand, is to use a pair of off-the-shelf DMDs for projection and

masking (Figure 4.8 and Figure 4.9). These devices are compact, incur no light loss and can operate

synchronously at 2.7− 24 kHz. To implement Eq. (3.1), we couple them with a conventional video

camera operating at 28 FPS. This allows 96− 800 masks/projections within the 36 ms exposure of

each frame. To our knowledge, such a coupling has not been proposed before.

A major difference between LCDs and DMDs is that DMDs are binary. This turns the derivation

of masks and projection patterns into a combinatorial optimization problem. Formally, given an

integer2 probing matrix Π and an upper bound on K, we seek a length-K rank-1 decomposition

into binary vectors such that the decomposition approximates Π as closely as possible. Estimating

the length of the shortest exact decomposition is itself NP-hard [143].

The approach below is to derive randomized decompositions of Π that approximate Eq. (3.1) in

expectation. Although our experience is that this approach works well in practice, it should not be

treated as optimal.

2Since any grayscale structured-light pattern p must be quantized before projection, probing matrices are always
integer, including Π2(p).

DMD projector

camera

relay lens

relay lens

DMD mask

main lens

diffraction grating

3
0
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Figure 4.8: Photo of our low-speed, low-cost
prototype. The projector can be detached to
change the stereo baseline. The optical path
is shown in red.

DMD projector

camera

DMD mask

projector lens

Figure 4.9: Our high-speed system. The
key differences between this system and that
shown in Figure 4.8 are a monochrome cam-
era, the DMD mask, and the DMD projector.
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Non-epipolar imaging Matrix Π3 is a special case where short decompositions are easy. Let qe

be a pattern whose pixels are 1 along epipolar line e and 0 everywhere else and let me be a mask that

is 1 everywhere except at epipolar line e. Then it is easy to show that Π3 =
∑E

e=1 me(qe)
T. This

corresponds to a sequence of mask/projection pairs where only one epipolar line is “off” in the mask

and only the corresponding epipolar line is “on” in the pattern. Even though this decomposition is

exact—and feasible for near-megapixel images—it has poor light efficiency because only one epipolar

line is “on” at any time. To improve light efficiency we use random patterns instead, which yield

good approximations that are much shorter.

Specifically, consider the random pattern

q = {each epipolar line is 1 with probability 0.5} , (4.7)

let the projection pattern qk be a sample of q, and let the mask mk be equal to qk = 1 − qk. See

Figure 4.10, Row 1 for an example of qk, qk, and mk. Taking expectations in Eq. (3.4), the epipolar

line e of the expected image is given by

E [ie] = E [qe] ◦
E∑

f=1
f 6=e

Tef E [qf ] = 0.25
E∑

f=1
f 6=e

Tef 1 (4.8)

where E [] denotes expectation. The expanded derivation is available in Appendix B.1. This is

the result of probing with matrix Π3, albeit at 1
4

th
of the “ideal” image intensity.3 Note that

corresponding epipolar lines are never on at the same time in the pattern and mask; thus no epipolar

transport path ever contributes to the captured image.

Epipolar-only imaging Matrix Π4 is a special case at the other extreme, where no short rank-

1 decompositions exist. Since Π4 = Π1(1) − Π3, we compute the result of probing with Π4 by

subtracting two adjacent video frames—one captured by projecting an all-white pattern and one

captured by non-epipolar imaging. Naturally, two-frame motion estimation may be necessary to

handle fast-moving scenes (but we do not estimate motion in our experiments).

Indirect-invariant structured light A perhaps counterintuitive result is that even though

epipolar-only imaging requires two frames, indirect-invariant structured light requires just one. This

is important because probing with matrix Π2() is all we need for reconstruction with structured

light. Let p be an arbitrary structured-light pattern scaled to [0, 1]. Define mask mk to be a sample

of q from Eq. (4.7) and the pattern to be

qk = mk XNOR rk (4.9)

def
= mk ◦ rk + mk ◦ rk (4.10)

3Intuitively, since half the epipolar lines are “off” in the pattern and the mask, only a quarter of the total light is
transported from projector to camera.
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where XNOR is the exclusive nor operator of binary vectors mk and rk, and rk is a sample of yet

another random pattern:

r = {pixel n on epipolar line e is 1 with probability pe[n]} . (4.11)

A pictorial illustration of Eq. (4.10) can be found in Figure 4.10 on Row 4, with example random

binary patterns rk sampled from r (Eq. (4.11)) shown on Row 3. From calculations similar to

Eq. (4.8), the expected image is

E [ie] = 0.5Teepe + 0.25

E∑

f=1,f 6=e

[Tefpf +Tef (1− pf )] (4.12)

= 0.5Teepe
︸ ︷︷ ︸

direct image
(depends on p)

+ 0.25

E∑

f=1,f 6=e

Tef1

︸ ︷︷ ︸

indirect image (ambient)

, (4.13)

which is equivalent to the result of probing with Π2(); see Appendix B.1 for derivation.

One-shot, multi-pattern, indirect-invariant imaging Here we use the mask for indirect-

invariant imaging and temporally multiplex S random projection patterns—each defined by Eq. (4.10)

and corresponding to a different structured-light pattern— across our “budget” of K total projec-

tions per video frame. Row 5 of Figure 4.10 illustrates the construction of a multi-pattern indirect-

invariant mask and corresponding projection pattern for S = 6. After the video is recorded, we

“demosaic” each frame i independently to infer S full-resolution images, one for each structured-

light pattern. Following work on compressed sensing [55, 107] we do this by solving for S images

that reproduce frame i and are sparse under a chosen basis W:

min
i1,...,iS

∥
∥
∥WT

[

i1 . . . iS

]∥
∥
∥
p

(4.14)

subject to

∥
∥
∥
∥
∥

S∑

s=1

bs ◦ is − i

∥
∥
∥
∥
∥
2

≤ ǫ (4.15)

where ‖ · ‖p is a sparsity-inducing norm, the vector bs holds pixel memberships for pattern s, and

the scalar ǫ is a user-specified error tolerance to account for the noise in image i.

We use the ℓ2,1 matrix norm here (the sum of the ℓ2 norms of the rows) because it promotes group

sparsity and thus concentrate non-zero terms along rows of matrix WT [i1 . . . iS ]. This is a sensible

norm for one-shot imaging because the visual features of the S images {is} are largely consistent,

and we therefore expect the non-zero elements of sparse vectors {WTis} to have the same structure

across views.
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Figure 4.10: Deriving random pattern/mask pairs for three cases of SLT imaging. The derived
patterns and masks are indicated with red and green borders, respectively. Row 1: For non-
epipolar imaging, the patterns and masks are constant along epipolar lines, with approximately
half of them “on.” Row 2: Six of the nine structured-light patterns we used. Rows 3-4: The
masks for indirect-invariant structured light are identical to those for non-epipolar imaging but the
projection patterns differ. To generate them for a given grayscale structured-light pattern, we first
generate a random sequence of binary patterns (Row 3) and then use that sequence, along with the
sequence of masks, to compute the projection patterns. Row 4 shows one such example. Row 5:
We generate pattern/mask pairs for 6-shot imaging as follows: (1) create 6 random binary images
representing pixel membership for each pattern; (2) generate a sequence of 132 indirect-invariant
binary pattern/mask pairs for each of 6 grayscale structured-light patterns, as outlined in Rows 2-4;
(3) use the 792 projection patterns as is, and (4) multiply the masks element-wise with the associated
pixel memberships. Row 5 shows one such calculation, for grayscale pattern p1.
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4.5 Implementation

Experimental prototypes We created two additional experimental systems for performing opti-

cal probing:

• a low-speed, low-cost system for video-rate non-epipolar and epipolar imaging (Figure 4.8)

whose components are listed in Table C.1; and

• a high-speed system for indirect-invariant structured light shape acquisition and one-shot multi-

pattern structured light (Figure 4.9), whose components are also listed in Table C.1.

Our low-speed, low-cost system included a color AVT GT1920C camera for acquisition, a Texas

Instruments LightCrafter for pixel masking and a 100 lm Keynote Photonics LightCrafter kit for

projection. The DMDs were synchronized at 2.7 kHz, permitting K = 96 patterns and masks per

video frame. The camera and DMD resolutions were quite different—1936×1456 versus 608×684—

with each DMD pixel mapping to a 2 × 2 block of camera pixels. System calibration consists of

computing the epipolar geometry between the two DMDs. We did this by first computing correspon-

dences between the camera and each DMD separately. Patterns are uploaded to both DMDs once,

at the beginning of an imaging session.

For our high-speed system, we used a monochrome AVT GT1920 camera and a pair of high-end

DMDs from Texas Instruments (DLi 4130) with a 2000 lm light source. These operate at 22.2 kHz,

permitting K = 800 patterns per video frame. Although the DMD resolution was fairly high at

1024 × 768, its effective resolution was much lower, 484 × 364, because of the different physical

dimensions and orientation of the camera sensor and DMD.

In one-shot multi-pattern imaging, the effective DMD resolution was even lower, 256 × 256,

because of the scene’s limited extent within the camera’s field of view.

Non-epipolar mask & projection patterns We use random mask/projection pairs like those

shown in Row 1 of Figure 4.10. To reduce the sensation of flicker by users who are physically present

during video acquisition, we generate a random sequence of K/2 mask/projection pairs and then

generate a second mask/projection sequence whose projection patterns are the binary complement

of the first K/2 projection patterns. This ensures a stable perception because the image integrated

by the eye (or by a mask-less camera) over the period of one video frame corresponds to a view of

the scene under an all-white projection pattern.4

For non-epipolar imaging, it is also important to ensure that no direct light “leaks” accidentally

through the DMD mask. Such leaks can occur because of pixel misalignments between the DMD

mask and the camera’s sensor; because of the binary rasterization of epipolar lines; and because

of projector/camera defocus. To make non-epipolar acquisition robust to such effects, we slightly

dilate the “off” regions on the generated masks, similar to the approach taken in Figure 3.6 for

LCD masks. This reduces the occurrence of such leaks at the expense of a slight reduction in light

efficiency. We found this approach to be very effective in practice.

4We emphasize that flicker is a purely subjective sensation that may be experienced by users who view the scene
directly, without the benefit of the DMD mask. In particular, flicker does not occur in the videos captured by our
prototypes.
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Epipolar-only patterns We generate epipolar-only video by operating the camera at 56 FPS

and configuring the DMD of our low-speed prototype as follows:

• odd video frames: display K/2 all-on mask/projection pairs

• even video frames: display a sequence of K/2 non-epipolar mask/projection pattern pairs.

Epipolar-only video at 28 FPS is generated by scaling the odd frames by 0.25 to account for the

reduced intensity of non-epipolar imaging (Eq. (4.8)) and subtracting in real time the even frames

from the scaled odd ones.

Indirect-invariant patterns We generate a sequence of K mask/projection pairs for each of S

grayscale structured-light patterns, as illustrated in Rows 2-4 of Figure 4.10. We then capture one

RAW image of the scene for each of the S generated mask/projection sequences. These S images

are supplied, unaltered, to the 3D reconstruction algorithm.

One-shot, multi-pattern, indirect-invariant patterns We generate a sequence of K mask

and pattern pairs, as outlined in Row 5 of Figure 4.10, and upload them to the DMDs. We then

apply the algorithm outlined in Section 4.4 independently to each frame of the RAW live video

stream.

4.6 Results

Non-epipolar and epipolar-only imaging We used our low-speed, low-cost prototype with a

total of K = 96 mask/projection patterns per frame for non-epipolar and epipolar-only imaging.

For calibration, we computed the epipolar geometry between the two DMDs by first relating them

to the image plane. Overall resolution was equal to the resolution of our DMDs, i.e., 608× 684. See

Figures 4.11, 4.12, 4.15, and 4.16 for examples of non-epipolar and epipolar-only images.

live non-epipolar (indirect) video

(a) (b) (c) (d)

Figure 4.11: Snapshots from RAW live non-epipolar (indirect) video. (a) A hand; note the vein
pattern and the inter-reflections between fingers. (b) Pouring water into a glass. (c) Refractions
and caustics from a beer glass. (d) Caustics formed inside a mug from specular inter-reflections;
note the secondary reflections to the board behind the mug and from the board onto the mug’s
exterior surface. See Figure 4.15 for more non-epipolar images and [94] for videos.
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conventional video (scene lit by all-white pattern)

live epipolar-only (direct) video

Figure 4.12: Frames from conventional and epipolar-only (direct) video, corresponding to the live
non-epipolar video frames of Figure 4.11. From left-to-right: (1) A hand; note the significant
difference in apparent color of the hand in the non-epipolar and epipolar-only components, due to
sub-surface absorption and direct surface reflection, respectively. (2) Pouring water into a glass
demonstrates our ability to successfully image highly-complex, time-varying phenomena. The water
appears dark in the epipolar-only image because the light refracted by the water does not satisfy
epipolar constraints. (3) This beer glass appears essentially opaque in the epipolar-only component.
Again, this is because the light transmitted through the glass undergoes refraction, yielding non-
linear paths that almost never lie on a single epipolar plane. (4) A mug. Note that artifacts appear
on the white background; these occur because the mug moved very quickly during acquisition, and
the frame-differencing we do for epipolar-only imaging caused ghosting.

Indirect-invariant structured light We used high-end DMDs and a monochrome camera to

capture S = 9 indirect-invariant structured light frames (Figure 4.13) with K = 800 patterns/masks

per frame. We then supply these frames as input to a reconstruction algorithm to compute 3D shape

(Figure 4.14), and compare our approach to conventional approaches. The effective DMD resolution

was approximately 484 × 364. The scenes occupied a 403 cm3 volume about 70 cm away from the

camera. To show the effectiveness of SLT imaging, we chose the most basic pattern and technique

to efficiently solve the correspondence problem outlined in Section 1.4.2—phase-shifting [110] with

9 sinusoids total, at frequencies 1, 8 and 64. We also demonstrate an example of indirect-invariant

structured light on a refractive object in Figure 4.17.

Dense depth and albedo from one shot We used S = 6 sinusoids at frequencies 4 and 32

for the experiment in Figure 4.18, and a random assignment of pixels to sinusoids, rather than the

regular assignment illustrated in Figure 4.7. We recorded multi-pattern, indirect-invariant video at

28 FPS and reconstructed each frame independently by (1) solving for the 6 demosaiced patterns

using SPGL1 [124] for optimization and the JPEG2000 wavelet basis, and (2) using them to get

per-pixel depth and albedo. Our reconstruction procedure took, as input, a RAW frame cropped

to a 1024 × 1024 region of interest (with an effective DMD resolution of 256 × 256), and recovered

the depth and albedo in under 8 minutes per frame on an Apple iMac with a 2.8 GHz Intel Core i7

processor and 16 GB of memory.
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scene under
ambient light

conventional
imaging (1 of 9)

indirect-invariant
structured light (1 of 9)

Figure 4.13: We imaged the scene on the left in two ways: (1) projecting 9 phase-shifted patterns
directly onto it and (2) capturing indirect-invariant structured light images for the same patterns.
For the top row, note that the conventional image contains “double fringes” (circled) from secondary
reflections whereas the indirect-invariant one does not; this “double fringe” effect occurs because
of the interference between the phase-shifted pattern transmitted through the direct channel and
the same pattern specularly reflected by the mirror. Although the interference is less prominent in
the bottom row, the conventional images are equally problematic for 3D reconstruction.

stripe-based
reconstruction (768 photos)

conventional
phase-shifting (9 photos)

indirect-invariant
phase-shifting (9 photos)

Figure 4.14: This figure contains 3D results for the two scenes shown in Figure 4.13, using a
conventional stripe-based reconstruction, conventional phase-shift reconstruction, and our indirect-
invariant phase-shift reconstruction. Column 1: We first show reconstruction results obtained by
sweeping a vertical stripe across the scene, as done in conventional triangulation-based 3D laser
scanning (768 images total). Column 2: The conventional phase-shift reconstruction procedure
takes 9 input images acquired by conventional projection of phase-shifted patterns to compute
RAW 3D points. Column 3: Our indirect-invariant phase-shift results use the same 9 patterns
and reconstruction algorithm as in conventional phase-shifting, combined with indirect-invariant
structured light imaging. The phase-shift reconstruction algorithm fails catastrophically for the
conventionally-acquired images, whereas with SLT imaging it is able to reconstruct even the hidden
side of the face, from the mirror’s indirect view. Also note that, despite the fact that stripe scanning
relies on a much larger input dataset, our indirect-invariant approach produces comparable results
for the bowl scene and a far more complete model for the face scene.
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conventional video (scene lit by all-white pattern)

live epipolar-only (direct) video

live non-epipolar (indirect) video

Figure 4.15: Frames from conventional, epipolar-only (direct), and non-epipolar (indirect) video.
From left to right: (1) Faux-fur; note the marked difference between the epipolar-only component,
which appears very shiny due to direct near-specular reflection, versus the diffuse appearance of
the non-epipolar component, caused by sub-surface scattering. (2) A piece of packing foam. (3)
A translucent candle. The non-epipolar frames of both the packing foam and candle demonstrate
that the color of volumetric or translucent materials is often attributed to light traveling through
the sub-surface. (4) Water flowing over a hand; the non-epipolar frame makes apparent the very
dramatic change in a hand’s reflectance properties when water flows over it. We hypothesize that
these changes are caused by scattering in the thin film of water flowing over the hand.

Figure 4.16: Frames from a conventional video
(left) and RAW non-epipolar video (right) of
a tight-fitting latex glove. Note the seemingly
transparent nature of the glove in non-epipolar
mode. The hand is dark in regions where the
glove makes contact with the skin; otherwise,
light scatters within cavities between the glove
and skin.

Figure 4.17: Conventional (left) and indirect-
invariant (right) structured light video frames
of a martini glass lit by a high-frequency pat-
tern. Note that the pattern appears to have dis-
appeared from regions where light undergoes re-
fraction, with the exception of degenerate regions
where light paths are doubly refracted.
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one-shot, multi-pattern image indirect-invariant structured light after demosaicing (sinusoidal frequencies 4 and 32)

recovered albedo map recovered depth map one-shot shape (view 1) one-shot shape (view 2)

Figure 4.18: Reconstructing dense depth and albedo from a video (frame 131 of 169) of a moving
hand, recorded live using one-shot, indirect-invariant, multi-pattern imaging. From this frame, our
demosaicing algorithm recovers 6 full-resolution indirect-invariant structured light images of the
hand, for 6 sinusoidal patterns. These images yield albedo and depth maps on the bottom, and
texture-mapped geometry shown from two viewpoints.

4.7 Summary and Contributions

We believe that optical-domain processing—and SLT imaging in particular—offers a powerful new

way to analyze the appearance of complex scenes, and to boost the abilities of existing reconstruction

algorithms. We have demonstrated the following:

• there exists a crucial link between stereo geometry and light transport, where direct light

always obeys epipolar geometry and indirect light overwhelmingly does not;

• a camera and projector in general positions can exploit this geometry to manipulate the direct

and indirect light flowing through a fully-general, time-varying scene; and

• SLT is well-suited for making existing structured-light shape recovery algorithms robust to

indirect transport, and can even turn them into one-shot methods for dynamic 3D capture.

Although our focus was mainly on monochromatic light and conventional cameras, SLT imaging

depends on neither; in particular, we explore its connection to time-of-flight imaging in Chapter 6.

Last but not least, although these prototypes rely on DMD masks/projectors and several optical

components, we demonstrate a new energy-efficient prototype in the next chapter where per-pixel

processing is implemented directly on the sensor.



Chapter 5

Energy-Efficient Probing by

Homogeneous Matrix Factorization

When we capture an image under active illumination, the power of the light source matters a lot: all

things being equal, brighter sources will send more radiant energy to a sensor during an exposure,

producing a brighter image and a higher SNR. The brightness of the source, however, is just one way

to control how much light reaches the sensor. For example, we know that there exist both efficient

codes (Sections 3.2.2) and not-so-efficient codes (Section 3.2.1) for optical probing, although we

have said very little so far about their optimality. This brings up a natural question: how should

we compute codes that maximize energy efficiency, i.e., the radiant energy that can be transmitted

from sources to sensors for a given imaging task, power, and exposure time?

Studies of this problem began in the 1960s for the special case of arrangements with just three

active components: a light source that is always turned on, a light-blocking mask that is controlled

by a binary code, and a sensor [59, 62]. The optimal sequence of codes for this single-layer coding

arrangement is derived from the Hadamard matrix [50] and enjoys widespread use [111], mainly

because most conventional computational imaging systems are arranged this way.

Unfortunately, neither the original Hadamard multiplexing theory nor its recent extensions [16,

86, 87] apply to multi-layer coding arrangements, such as the mask/projection pattern pairs used in

optical probing. As a result, the problem of computing energy-efficient codes for such arrangements

is poorly understood—and even less is known about how to design them optimally. These problems

are especially relevant for live imaging, where short exposures and low-power restrictions leave no

room for wasting light.

We present a mathematical framework to derive energy-efficient codes and present a novel exper-

imental testbed for live energy-efficient optical probing. We make the following contributions:

Energy-efficient codes for probing light transport We give a principled way to compute

code sequences for optical probing. The code sequences in the previous chapters were constructed

somewhat heuristically. In contrast, the energy-efficient codes we compute in this chapter transmit

more radiant energy to the camera for a given light source power (i.e., brighter images, all else

73
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being equal) and produce superior images for a given amount of radiant energy transmitted (i.e.,

fewer artifacts, all else being equal). We confirm these gains experimentally with our high-speed

DMD-based prototype (Figure 4.9).

Live energy-efficient probing with lasers and rolling shutters Although energy-efficient

codes do improve image quality, far bigger gains are possible by optimizing the system itself. To

this end, we demonstrate highly efficient transport probing with a novel combination of a low-power

laser projector and a rolling shutter camera. This laser-based prototype (1) captures epipolar-only

and non-epipolar live video without wasting any light; (2) captures live epipolar structured-light

video of very bright scenes—even a light bulb that has been turned on; (3) reconstructs 3D objects

in challenging conditions such as strong indirect and ambient light; and (4) records live video from

a projector’s—rather than the camera’s—point of view (i.e. dual videography).

Unified mathematical model for redistributive projection We show that despite the signif-

icant differences between our DMD- and laser-based prototypes, it is possible to describe both of

them with the same underlying model. This makes it easy to compare their energy efficiency, and

to define an efficiency criterion for code sequences that applies to a whole spectrum of projection

devices—from conventional DMD projectors to rapidly-steerable laser beams.

Energy-efficient codes by homogeneous factorization We show that finding energy-efficient

codes under our model is equivalent to solving a homogeneous constrained matrix factorization

problem, which captures the physical constraints on the mask and projection patterns. We solve

this factorization problem by minimizing an objective function that includes the projective tensor

norm; we use the fast local optimizer of Haeffele et al. [47] in our implementation, to compute

energy-efficient codes for our DMD-based prototype.

Impulse illumination is globally optimal We show that the global minimum of our objective

function can be derived in closed-form and is actually very simple: it is a sequence of impulse illu-

minations produced by a projector having the smallest possible redistribution ratio for the exposure

time, i.e., it emits all available radiant energy into a tight beam that can be redirected very quickly.

A key corollary of this result is that our laser-based prototype, whose illumination sequence is fixed

by the hardware and not under our control, is globally optimal for the tasks of epipolar-only and

non-epipolar imaging. Moreover, global optimality holds even in the presence of ambient light. For

the other tasks, however, a significant gap from global optimality still exists. This can only be closed

with yet-unavailable hardware for more flexible laser projection and electronic masking.

Energy-efficient codes for redistributive projectors Of course, between the two extremes

of ideal impulse projection (minimum redistribution ratio) and conventional mask-based projection

(maximum redistribution ratio) lies a whole spectrum of arrangements that redistribute light par-

tially [44, 57, 83]. We explore this spectrum briefly through simulations, noting that a rapid “phase

transition” seems to occur in our energy-efficient illumination codes, with pure impulses on one end

switching to dense codes on the other.
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sensor
mask
(I pixels)

mask-based
projector
(P pixels)

point
source

camera sensor

scene & optics

(a)

sensor
mask
(I pixels)

impulse
source

camera sensor

scene & optics

impulse
projector
(P pixels)

(b)

Figure 5.1: Two-layer arrangements considered in this work. (a) At the low end of the efficiency
spectrum are projectors that always spread light to all pixels on a mask (i.e., redistribution ratio
is P ). These projectors waste energy because they create patterns by blocking light—and that light
is not used for imaging. (b) At the other extreme are “impulse” projectors, able to concentrate all
their energy to just one pixel (i.e., redistribution ratio is 1). In between are arrangements that can
concentrate light partially, which we also analyze.

5.1 Lights, Masks and Energy Efficiency

We begin by revisiting the oft-used concepts of a projection pattern p and a mask m, and focus on

their physical units and constraints. These lead to a definition of energy efficiency for the two-layer

mask/projection sequences used in optical probing.

5.1.1 Redistributive Projection and Sensor Masking

We assume that the projector’s light source is always on and emits light at a constant rate Φ,

measured in watts. Illuminating a scene for an exposure time T means that the total radiant energy

generated by the source is ΦT and given in joules.

Each element of the illumination pattern p gives the radiant energy emitted from a specific

projector pixel during the exposure time. The sum of all elements of p cannot exceed the radiant

energy generated by the source:

0 ≤ p, ‖p‖1 ≤ ΦT (5.1)

where ‖ · ‖1 denotes the ℓ1 norm of a vector.
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The redistribution ratio of a projector A key measure of projector flexibility is how well the

projector can “channel” to individual pixels all the radiant energy generated by the source. We

express this ability as an upper bound on the individual elements of p:

‖p‖∞ ≤ ΦT/̺ (5.2)

where ‖ · ‖∞ is the ℓ∞ norm, giving the largest element of a vector, and ̺ is a projector-specific

parameter we call the redistribution ratio, that is equal to the ratio of the bounds in Eqs. (5.1)

and (5.2). For a P -pixel projector, this ratio takes values between 1 and P and models energy

redistribution: the larger its value is, the lower the energy we can send through any one pixel, and

the more energy we waste when projecting a pattern with just one pixel turned on (or just a few).

The specific value of ̺ depends on the projection technology. At the far end of the range, with

̺ = P , are conventional projectors (Figure 5.1(a)). These projectors (e.g. those using DLP and

LCD technology) use mirrors and lenses to distribute light evenly over a controllable mask, which

may then block all or part of it. Any one of the P projector pixels emits at most 1
P

th
of the total

available light ΦT . The near end of the range, with ̺ = 1, represents an idealized projector that is

perfectly efficient (Figure 5.1(b)). This projector can send all its light through just one pixel for the

entire exposure time T but can also distribute it—without any blocking—according to an arbitrary

illumination pattern p. Between these two extremes lies a whole spectrum of projection technologies

that approach this ideal to a greater or lesser extent [19, 44, 57].

Norm bound on illumination vectors The ℓ1 and ℓ∞ bounds on p can be written as

0 ≤ p, ‖p‖†̺ = max

(
̺‖p‖∞

Φ
,
‖p‖1
Φ

)

≤ T (5.3)

where ‖ · ‖†̺ is the max of two norms and therefore also a norm. These bounds are useful in three

ways. First, we can optimize arrangements with very different light redistribution properties by

adjusting the redistribution ratio. Second, the dependence on exposure time makes a distinction

between systems that conserve energy and those that merely conserve power (but require long

exposures [44]). Third, they explicitly account for timescale-dependent behavior (e.g., raster-scan

projectors, like the MEMS projector used in our laser-based prototype, can act like a beam, light

sheet, or point source depending on T ).

Norm bound on mask vectors Each element of the mask vector m is a unitless scalar between

zero and one describing attenuation at a specific sensor pixel:

0 ≤ m, ‖m‖∞ ≤ 1 (5.4)
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Figure 5.2: Top row: Realizing a rank-1 probing matrix of size 4×4 (left) in two ways—with a single
mask/projection pair (middle) and with a sequence of two illumination patterns and masks (right).
Middle row: Plots of power versus time for the “active” pixels in a mask-based projector. The
projector’s redistribution ratio is ̺ = 4 for this 4-pixel projector because any given projector pixel
can emit at most one quarter of the total available energy. For the single mask/projection pair case,
projector pixels 3 and 4 are active throughout exposure period T , each generating ΦT/4 J of radiant
energy. For the two mask/projection pair case, projector pixels 3 and 4 are only active for half the
exposure period, producing ΦT/8 J of radiant energy each. Although the single mask/projection
pair is more efficient than the length-two sequence (γ = ΦT/4 versus γ = ΦT/8) neither makes full
use of the source’s energy. Bottom row: With an impulse projector on the other hand (̺ = 1),
both cases are optimal (γ = ΦT/2); this is because the total radiant energy emitted by the impulse
projector is exactly ΦT J, which is the total energy generated by its source over period T .

5.1.2 Optical Probing

The elements of the probing matrix Π specify energy attenuation from a specific projector pixel to

a specific sensor pixel. Just like masks, probing matrices contain unitless scalars in the range [0, 1].

Energy efficiency of mask/projection sequences Probing matrices describe attenuation in

relative terms and do not tell us how much energy can actually be transmitted from the projector

to the sensor. Indeed, the energy efficiency of optical probing depends on the precise sequence of

projection patterns and masks used.

More specifically, we can realize any rank-1 probing matrix Π using just one projection pattern

and one sensor mask (Figure 5.2):

γ Π = m pT (5.5)

where vectors p and m depend on matrix Π and satisfy all physical constraints, and γ is a scalar

that is measured in joules. Intuitively, γ converts the unitless elements of Π into actual energies that
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can be potentially transmitted during the exposure time. As mentioned in Footnote 1, we previously

assumed that γ = 1. We call γ the energy efficiency of the mask/projection pair p and m.

Higher-rank probing matrices require changing projection patterns and masks K > 1 times

during the exposure time. Mathematically this is equivalent to expressing matrix Π as a sum of

outer products, subject to the physical constraints on illumination patterns and masks:

γ Π =
K∑

k=1

mk (pk)
T

(5.6)

0 ≤ tk,

K∑

k=1

tk ≤ T (5.7)

0 ≤ mk, ‖mk‖∞ ≤ 1, 0 ≤ pk, ‖pk‖†̺ ≤ tk (5.8)

where the mask mk and pattern pk are active for a time interval tk, and scalar γ is the energy

efficiency of the whole sequence. The sum of the time intervals tk is the time necessarily to cy-

cle through the entire mask/projection sequence, which cannot be longer than the total available

exposure time T .

Note that the scalar γ is also inherently constrained from above by Eqs. (5.7) and (5.8):

|γ| ‖Π‖max ≤
K∑

k=1

‖mk (pk)
T‖max (5.9)

≤
K∑

k=1

‖mk‖∞ ‖pk‖∞ (5.10)

≤
K∑

k=1

‖mk‖∞
Φ

̺
‖pk‖†̺ (5.11)

≤ Φ

̺

K∑

k=1

tk (5.12)

≤ ΦT

̺
(5.13)

where the matrix norm ‖·‖max is the maximum absolute element of a matrix. Note that this inequality

is not a tight upper bound on the value of energy efficiency γ; the inequality simply states that the

radiant energy transmitted from any projector pixel n to camera pixel m, represented by γΠ[m,n],

cannot exceed the total energy ΦT for impulse projectors and the distributed energy ΦT
P for mask-

based projectors.

5.1.3 Homogeneous Factorization

The greater the energy efficiency of a sequence, the more total energy will flow from the projector

to the camera in any given scene. We therefore seek mask/projection sequences that maximize γ.



Chapter 5. Energy-Efficient Probing by Homogeneous Matrix Factorization 79

Re-writing Eq. (5.6) in the form of a matrix factorization equation

γ Π = [ m1 m2 · · ·mK
︸ ︷︷ ︸

masks M

][ p1 p2 · · ·pK
︸ ︷︷ ︸

illuminations P

]
T

(5.14)

leads to a homogeneous factorization problem whose goal is to find the masks M, patterns P, and

timeslices tk that maximize energy efficiency:

max
γ,M,P,t1,...,tK

γ (5.15)

subject to γ Π = MPT (5.16)

0 ≤ mk, ‖mk‖∞ ≤ 1

0 ≤ pk, ‖pk‖†̺ ≤ tk

0 ≤ tk,

K∑

k=1

tk ≤ T

The energy efficiency of a particular factorization—and thus the solution to this optimization

problem—depends to a large degree on a projector’s ability to redistribute light, i.e., on its re-

distribution ratio. See Figure 5.2 for a detailed illustration.

5.2 Homogeneous Low-Rank Factorization

While the optimization in Eq. (5.15) is hard to solve directly, it can be relaxed into the following:

min
M,P

‖Π−MPT‖2F + λ

K∑

k=1

‖mk‖∞‖pk‖†̺ (5.17)

subject to 0 ≤ mk, 0 ≤ pk

where λ is a regularization parameter that balances energy efficiency and the reproduction of Π.

Details of this relaxation, which absorbs timeslices and inverse energy efficiency γ−1 into the second

term of Eq. (5.17), are in Appendix B.1.5. Its main intuition is to convert the homogeneous maxi-

mization of Eq. (5.15) into an inhomogeneous one by seeking the masks and projection patterns with

the minimum sum of norm products. Once this decomposition is found, we can “brighten” matrix

Π, and thus find γ, by re-scaling M and P to saturate their upper-bound constraints; specifically:

γ = T

(
K∑

k=1

‖mk‖∞‖pk‖†̺
)−1

(5.18)

Note that, according to Eq. (5.18) and the definition of norm ‖ · ‖†̺, the energy efficiency term γ

grows linearly with both exposure time T and light source power Φ.

The relaxation in Eq. (5.17) has received some attention recently in computer vision and machine

learning [6, 47]. Here we focus on aspects of that work that are specific to our optimization problem.
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The projective tensor norm By leaving the sequence length K unconstrained and dropping

non-negativity constraints, Eq. (5.17) becomes equivalent to a minimization of the following [47]:

min
X

‖Π−X‖2F + λh(X) (5.19)

where function h(X) is the projective tensor norm, defined as

h(X) = min
X=MPT

{ K∑

k=1

‖mk‖p‖pk‖q
}

(5.20)

with p = ∞ and q = †̺ according to Eq. (5.17).

5.2.1 Implications of the Theory

Impulse illumination is globally optimal A closed-form solution to Eq. (5.17) exists for the

special case of impulse projectors. This is because the norms ‖pk‖1 and ‖pk‖†̺ in that equation

always coincide when the projector’s redistribution ratio is equal to one. In particular, Bach et al. [6]

showed that for p = ∞ and q = 1, the projective tensor norm—which is equal to the global

minimum of Eq. (5.17)—is given by the sum of the ℓ∞ norms of the mask vectors. The factorization

corresponding to this minimum is

P = I, M = Π P (5.21)

where I is the P × P identity matrix, i.e. the optimal projection patterns P are impulses.

Epipolar illumination is globally optimal for epipolar-only and non-epipolar imaging

The global optimality of impulse projectors has another, more practical implication: scanning-based

laser projectors that can concentrate all their energy onto individual scanlines are also globally

optimal for probing—but only when their scanlines are along the epipolar lines, and only for probing

matrices whose elements do not vary within an epipolar block (e.g., the first three matrices in

Figure 5.3). In that case, each epipolar line can be treated as a “pixel” without loss of generality,

and each epipolar block of Π can be treated as a single element. The globally-optimal solution is

again given by Eq. (5.21), with “impulses” corresponding to a single epipolar line turned on.

Epipolar illumination and epipolar masking confer robustness to ambient light A second

practical implication of Eq. (5.21) concerns probing matrices Π that are permutations of the identity

matrix. The globally-optimal solution is to unmask each camera pixel exactly once. This solution

exposes camera pixels for the shortest possible time interval among all possible mask/projection

sequences. In other words, impulse illumination and impulse masking simultaneoulsy maximize

the energy efficiency of probing and minimize the impact of ambient light. Similarly, epipolar

illumination and epipolar masking are optimal for epipolar probing in the presence of ambient

light—a principle we directly exploit with our laser-based prototype (Section 5.4).
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epipolar
(direct)

non-epipolar
(indirect)

short-range
indirect

epipolar
structured light

live dual
videography

Section 5.4.1 Sections 5.3, 5.4.1 Section 5.3 Section 5.4.2 Section 5.4.3

Figure 5.3: The five basic probing matrices used in Chapter 5. We follow the conventions of the
stereo light transport matrix (Figure 4.2) for a projector and a sensor that have just eight epipolar
lines worth of pixels (but many pixels along each epipolar line). The epipolar and non-epipolar
matrices are identical to those in Figure 4.6. Individual elements range from zero (black) to one
(white). Red lines indicate row boundaries in the raster-scan ordering of individual pixels. These
lines partition Π into contiguous epipolar blocks (Figure 4.3), with each block controlling energy
transmission from projector pixels on a specific epipolar line to sensor pixels on another epipolar line.

Code optimization algorithm for non-impulse projectors No closed-form solution is known

for the projective tensor norm when ̺ is greater than one. We use the structured low-rank matrix

factorization algorithm of Haeffele et al. [47] to locally optimize this norm with convergence guaran-

tees. The base requirement of their algorithm is the ability to evaluate the proximal operator. For

a norm ‖ · ‖p this operator is defined as

proxλ‖x‖p
(v) = argminx

(

‖x‖p +
1

2λ
‖x− v‖22

)

(5.22)

The proximal operator for ‖ · ‖†̺ has a simple form when ̺ = P and a very efficient algorithm

exists for computing it [96]. We use this approach to compute optimized code sequences for our

DMD-based prototype (Section 5.3). For projectors with redistribution ratios between 2 and P − 1,

we found no simple solution. We evaluate Eq. (5.22) explicitly in such cases, by solving a constrained

minimization problem. To impose non-negativity constraints on masks and projection patterns, we

replace each negative component of the proximal operator’s output with zero [96, 140].

5.3 DMDs for Live Energy-Efficient Imaging

DMDs offer flexible masking but have two important limitations: they are very inefficient when used

for light projection (̺ = P ) and they can only support short code sequences for live imaging (e.g.,

K ≤ 96 for the Texas Instruments LightCrafter DMD). This makes the design of energy-efficient

codes all the more important, so that images are as bright and artifact-free as possible.

Optimized codes for epipolar imaging Probing with the epipolar-only matrix Π (Figure 5.3)

yields an image that is almost exclusively due to direct surface reflections.

Figure 5.5 shows the projector patterns generated by Eq. (5.17). These codes are far from

random. First, the matrix MPT converges to the probing matrix as K approaches Π’s size. This
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has a clear, positive impact on image quality (Figure 5.4). Second, when K = P is divisible by four,

the square matrix P is exactly the Hadamard matrix [50], i.e., its elements have value +1 or −1 and

its inverse is 1
P PT. Third, for other sizes, the codes we generate exhibit similar characteristics to

the Hadamard matrix (Figure 5.5). Fourth, we observe that energy efficiency can be improved even

further by computing code sequences that are longer than Π’s size.

Randomized codes Optimized codes

Figure 5.4: Epipolar imaging with the high-speed DMD-based prototype. The scene has a mirror
on the left and a translucent candle on top of a box on the right, all in front of a white wall
(see Figure 5.9(a) for a conventional photo). We generated randomized and optimized codes for
K = 512. Both codes are equally energy efficient since they produce images of similar brightness.
Our optimized codes, however, are not just efficient, they approximate Π well too. This yields
images with far fewer artifacts (note the bright streaks on the left image).

epipolar Π (13 × 13)

1 13 20
0

13

number of patterns K

h
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‖
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optimized P

(K=13)
optimized P

(K=14)
optimized P

(K=15)
optimized P

(K=16)

Figure 5.5: Codes optimized for different sequence lengths K, where ̺ = 13, Φ = 1, and T = 1.
Here we dropped the non-negativity constraint and computed codes M and P that require two
photos to implement efficiently on a DMD-based projector (i.e., one for the positive and one for
the negative elements of P). Top-Left: A probing matrix. Top-Middle: Sequence length versus
energy efficiency as measured by the projective tensor norm (lower is better, as per Eq. (5.18)).
Top-Right: Sequence length versus reconstruction error of matrix Π. Note that energy efficiency
starts improving once Π can be reconstructed exactly, i.e., for K ≥ 13. Bottom Row: Optimized
projector patterns for various sequence lengths (mask matrices omitted for brevity). Positive and
negative elements are color-coded in red and blue, respectively.
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Optimized codes for non-epipolar imaging Figure 5.6 illustrates the visual quality improve-

ment from our optimized codes in this task. The task requires probing with the non-epipolar matrix

of Figure 5.3 which guarantees that no direct light reaches the sensor. Short mask/projection se-

quences from the randomized algorithm result in strong visual artifacts (bright diagonal streaks

along epipolar lines). These occur because the energy that is transmitted from projector to sensor

is attenuated non-uniformly over the sensor plane (i.e., MPT is a poor approximation of Π). Our

optimized codes, on the other hand, yield bright and artifact-free images for a short sequence of the

same length. These codes are shown in Figure 5.7.

Randomized codes Optimized codes

Figure 5.6: Non-epipolar imaging using the optimized codes versus the randomized codes. The
scene consists of a styrofoam cup and a lamp (turned off). We generated a short sequence of codes
(K = 32) using the two algorithms, and captured the images shown above. Again, both code
sequences have similar energy efficiency but our optimized codes produce no discernible artifacts.
The bright diagonal streaks in the left image is the result of poorly approximating matrix Π.

non-epipolar Π (31× 31)

impulse, S-matrix

1 31
0

31

spread ̺

h
(X

)

optimized M

(̺ = P )
optimized P

(̺ = P )
optimized M

(̺ = 1)
optimized P

(̺ = 1)

Figure 5.7: Optimized codes for different values of the redistribution ratio ̺, and where Φ = 1 and
T = 1. For a DMD-based projector (̺ = 31), our algorithm returns masks M and illuminations P
that are complementary S-matrices [50, 111]. For the impulse projector (̺ = 1) we get impulses.
The projective tensor norm plot of the S-matrix and impulse solutions is shown on the right for
different values of ̺ (lower is better).
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Algorithm according to Eq. (3.11) Our algorithm (with weight matrix W)
Π MPT computed M weight matrix W MPT computed M

Figure 5.8: Computing a K = 16 code sequence for a rank-128 short-range indirect probing matrix.
The top row shows the mask matrix computed without enforcing non-negativity whereas the bottom
row shows the matrix with those constraints enforced. We can use this matrix to capture images
with only “short-range indirect” contributions, i.e., light that contains neither direct reflections nor
contributions transported between distant epipolar planes. We are aware of no techniques to capture
such images, either by factorizing Π or by other means. In particular, the randomized algorithm fails
to produce usable codes because Π’s off-diagonals are reconstructed poorly. By incorporating the
weight matrix W shown into the Frobenius norm of Eq. (5.17), our algorithm produces a low-rank
approximation of Π whose near off-diagonals are reconstructed very well. Use of these weights was
partly inspired by Lanman et al. [73]. Figures 5.9(c) shows images captured with our DMD-based
prototype using this code.

Optimized codes for high-rank probing Many matrices useful for probing have rank much

higher than the maximum attainable value of K. In such cases, the matrix Π can only be approx-

imated by a rank-K approximation of Π. Figure 5.8 compares our codes to those obtained by the

randomized approach for the hitherto not studied task of short-range indirect imaging. This task in-

volves probing with the corresponding matrix from Figure 5.3, which blocks all energy transmissions

except those occurring between any two nearby epipolar planes.

For such high-rank cases, we modify the objective function in Eq. (5.17) by replacing the Frobe-

nius norm, ‖ · ‖F , with a weighted Frobenius norm, ‖ · ‖W. The role of the weight matrix, W, is to

effectively reduce the rank of the probing matrix Π by targeting a subset of elements that we want

to reconstruct accurately. For example, in Figure 5.8, the weight matrix is chosen such that the

elements near the diagonal are reconstructed perfectly. If we assume the unknown light transport

matrix is also band-limited (i.e. its nonzero elements are located near the main diagonal), this

low-rank probing operation MPT produces the same result as the high-rank probing matrix Π.

Figure 5.9 shows captured images for several high-rank probing tasks. These tasks were impos-

sible to perform previously because no efficient low-rank factorizations of Π were known (i.e., with

enough energy efficiency for a useful image signal).
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Π M (P = 352) Π M (P = 176) Π M (P = 416)

(a) conventional
photos

(b) robust
non-epipolar indirect

(c) short-range
indirect

(d) long-range
indirect

Figure 5.9: New transport-probing abilities enabled by homogeneous factorization of high-rank
matrices. Probing matrix Π and mask matrix M (after dithering) are shown above each column.
(a) We show results for two scenes: (Top) A scene containing, from left to right, a Chinese mask
within a display case; a translucent candle; an ocarina; and a tin box. (Middle and bottom) A
scene with a mirror and a translucent candle. (b) Making non-epipolar probing robust to geometric
misalignments by building robustness into matrix Π itself. Here we set the elements of Π to zero
within a small band of the diagonal to ensure no direct light “leaks” into the photo, and compute
a code sequence of length K = 352. (c) Short-range indirect imaging captures inter-reflections,
sub-surface scattering, and a bright vertical band of mirror reflections. We used K = 176. (d)
Long-range indirect photos captured using a code sequence of length K = 416. Since sub-surface
scattering is a short- to mid-range transport phenomenon, candles appear darker compared to (c).
In the bottom row we used 4× longer sequences to improve image quality. These imaging tasks are
considerably “harder” than epipolar-only and non-epipolar probing, requiring less energy-efficient
codes: exposure time was T = 1/3 s for all images, about 10× longer than in Figures 5.4 and 5.6.

Implementation details The projective tensor norm is a prior that naturally favors binary codes.

Nevertheless, the codes computed by our algorithm are not binary in general. We implement non-

binary codes by temporally dithering each code with the DMD, i.e., projecting a sequence of binary

codes that achieve the desired intensity value. This increases the number of codes but does not

affect energy efficiency.

Ignoring non-negativity constraints in Eq. (5.17) can significantly increase the energy efficiency of

code sequences. Codes with both positive and negative values, however, are not physically realizable.

We convert a length-K mask/projection sequence into two sequences of length 2K with Eq. (3.12);

this also decreases energy efficiency by a factor of 4.
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Energy-efficient codes for redistributive projectors Finding globally-optimal codes for gen-

eral redistributive projectors remains an open problem. Nevertheless, we can draw interesting conclu-

sions about the characteristics of (locally-optimized) energy-efficient codes for different redistribution

ratios and different probing matrices. Take, for instance, the case of a non-epipolar probing matrix

Π of size P × P where P + 1 is divisible by four. For ̺ = P , our algorithm automatically returns

illuminations P similar to an S-matrix [50, 111] (Figure 5.7). This matrix has several characteristics:

(1) it is binary, where each element has value 0 or 1, (2) each row or column has exactly P+1
2 ele-

ments with value 1 and P−1
2 elements with value 0, and (3) its inverse is 2

P+1 (2P
T−1). At the other

extreme of ̺ = 1 it returns the impulse illuminations predicted by Eq. (5.21). Between these two

extremes, we found no solution that improves upon either the S-matrix or the impulse illuminations.

This suggests a rapid “phase transition” in the energy efficiency of these two code sequences; this

rapid transition occurs at the intersection point of the two plots in Figure 5.7.1

5.4 Lasers for Live Energy-Efficient Imaging

Scanning-based laser projectors operate on a different principle than mask-based projectors. These

MEMS-based projectors steer a laser beam across the scene, sending all their energy to just one

pixel at a time. We consider these projectors at the more granular timescale of a single scanline,

where they act as impulse projectors whose “impulses” are scanlines (Section 5.2.1). By aligning

the projector’s scanlines with the rows of a rolling-shutter camera—whose ability to mask individual

rows electronically provides a sequence of “impulse” masks—we obtain a system with very high

energy efficiency for many transport probing tasks.

Our prototype is portable and consists of nothing more than an off-the-shelf camera and off-

the-shelf projector whose only modifications are synchronization electronics—no passive or active

optical components are required beyond a simple color filter. This avoids the need for sophisticated

hardware devices and extra optics (e.g. relay lenses, diffraction grating), all of which introduce

aberrations, limit working volume, reduce light throughput, and adversely impact size, weight and

cost.

Laser projectors for “impulse” illumination We use a Microvision ShowWX+ pico-projector

(resolution: 848 × 480, frame rate: 60 Hz, light power: 5 lm per color channel) for light projec-

tion. Fortunately, even though the projector’s raster-scan path is fixed in hardware, it implements

a globally-optimal sequence of illumination codes for many of the probing tasks we consider (Sec-

tion 5.2.1).

Rolling-shutter cameras for “impulse” masking For outdoor experiments we use an IDS

Imaging UI-3250CP-M-GL (1600× 1200) monochrome CMOS rolling-shutter camera, fitted with a

532 nm laser line cut filter (centered on the projector’s green laser wavelength) with a passband

1One can draw an analogy to the work of Cossairt et al. [16] who observed similar behavior in their study of
computational imaging in read-noise versus shot-noise limited settings.
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Figure 5.10: (a) How to combine masking with a rolling shutter camera and raster scanning with a
laser projector. At each timestep (of duration tp), the projector illuminates a single scanline (orange).
The camera’s rolling shutter exposes one or more rows of pixels (white). The masks are defined by
three controllable parameters: the exposure time te; the time it takes the rolling shutter to read
a row of pixels tc; and the offset between the projector sync output and the camera trigger input
to. (b) Ideally, a single projector scanline corresponds to a single camera row (top). In practice,
because of distortion and jitter, each scanline corresponds to a band of sensor pixels (bottom).

of 10 nm. For indoor experiments we use an IDS Imaging UI-3240CP-C-HQ (1280 × 1024) color

CMOS camera. In both cases, we use the cameras’ rolling shutter to implement sensor masking.

At any point in time, the rolling shutter can expose either a single row or a band of rows. The

rolling shutter is triggered by the VSYNC signal generated by the projector. Figure 5.10 shows our

cameras’ timing diagram. We use tp to denote the timeslice for which the projector dwells on a

single scanline. The speed at which the rolling shutter progresses down the rows of the image (tc)

is determined by the pixel clock frequency; we choose this frequency and the focal length of camera

lens so that the downward velocity of exposed camera rows matches the downward velocity of the

projector’s scanline. Increasing the row exposure (te) increases the thickness of the band of camera

rows exposed for each projector scanline. Changing the delay (to) between the VSYNC signal from

the projector and the trigger signal passed to the camera changes the offset between the illuminated

row on the projector and the imaged row(s) on the camera.

5.4.1 Epipolar and Non-Epipolar Imaging

To probe with an epipolar matrix Π (Figure 5.3), we position the camera and projector so that they

emulate a rectified stereo configuration (Figure 5.11). This is key, because the epipolar lines for

a rectified system align with the rows of the projector and camera sensor. Low-distortion camera

lenses are also critical for this alignment to minimize distortion; we use the Lensagon CVM0411ND

varifocal lens in all our experiments.

To capture live epipolar video, we project a plain white pattern continuously and choose sensor

masks so that for each projector scanline, only the corresponding row of sensor pixels is exposed.

This has the effect of transmitting energy from a projector row to a sensor row on the same epipolar

plane, while blocking everything else. We do this by matching the camera’s row exposure time (te)

and row readout time (tc) to the time the projector dwells on a single scanline (tp).

By changing the timing parameters on the camera so that the masks are inverted, the same setup
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CMOS camera 1

CMOS camera 2

MEMS laser projector

synchronization electronics

Figure 5.11: Photo of our laser-based prototype, consisting of an off-the-shelf laser projector and
two rolling-shutter CMOS cameras, each fitted with an ordinary lens and a red band-pass filter.
A microcontroller synchronizes the rolling-shutter of the cameras with the MEMS of the projector.
We only use one camera to generate the energy-efficient imaging results in this work; the second
(optional) camera can be used to implement other active illumination techniques that require two
cameras (e.g. spacetime stereo [20]).

can be used for probing with non-epipolar Π (Figure 5.3). This is done by setting te to be tp less

than the projector cycle time and adding tp to camera trigger offset to. Thus, at any point in time,

every sensor row is exposed except the one corresponding to the current projector scanline. This

blocks all energy transmission between projector rows and sensor rows on the same epipolar plane

while leaving all other light unblocked.

Ideally, we would be able to configure the rolling shutter so that only the rows of sensor pixels

illuminated by the projector at any timestep would be exposed (Figure 5.10). In practice, the

projector we use generates distorted scanlines that are not absolutely straight. Additionally, we

observe synchronization jitter and small perturbations in the trajectory of the projector’s laser

during each exposure cycle. This means that the region in the camera image corresponding to a

projector scanline is constrained to lie inside a narrow band in the image, not along a single row of

pixels. To accommodate these bands, during epipolar imaging we thicken the region of unblocked

pixels in each mask by increasing the pixel exposure time te and adjusting the trigger offset to. As

a result, some short-range indirect light may leak into the epipolar image.

Figure 5.12 shows frames from live epipolar and non-epipolar video captured with our prototype,

for scenes with significant indirect light transport. This prototype performs non-epipolar imaging

at least four times more efficiently than with a conventional projector because DMD-based codes

must block 75% of the energy from the projector’s light source. Moreover, it captures epipolar video

at full video rates and in a single readout, whereas energy-efficient codes for DMD-based epipolar

imaging require two readouts and a computational subtraction step (Section 5.3).
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(a) epipolar imaging (b) non-epipolar imaging

Figure 5.12: Separating components of illumination: we can capture live epipolar images in one
shot with our laser-based prototype. Note that most inter-reflections appear in the non-epipolar
component: reflections from the ball appear in the epipolar image only when they agree with the
epipolar geometry. These images were captured by exposing epipolar stripes wider than a pixel;
as a result, some short-range sub-surface scattering appears in the epipolar image instead of the
non-epipolar image. Vignetting artifacts at the corners are due to projector distortion.

5.4.2 Epipolar Structured Light

Combining epipolar imaging with the projection of structured-light patterns is equivalent to probing

with the epipolar structured light matrix Π in Figure 5.3. By probing with Π instead of projecting

structured light patterns conventionally, we gain two benefits: robustness to indirect light transport

and robustness to ambient illumination.

Robustness to indirect light transport As demonstrated throughout Chapter 4, indirect trans-

port effects like inter-reflections and scattering can cause severe, systematic errors when using struc-

tured light to reconstruct the 3D shape of scenes with concavities and objects made of optically

challenging materials. Unlike indirect invariant structured light imaging where photos are merely

invariant to indirect light, epipolar structured light eliminates indirect light altogether. The re-

constructions obtained in Figure 5.13 show how effective epipolar structured light is in the face of

inter-reflections and sub-surface scattering.

Structured light in bright sunlight Active light sources are typically orders of magnitude

weaker than daylight. Since conventional cameras have limited dynamic range, the signal from the

source is overwhelmed by ambient illumination when regular imaging is used. This makes active

illumination methods, such as structured light, hard to use outdoors. Even though in theory our pro-

totype minimizes pixel exposure only for the task of epipolar probing (Section 5.2.1), in practice the

exposure time of individual scanlines is sufficiently small that the energy received from ambient light

is small compared to the energy transmitted from the projector—even under challenging illumination

conditions and even when the projector light source is weak. Refer to Figures 5.13, 5.14, and 5.15

for some example reconstructions performed under challenging ambient illumination conditions. All

reconstructions were computed using ten high-frequency gray code patterns.

It should be noted that our method is complementary to other methods for suppressing ambient
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light like placing a narrow-band spectral filter on the camera that matches the output wavelength

of the active light source. Also note that, unlike the ambient light suppression done in time-of-flight

cameras (which is electronic and subject to shot noise), epipolar structured light blocks ambient

illumination before it reaches the sensor.

regular imaging epipolar structured light
captured image disparity map captured image disparity map 3D mesh
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Figure 5.13: Imaging and reconstructing challenging objects with strong indirect illumination effects
under ambient lighting. Structured light with regular imaging is prone to errors due to indirect light
transport effects (notice the effects of inter-reflections on the plastic bins and industrial gripper and
sub-surface scattering in the green wax bowl). Additionally, since active illumination sources are of-
ten orders of magnitude weaker than ambient light, structured light patterns are easily overwhelmed
by ambient light. Epipolar structured light blocks a significant fraction of both. In these examples
an ambient light level of 10,000 lm/m2 causes structured light with regular imaging to break down.
In contrast, epipolar structured light still works well. We used the same acquisition time for both
methods in each scene.
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regular (iris f/1.6) ours (iris f/1.6) regular (iris f/1.6) regular (iris f/16) ours (iris f/1.6)

(a) lamp off (b) lamp on

Figure 5.14: Imaging and scanning a 1600 lm lamp with a 5 lm projector: When the lamp is off
(a), the pattern projected by the projector is visible with both regular imaging and our method. By
projecting a series of structured light patterns the lamp can be reconstructued. When the bulb is
turned on (b), regular imaging breaks down. With a large aperture the image is saturated, and with
a small aperture the projected pattern is not visible to the camera on the bulb or the shade. Our
rolling shutter based implementation exposes sensor pixels only while they can receive light from
the projector and as a result, most of the light from the bulb is blocked, the pattern is clearly visible
even on the bulb and the fixture can be reconstructed even though it is on.

(a) regular
(high f-number)

(b) ours
(low f-number)

(c) disparity map (d) 3D mesh

Figure 5.15: Active illumination with a 5 lm laser projector in bright sunlight (80,000 lm/m2): With
regular imaging (a), the active illumination patterns are overwhelmed by sunlight and are not visible
despite using a wavelength filter. Our rolling shutter based implementation blocks a large fraction
of the ambient light. This allows the projected pattern to be seen by the camera (b) and makes 3D
structured light reconstruction possible (c),(d).

5.4.3 Live Dual Videography

Dual photography [71, 114] (Section 1.4.3) makes it possible for a projector and a camera in general

position to “exchange” their viewpoints; however, the technique by Sen et al. [114] first requires

capturing the full transport matrix.

We demonstrate that while capturing the full transport matrix of a scene is still very hard,

capturing an approximation of the epipolar image from the projector’s viewpoint is not only easy,

it can be done in real time with no computational processing whatsoever (Figure 5.16).

Because the maximum exposure period of the rolling-shutter camera is 1/60 s, we instead use our

high-speed system from Figure 4.9 combined with the laser-based projector to extend the exposure

period to 1/5 s and improve SNR. The scanlines of the camera and projector are perpendicular to

the epipolar planes, and we adjust timings so that the projector’s scanline and the camera’s “active”

row are identical. This corresponds to the dual videography probing matrix in Figure 5.3. We then
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(a) setup

(b) projector position (c) captured view

(d) projector position (e) captured view

Figure 5.16: Live dual videography. We demonstrate how combining an impulse projector with a
masked camera can be used to capture live video of a scene from the point of view of the projector.
As the projector pans from right (b) to left (d), the apparent viewpoint of the video frame captured
by the static camera changes from (c) to (e).

place a line diffuser in front of the camera, with its axis of diffusion oriented horizontally, i.e., along

the epipolar planes. This smears the image of every scene point along the epipolar planes. As the

projector scanline and active row sweep across the scene, an image is formed on the sensor from

the projector’s viewpoint. Key to this method’s success is again our prototype’s energy efficiency:

even though the diffuser scatters light a great deal, enough of it reaches the camera to create a clear

image that is relatively free of noise.

5.5 Summary and Contributions

We presented a novel framework for modeling and maximizing the energy efficiency of optical probing.

We introduced the notion of redistribution ratio that models the degree to which a light source’s

energy can be used for imaging rather than be wasted due to blocking/attenuation. In particular,

• we prove that optimal energy efficiency requires impulse illumination, where all the energy of

the source can be concentrated in just one projector pixel that can be scanned rapidly;

• for projectors that cannot do this, we provide an algorithm that computes energy-efficient

codes by solving a homogeneous matrix factorization problem through local optimization;

• this energy-efficient formulation enables new transport-probing abilities (e.g. short-range and

long-range indirect imaging) with our DMD-based prototype;

• we combine a laser projector and a rolling-shutter camera to demonstrate a new energy-efficient

probing prototype that makes near-optimal use of its light source energy; and
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• this energy-efficient prototype enables several new imaging capabilities, which include epipolar

and non-epipolar imaging with no wasted light (Figure 5.12), robust 3D scanning of objects

made of shiny and translucent materials (Figure 5.13), structured-light imaging under strong

ambient lighting (Figures 5.14 and 5.15), and performing dual photography at live video rates

(Figure 5.16).

That said, much remains to be understood on the problem of maximizing energy efficiency—especially

for projectors that cannot use the energy of their source very efficiently (no closed-form solution ex-

ists in that case). Last but not least, as dynamic vision sensors become more practical [80], and

as redistributive laser systems and electronic masks become more flexible, it should be possible to

build systems that push the energy efficiency frontier even further.



Chapter 6

Probing Transient Light Transport

Transient imaging has recently emerged as an alternative paradigm for light transport analysis that

exploits light’s finite speed. Instead of illuminating a scene with spatially-varying patterns, they rely

on temporally-varying ones using MHz to THz lasers and sensors sensitive to these rates (e.g., streak

cameras [129] and photonic mixer devices [53, 63]). These techniques have opened new frontiers in

imaging—looking around corners [68], time-of-flight depth imaging [69, 128], lensless imaging [138],

and capturing propagating optical wavefronts [129]—but are fundamentally limited in their ability

to analyze complex transport.

In this chapter, we combine both paradigms by considering, for the first time, the generation

and acquisition of transient space-time patterns for scene analysis. In this new analysis regime, the

projector emits a 3D signal (2D space × 1D time) and the camera receives a transformed 3D version

of it. This brings two sets of constraints to bear on the same problem: constraints on the spatial

layout of light paths arriving at a given pixel and constraints on their travel time. These constraints

are complementary but not orthogonal; thus, by considering them jointly we can draw far stronger

conclusions about light transport than when spatial or temporal light patterns are used in isolation,

or sequentially.

To demonstrate the practical advantages of this approach, we apply it to the problem of probing

specific light transport paths to analyze a scene’s transient appearance. We explored this thoroughly

for conventional imaging, but it is poorly understood in transient settings. Here, we give a solution to

this problem for imaging three transport components demonstrated in Figures 1.3 and 3.11: (1) the

direct component, (2) the specular indirect component (e.g. caustics and specular reflections) and

(3) the diffuse indirect component (e.g. sub-surface scattering and diffuse inter-reflections). We then

implement this basic imaging ability in a functional prototype to

• improve the robustness of time-of-flight sensors against indirect transport by acquiring and

processing only the direct time-of-flight component;

• capture sharp, evolving wavefronts of “light-in-flight” that so far have been directly observed

only with very expensive streak camera technology; and

• conduct space-time light path analysis to separate “true” scene points from their mirror reflec-

tions.

94
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Figure 6.1: Spatial vs. spatio-temporal patterns. On the left, pixel intensities remain fixed over the
exposure time of the illumination pattern. On the right, pixel intensities vary sinusoidally with a
common temporal frequency ω but their amplitudes and phases differ. The amplitude a and phase
offset φ of each sinusoid is represented by a complex value pω[n] = ae−iφ. Note that we assume
these sinusoids oscillate between intensities a and −a.

Toward these goals, our key contribution is a new form of the light transport equation that makes

many classical transport analysis problems easy to formulate and solve in the transient domain. This

new transient frequency light transport equation assumes that we image the scene by projecting a

pattern onto it—a spatio-temporal signal whose pixel intensities vary sinusoidally in time with a

common frequency ω (Figure 6.1):

iω = Tω pω , (6.1)

where the pattern pω is a column vector of P complex numbers, each representing the sinusoid’s

amplitude and phase for a specific projector pixel; the image iω represents the per-pixel sinusoids

received at the camera; and Tω is the scene’s I×P transient frequency transport matrix for emission

frequency ω. Intuitively, this matrix tells us how the temporal sinusoid received at a specific camera

pixel is affected by temporal sinusoids emitted by different projector pixels, after accounting for all

light transport paths and the delays they induce (Figure 6.2). In this sense, the transient frequency

transport matrix describes transport in the exact same way the conventional matrix T does, except

that it deals with per-pixel temporal sinusoids instead of per-pixel intensities. This matrix is different

for different emission frequencies and reduces to the conventional transport matrix for the DC

frequency (ω = 0), where the projection pattern does not vary over time. Taken together, this

continuous family of discrete transport matrices is a five-dimensional structure that fully describes

light transport at transient timescales—from a projector plane to a camera plane via a 1D set of

emission frequencies.

The fact that Eq. (6.1) exists has two implications for light transport analysis. First and fore-

most, we can directly apply conventional light transport techniques to the transient case—without

compromising their effectiveness or adding extra assumptions. This involves simply replacing con-

ventional projectors and cameras with transient ones, and imaging the scene by emitting from every

projector pixel a temporal sinusoid of a common frequency ω. We use this idea extensively in a new

prototype system to acquire specific components of light transport through optical probing. These

components cannot be captured robustly with existing transient imaging techniques because tempo-

ral signals may propagate through the scene along many different paths and combine upon arrival at
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Figure 6.2: Visualizing the transient frequency transport equation. The projector emits sinusoids of
frequency ω from pixels 1, 2, 3 and 4 and these signals propagate to camera pixel m along four paths:
a direct path (black), where light bounces only once; two diffuse indirect paths (red) where light
undergoes at least two diffuse bounces; and a specular indirect path (green) where light undergoes at
most one diffuse bounce. Since all sinusoids have the same frequency, their superposition, recorded
by camera pixel m, will have the same frequency as well. The amplitude and phase of the sinusoid
received by this camera pixel depends on path-specific attenuations and delays, specified in the
elements of Tω (e.g., for the green path it is Tω[m, 4]). For an example of a retro-reflective path,
which we also consider when working with coaxial projector-camera arrangements, see Figure 6.8(a).

a pixel, making it impossible to separate them without strong assumptions about the actual signal

received (e.g., diffuse one-[67] or three-bounce transport [68], dominant peak [137], parametric [53],

and/or sparse [24, 63]).

Second, probing the scene with a specific temporal frequency is relatively easy to implement

with photonic mixer devices (PMDs). These devices offer affordable spatio-temporal imaging and

can be configured to operate at a single emission frequency. Our prototype is built around such a

camera, with spatio-temporal projection made possible by replacing the light source of a conventional

projector with the PMD’s laser diode. In this respect, our prototype can be thought of as generalizing

the point-source/transient-camera system of Heide et al. [53] and the transient-projector/single-pixel-

camera system of Kirmani et al. [67].

6.1 Related Work on Transient Imaging

Transient imaging technology. The measurement of optical impulse responses with picosecond

resolution was first demonstrated by Duguay and Mattick [25] using a Kerr shutter. Abramson [1]

developed a holographic approach using an ultrashort pulse as the reference wave to image light

in flight, an idea later transferred to digital sensors [101]. The high-framerate operation of opto-

electronic high-speed imagers, imposes major technological challenges on shutter and readout. Direct

sampling of the time dimension could be demonstrated for single-pixel opto-electronic photodetectors

[32, 66, 68]. The highest-resolution videos of light in flight to this day were obtained by Velten et

al. [129] using a streak tube which they synchronized to a pulsed laser, an extremely sensitive setup
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with long capture times. To make transient imaging affordable and practical, Heide et al. [53]

introduced the use of demodulation (PMD) sensors, which they showed produce correlation data

that encodes the transient image. Kadambi et al. [63] later combined the same type of sensor with

temporally coded illumination and a sparse deconvolution approach, achieving reconstructions of

similar quality.

Spatio-temporal light transport analysis/inversion. The advent of transient imaging en-

abled the analysis of light transport on the time axis, giving rise to interesting application directions.

For example, Naik et al. [88] demonstrated the use of transient data to recover surface reflectance

distributions; Kirmani et al. [66] combined an omnidirectional time-resolved sensor with modulation

masks for compressive depth imaging, and Velten et al. [128] reconstructed object geometry “around

corners”, i.e., from light diffusely reflected off a wall. Although in this work, we also propose a novel

technique for enhanced range scanning, we consider our main contribution to be on the theoretical

end. Here, Smith et al. [120], who first formulated the problem of transient rendering, laid the

foundations for understanding time-resolved light transport in macroscopic scenes. In addition to

the aforementioned application-centered works, Wu et al. provided a phenomenological characteri-

zation of temporal profiles encountered in transient images [137] as well as a more comprehensive

spatio-temporal treatment [139]. In this paper, we suggest to treat the time dimension in the Fourier

domain, which is particularly well suited for demodulation sensors used in the most recent works on

transient imaging. To our knowledge, we are the first to provide a unifying framework for now-classic

works in spatial light transport, and extend it towards transient imaging.

6.2 Light Transport in Space and Time

We begin by deriving the transient frequency transport equation from first principles by considering

propagation in space and time.

The space-time impulse response The conventional light transport equation ignores time com-

pletely. One way to interpret that equation is to think of the projector as emitting a time-invariant

pattern; the camera then captures a photo only after light propagation through the scene has reached

a steady state.

To take transient phenomena into account, we must consider the case where light has not yet

reached a steady state. The most straightforward way to do this is to add a time dimension to the

basic light transport equation:

ĩ(τ) = T̃(τ) p̃(0) (6.2)

Here p̃(0) is an illumination pattern that is emitted for an infinitely-brief interval at time zero, and

ĩ(τ) records only light that arrived at the camera exactly at time τ . The time-varying matrix T̃(τ)

therefore describes the part of the light transport in the scene that has a travel time of exactly τ .

From a signal processing perspective, this non-negative matrix-valued function can be thought of as

the scene’s space-time impulse response [68].
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The relationship between the space-time impulse response and the conventional light transport

matrix is a simple time integral:

T =

∫ ∞

0

T̃(τ) dτ (6.3)

Transport of general spatio-temporal patterns Now consider a general pattern p̃(t) that

varies in both space and time. If the projector emits p̃(t0) for an infinitely-brief interval at time

instant t = t0, the time sequence of camera pixel intensities that results from that emission will be

ĩ(t0 + τ) = T̃(τ) p̃(t0) (6.4)

Emitting the full spatio-temporal pattern p̃(t) will produce a time-varying image that takes into

account all possible travel times:1

ĩ(t) =

∫ ∞

−∞

T̃(τ) p̃(t− τ) dτ (6.5)

def
= (T̃ ∗ p̃)(t) (6.6)

where the operator ∗ convolves a matrix function and a vector function over time.2 More information

on this form of the convolution operator and a brief overview of algebra and notation on matrix and

vector functions can be found in the Appendix B.3.

When the scene’s space-time impulse response is known, we can use the convolution integral

of Eq. (6.6) to render the scene under any space-time illumination pattern (Figure 6.3). Applying

this equation in practice, however, is difficult for several reasons. First, rendering even a single

transient snapshot ĩ(t0) requires the full 5D space-time impulse response because of the convolution

integral involved. Second, this function can be extremely large because of the extra time dimension,

compared to the conventional light transport matrix, making it even more challenging to measure,

store, and analyze directly. Third, representing this function as a discrete 5D array makes it difficult

to infer properties of transient light transport because light travels along continuous and unbounded

path lengths, and its dynamic range can be extremely high (e.g., direct paths consist of Dirac

peaks). Fourth, using impulse-like illumination patterns to analyze transient transport typically

requires expensive equipment, long capture times, and exotic techniques to overcome SNR issues.

The transient frequency transport equation Observe that the convolution in Equation 6.6

is only in the temporal domain. To derive the transient frequency transport equation we apply the

convolution theorem to the time axis only, independently for each element of matrix T̃(τ):

F{ ĩ }(ω)
︸ ︷︷ ︸

image iω

= F{ T̃ ∗ p̃ }(ω) (6.7)

= F{T̃}(ω)
︸ ︷︷ ︸

matrix Tω

F{p̃}(ω)
︸ ︷︷ ︸

pattern pω

(6.8)

1Since light cannot travel back in time, T̃(τ) is zero for τ < 0.
2Our definition of convolution here is consistent with convolution operators on tensor fields [56].
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Figure 6.3: Simulated transient light transport, rendered using a modified path tracing integrator
for diffuse transport and a photon mapping integrator for specular indirect transport. For each
camera pixel m, we simulate the travel time τ of all light paths from the scene lit by a projector
pixel n. (a) The scene contains, from left to right, a diffuse bunny, a mirror casting specular indirect
light on the bunny, a glossy bowl, a diffuse V-shaped wedge, and a glass dragon. (b) A transient
image of pixels m across times τ . (c) A conventional light transport matrix, tabulating transport
for each camera pixel m in response to projector pixel n. (d)-(h) Space-time impulse response
functions for distinct camera pixels, as labelled in (a). Both the direct light paths, highlighted by
the red circles, and specular indirect light paths, highlighted in yellow, are impulses in space-time.
The responses in (g) and (h) show the first four diffuse bounces of light that occur between the two
faces of the V-shaped wedge; the light bounces back and forth between the left and right sides of this
wedge as travel time τ increases. Note that each column in (b) is given by summing the columns
of the corresponding space-time impulse response, and each column in (c) is given by summing the
rows; as a result, while the individual bounces of light produce distinct space-time responses in (g)
and (h), these signals become mixed in (b) and (c).

where F{} denotes the element-wise Fourier transform along the time axis and ω denotes temporal

frequency. For a fixed frequency ω, Eq. (6.8) is a matrix-vector product whose factors we denote as

Tω and pω for notational convenience. This brings it into the form shown in Equation 6.1.

The transient frequency transport equation can be interpreted as an image formation model

for patterns like those shown in Figure 6.1, which contain just one temporal frequency. The most

important advantage of this model is that it is separable in three domains simultaneously: the

temporal frequency domain and the domains of the projector and the camera pixels, respectively.

This leads to a mathematically simpler representation for light transport analysis. In particular, the

contribution of all light paths from a specific projector pixel to a specific camera pixel—including

all attenuations and time delays—is captured in just one complex number per temporal frequency.

Analyzing light transport one frequency at a time offers computational advantages as well: in

contrast to the scene’s space-time impulse response which is 5D, the transient frequency transport
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matrix is a 4D object that has exactly the same size as the conventional transport matrix. Moreover,

inexpensive and light-efficient PMD cameras can be configured to follow this single-frequency image

formation model exactly, making it possible to perform transient light transport analysis directly in

the temporal frequency domain.

6.3 Analysis by Temporal Frequency Probing

Much of the theory established for conventional light transport analysis applies to the transient case,

as long as we restrict illumination to patterns of a single temporal frequency. Below we consider

transient versions of two techniques we have implemented, as well as of the rendering equation.

Probing the temporal frequency transport matrix We can readily use the probing model of

Eq. (3.1) for transient imaging because matrix elements T[m,n] and Tω[m,n] represent the exact

same set of light paths for any m,n. As a result, matrix Π has the same effect in both imaging

regimes:

iω = (Tω ⊙Π) 1 (6.9)

The transient rendering equation This equation represents all light transport as a function of

time t [68]:

lij(t) = qij(t) +
K∑

k=1

fkij lki(t− τki) (6.10)

where lij(t) captures radiant energy along a ray, qij(t) is the emitted radiant energy, fkij describes

the proportion of radiant energy from point k to point i that will be reflected towards point j, and

τki corresponds to the flight time between two points k and i. Note that this spatially-discrete

expression is based on a continuous-valued (i.e. non-discretized) set of travel times τki between

pairwise points.

The transient rendering equation is itself separable in the temporal frequency domain:

lωij = qωij +

∫ ∞

−∞

(
K∑

k=1

fkij lki(t− τki)

)

e−2πitω dt

= qωij +

K∑

k=1

fkije
−2πiτkiω

∫ ∞

−∞

lki(t)e
−2πitω dt

= qωij +
K∑

k=1

fkije
−2πiτkiωlωki (6.11)

where lωij denotes the Fourier coefficient of temporal function lij(t) for frequency ω. The key difference

between Eq. (6.11) and the conventional rendering equation [64] are the complex exponential factors

that represent phase delay between pairs of scene points. Most of the equations in Table 6.1 follow
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as direct consequences of this equation. Note that the equation remains valid for discrete temporal

frequencies as well.

Separating specular and diffuse indirect components Nayar et al.’s separation technique

discussed in Chapter 3 can be applied to the transient domain too. Following the approach outlined in

Section 3.4, we capture the direct and indirect components by probing the transient transport matrix

at a single frequency; then we apply Nayar et al.’s method to decompose the indirect component

further, into its specular and diffuse indirect components.

Relation between matrices Tω for different frequencies ω Per-frequency analysis is most

effective when transport matrices at different temporal frequencies are related, so that analyzing one

tells us something about the others. Fortunately strong correlations do exist, and we use three of

them here. First and foremost, element Tω[m,n] represents the same physical 3D transport path(s)

from projector pixel n to camera pixel m regardless of the frequency ω. Thus, if it represents

direct or specular indirect transport at one frequency, it will do so at all others. Second, a direct

path between these pixels contributes a Dirac peak to pixel m’s temporal profile, which has a flat

spectrum. We can therefore use element Tω[m,n] to predict amplitude at all frequencies, and to

predict phase up to a discrete (phase-unwrapping) ambiguity. Third, a similarly strong correlation

occurs for elements representing specular indirect paths, which also produce Dirac temporal peaks

in typical settings.

In contrast, correlations are much weaker when the transport between pixels n and m is due

to diffuse indirect paths. Such transport often involves a broad distribution of path lengths and

contributes temporal profiles with complex shape and small spectral support. Although this makes

it hard to predict the phase and amplitude in general, the contribution of diffuse indirect paths is

known to vanish for large enough frequencies ω [43].

# Description Reference(s) Conventional Light Single-Frequency Transient

Transport Light Transport

1 light transport equation Eq. (1.1) i = T p iω = Tω pω

2 correspondence equation Eq. (1.11) n = argmaxk T[m, k] n = argmaxk Tω [m, k]

3 dual equation Eq. (1.12) i = TT p iω = (Tω)T pω

4 transport eigenvectors Eq. (2.1) λv = T v λv = Tω v

5 inverse equation Eq. (2.8) i = T† p iω = (Tω)† pω

6 probing equation Eq. (3.1) i = (T ⊙ Π) 1 iω = (Tω ⊙ Π) 1

7 low/high-frequency
transport separation

Figure 3.10 ilow = 1
α
mink T pk

ihigh = maxk Tpk − αilow

iω
low

= 1
α
mink Tωpω

k
iω
high

= maxk Tωpω
k
− αiω

low

Table 6.1: Light transport analysis techniques that have simple extensions to the single-frequency
transient domain. In each instance, the transient formulation becomes the conventional (steady
state) formulation at ω = 0. We once again combine optical probing (row 6) with Nayar’s frequency
separation technique (row 7) to capture three transport components: a direct component, a specular
indirect component, and a diffuse indirect component.
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Algorithm 4 Acquire a PMD photo for illumination pattern p.

In: frequency ω and real-valued spatial illumination pattern p

Out: photo equal to iω = Tω pω

1: given frequency ω, set hardware-defined modulation functions f(t), g(t) such that h(τ) = (f ∗ g)(τ) =
cos(ωτ) + b for some arbitrary constant offset b

2: define phase delay vector φ =
[

0, π
2ω

, π
ω
, 3π
2ω

]

3: for d = 1 to 4 do

4: display pattern p

5: modulate sensor and source with f(t), g(t− φd) so that
h(τ) = cos(ω(τ + φd)) + b

6: capture image iωd satisfying Eq. (6.12)
7: end for

8: set iω = (iω1 − iω3 ) + i(iω2 − iω4 )
9: return captured PMD photo iω

6.4 Implementation

Basic imaging procedure The working principle behind photonic mixer devices (PMDs) is the

synchronous modulation of both the incident and outgoing light at high frequencies. Modulating

the incident light by function f(t) and projecting pattern p̃(t) = g(t)p, with temporal modulation

function g(t) and 2D spatial pattern p, yields the following image formation model:

i =

∫ NT

0

f(t)

∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ dt

=

[
∫ ∞

−∞

T̃(τ)

(

N

∫ T

0

f(t)g(t− τ) dt

)

dτ

]

p

=

[

N

∫ ∞

−∞

T̃(τ)h(τ) dτ

]

p (6.12)

where the function h(τ) is the convolution between the two modulation functions f(t) and g(t),

T = 1
ω is the modulation period, and the integer N is the number of periods captured during a

single exposure. This becomes exactly Eq. (6.1) when the convolution function is chosen to be the

complex exponential h(τ) = e−2πiτω.

In practice, the modulation functions and their convolution have non-negative, real values. The

imaging procedure of a PMD camera synthesizes images for mean-zero, complex-valued h(τ) by

capturing and linearly combining four images: two for the real term and two for the imaginary term.

See Algorithm 4 for the basic imaging procedure when the illumination pattern p is real valued.3

In real PMD cameras, the specific modulation functions g(t) and f(t) are usually determined

by hardware constraints, and cannot be chosen arbitrarily. In particular, h(τ) is not always an

exact sinusoid. We note, however, that, if g(t) and f(t) are periodic with frequency ω, then so is

h(τ). Therefore h(τ) is a superposition of the base frequency ω and its harmonics. In this case, the

transport matrices are simply a weighted sum of the transport matrices for the base frequency and

3Illuminating the scene with a complex pattern pω is not physically realizable. It can be simulated, however, by
capturing four PMD photos in a way similar to Algorithm 4. We do not use such patterns in our experiments.
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Figure 6.4: Overhead view of our prototype. The modulated laser source (right) emits light that
passes through a lens and the existing optics of a DLP LightCrafter projector (middle) on its way
to the scene. The PMD camera (left) captures the light returning from the scene.

its harmonics. In practice, we conduct the bulk of our analysis at frequency ω1 = 100 MHz (i.e.,

depth acquisition and phase estimation for direct and specular indirect paths), where our prototype’s

deviation from a perfect sinusoid is negligible.

Hardware Figure 6.4 shows an overhead photo of our prototype in its non-coaxial configuration,

in which the projector and camera can be thought of as forming a stereo pair. We modified the

160×120-resolution sensor of a PMD PhotonICs 19k-S3 by replacing the internal modulation signal

with our own external modulation signals, outputting frequencies that range from 12 MHz to 140

MHz. We illuminate the scene with a custom laser projector, built by replacing the RGB light

source of an off-the-shelf DLP LightCrafter projector with the light emitted from six 650 nm laser

diodes. A single 40 mm lens (Thorlabs TRS254-040-A-ML) directs the modulated laser illumination

through the existing optics of the projector, from which the RGB LEDs and dichroic mirrors were

removed. For coaxial camera and projector arrangements, we add a 50/50 beamsplitter (Edmund

Optics #46-583) to optically align the projector and the camera.

The exposure time of our PMD camera was strictly limited to the range of 1 to 8 ms. We used a

1 ms exposure time (Step 5 of Algorithm 4) when operating the camera in a stereo arrangement as

shown in Figure 6.4; in coaxial arrangements we increased it to 8 ms to compensate for the system’s

25% ideal light efficiency and for beamsplitter imperfections. Thus, capturing one PMD photo with

Algorithm 4 takes 4 or 32 ms, depending on the arrangement.

Calibration The sensing behavior of individual pixels is not perfectly uniform over the entire

PMD sensor. We model these deviations as an element-wise product between two complex images—

the PMD photo of the scene and a 2D “noise” pattern wω. The pattern’s amplitude, |wω|, models

the non-uniformity of pixel sensitivities and represents fixed pattern noise (FPN). Its phase, argwω,

models pixel-specific offsets in the phase of the sensor’s modulation function, and thus represents

fixed phase-pattern noise (FPPN). Removing this deterministic noise pattern involves two steps: (1)

pre-compute wω by capturing a photo of a scene that is constant in both amplitude and phase, and

(2) multiply its reciprocal (wω)
−1

with every captured PMD photo.
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Algorithm 5 Combine PMD imaging and matrix probing.

In: phase delay φd; spatial binary patterns p1, . . ., pK and masks m1, . . ., mK such that Π ≈
∑K

1
mk(pk)

T

Out: component iωd of PMD photo (Tω ⊙Π) 1

1: modulate sensor and source according to f(t), g(t− φd)
2: open camera shutter
3: for k = 1 to K do

4: apply pixel mask mk

5: display pattern pk for 1

K

th
the exposure time

6: end for

7: close camera shutter
8: return image iωd

Algorithm 6 Acquire the direct component of a PMD photo.

In: frequency ω and sequence length K
Out: direct PMD photo iωdirect

1: acquire conventional PMD photo iω using Algorithm 4 and an all-white pattern
2: construct indirect-only binary sequences p1, . . . ,pK and m1, . . . ,mK

3: acquire indirect-only PMD photo iωindirect using Algorithms 4 and 5
4: return image iω − iωindirect

Transport matrix probing with a PMD camera Probing in the transient domain comes from

approximating Eq. (6.9) with the same sum of bilinear matrix-vector products as in Eq. (3.4):

(Tω ⊙Π) 1 ≈
K∑

k=1

mk ⊙Tωpk (6.13)

where the sequence of vectors pk and mk defines a rank-K approximation of the probing matrix:

Π ≈∑K
1 mk(pk)

T
. When ω is the DC frequency, Eqs. (6.13) and (3.4) are identical.

Generalizing this procedure to arbitrary temporal frequencies ω and to complex-valued PMD

photos is straightforward: we simply replace Steps 4 and 5 of Algorithm 4 (which acquire images

without a mask under a fixed illumination pattern) with Steps 1-8 of Algorithm 5 (which change

masks and illumination patterns K times). Note that this modification of Algorithm 4 does not

change the total number of images captured, which remains equal to four. Unfortunately, hardware

constraints prevented us from implementing Algorithm 5 exactly as shown, impacting the number

of images we capture in experiments. We return to this at the end of Section 6.4.

Mask/projection sequences for indirect-only imaging Following the approach of Chapter 4,

we compute the epipolar geometry between the projector and the PMD camera and construct each

mask mk by randomly turning each of its epipolar lines “on” or “off” with probability 0.5. Given

mask mk, we construct the corresponding pattern pk by turning “on” all epipolar lines that were

turned “off” in the mask, and vice-versa.

Acquiring direct PMD photos The basic procedure is shown in Algorithm 6. It amounts to

capturing a conventional PMD photo and then subtracting its indirect-only component.
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Algorithm 7 Acquire specular and diffuse indirect PMD photos.

In: frequency ω and sequence lengths J and K

Out: photos iωlow and iωhigh containing diffuse and specular indirect transport components, respectively

1: construct indirect-only binary sequences p1, . . . ,pK and m1, . . . ,mK

2: construct high-frequency pattern sequence, q1, . . . ,qJ

3: set iωlow = iωhigh = 0
4: for j = 1 to J do

5: acquire a PMD photo iω using Algorithms 4 and 5, the mask sequence m1, . . . ,mK and the pattern
sequence p1 ⊙ qj , . . . ,pK ⊙ qj

6: set iωlow = min(iωlow, i
ω)

7: set iωhigh = max(iωhigh, i
ω)

8: end for

9: set iωhigh = iωhigh − iωlow
10: set iωlow = 1

α
iωlow

11: return separated components iωlow, i
ω
high

Separating specular and diffuse indirect transport components We further decompose the

indirect component of a PMD photo into its specular and diffuse indirect components. We do this

with the approach described in Section 3.4 and Figure 3.11. Algorithm 7 shows the basic steps,

adapted to the case of PMD imaging.

Depth acquisition from direct PMD photos The phase component of a PMD pixel encodes

the depth of each scene point as a value that ranges from 0 to 2π. Specifically, a coaxial system

produces pixel values of the following form:

iω = ae−2πid 2ω
c (6.14)

where a is the albedo of a scene point, d is its depth, 2d is the round-trip distance travelled by light

to the camera, and c is the speed of light. This produces ambiguities in the relation between phase

and depth. For example, frequency ω1 = 100 MHz only encodes depth for a maximum unambiguous

range of c
2ω1

≈ 1.5 m. For a greater depth range, we acquire direct PMD photos for two frequencies

ω1 and ω2 = ω1/2 and use phase-unwrapping [82] to calculate depth. Specifically, given photos iω1

and iω2 , the phase-unwrapped depth is

d =
c

2ω1

{

2− arg iω1

2π
−
⌊
π + 2arg iω2 − arg iω1

2π

⌋}

(6.15)

Since the scenes in our experiments were well within 1.5 m, imaging at a single frequency ω1 with

no unwrapping was sufficient.

Hardware limitations and computational masking The 8 ms maximum exposure time of

our PMD camera prevented us from implementing Algorithm 5 in one shot. This is because our

DLP LightCrafter kits can perform at most K = 21 projection/masking operations in that interval,

leading to much poorer approximations of Eq. (6.13) compared to the 96 patterns that fit in a 36

ms video frame. To overcome this limitation we mask images computationally, by pushing Steps 2
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PMD imaging task Optical masking Computational masking Experiments

illumination pattern p 4 4 4

indirect-only 4 4K 512

direct 8 4 + 4K 516

specular/diffuse indirect 4J 4KJ 3072

depth acquisition 8 4 + 4K 516

transport decomposition 8 + 4J 4 + 4K + 4KJ 3588

light-in-flight imaging 8 + 4J + 4F 4 + 4K + 4KJ + 4F 3718

Table 6.2: Images required for transient tranport analysis. We use K = 128, J = 6, F = 65 in
our experiments, with ω1 = 100 MHz and no phase unwrapping. See Sections 6.4 and 6.5 for
explanations.

and 7 of Algorithm 5 inside the loop. In particular, we capture K = 128 images individually, each

with a 1 ms exposure; we multiply element-wise the image captured in the kth iteration with the

associated mask mk; and accumulate the result. This increased significantly the number of images

we had to capture for the experiments in Section 6.5. Table 6.2 gives full details.

6.5 Results

Transport decomposition for time-of-flight imaging We start with separating a scene’s tran-

sient appearance into its three transport components—direct, specular indirect, and diffuse indirect.

Since both the direct and the specular indirect components are due to distinct temporally-isolated

reflection events, they correspond to Dirac peaks in the time domain. We run Algorithm 6 for

frequency ω1 to localize the former and Algorithm 7 for the same frequency to identify and localize

the latter. This also gives us the diffuse indirect contributions for frequency ω1.

Figure 6.5 shows this decomposition for a scene containing a mirror and a miniature statue of

Michelangelo’s David positioned near the corner of a room. We used a coaxial projector-camera

arrangement for this example.

Time-of-flight depth images robust to indirect transport PMD cameras compute depth by

acquiring PMD photos for one or more frequencies with a co-located light source, and then using

Eq. (6.15) to turn phases into depth values. An unfortunate consequence of this approach is that

indirect light has a pronounced influence on the measurements. Though methods exist for removing

the influence of diffuse indirect light from a PMD image computationally by relying on predictive

models [28, 33, 61] or optically by operating at higher modulation frequencies ω [43], these methods

do not generalize for handling all forms of indirect light.

We demonstrate the ability to recover accurate depth images that are robust to indirect light

transport using PMD cameras. Specifically, we use Algorithm 6 to capture the direct component

of a scene for frequency ω1. This photo is by definition invariant to indirect transport so its phase

yields transport-robust depth maps.

Figure 6.7 shows depth acquisition results for three scenes with significant specular and diffuse

indirect transport. The scene in row 1 is a bowl pressed flush against a planar wall (Figure 6.6).
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Figure 6.5: Capturing PMD photos corresponding to individual transport components. Since these
photos are complex, we only show their amplitudes in this figure. (a) A scene containing a mirror and
a miniature statue of David. (b) PMD photo returned by Algorithm 4 for an all-white illumination
pattern. (c) PMD photo returned by Algorithm 6. (d) PMD photo returned by Algorithm 5. (e)
Basic path geometries for a camera pixel i: direct light path i → i (black), specular indirect path
k → i (red), and diffuse indirect path j → i (green). (f) One of six PMD photos acquired in Step 5
of Algorithm 7. This photo is an indirect-only transient view of the scene under a projection pattern
consisting of binary stripes. (g)-(h) PMD photos returned by Algorithm 7.

The deep concavity of the bowl produces a significant amount of indirect light through diffuse inter-

reflections. As a result, the RAW time-of-flight measurements place the base of the bowl 4 to 5 cm

behind the wall itself (columns (a) and (c)). Our approach reconstructs a physically-valid solution,

with the bowl’s base coinciding with the expected position of the wall (columns (b), (d) and (e)).

Note that the reconstructions of the convex handle of the bowl are the same in both cases (lower-left

region of the slice in column (e)). The concave lip, on the other hand, in the conventionally-acquired

time-of-flight image is offset from its correct position (lower-right region of the slice in column (e)).

Row 2 of Figure 6.7 shows reconstruction results for an open book whose pages were kept as flat

as possible. The significant diffuse inter-reflections between these pages distort their conventionally-

acquired shape (columns (a) and (c)) but leave direct shape measurements unaffected: their flat

shape is evident in columns (b), (d) and (e). Row 3 shows results for the David scene. The specular

indirect light paths, reflected by the mirror onto the right wall, produce an embossed silhouette on

the wall, indicated by the yellow arrow in column (c). In contrast, the direct component is not

influenced by specular indirect paths—and also recovers the depth of objects viewed within the

mirror itself.



Chapter 6. Probing Transient Light Transport 108

Figure 6.6: Conventional photos of scenes reconstructed in Figure 6.7. We used a coaxial projector-
camera arrangement for these scenes.

(a) conventional:
arg iω1

(b) direct: arg iω1

direct
(c) conventional

3D shape
(d) direct 3D (e) shape

comparisons

Figure 6.7: Geometry results for the three scenes in Figure 6.5(a) and 6.6. (a) The phase of
conventionally-acquired PMD photos. (b) The phase of the direct component returned by Algo-
rithm 6. (c)-(d) Views of the 3D meshes computed from (a) and (b), respectively. (e) Plots of
the x- and z-coordinates for a slice of each scene, computed from the conventional (blue) and the
direct (red) phases. Observe that the base of the conventionally-acquired bowl protrudes through
the back wall by about 5 cm; the pages of the conventionally-acquired book appear curved; the
corner of the room in the conventionally-acquired David scene is rounded, and the specular indirect
paths illuminating the room’s right wall produce a 2 to 3 cm offset in depth values. None of these
artifacts appear in (b) or (d).

Distinguishing between direct views and mirror reflections The direct component of a

photo represents direct light paths, but it also contains retro-reflected light paths. We can use the

phase of PMD photos to classify pixels according to whether they receive light directly or via a retro-

reflective path (e.g., as would occur if we viewed a diffuse point through a mirror). In particular,

when the projector and camera are coaxial, direct light paths are always the shortest paths received

by each camera pixel. Retro-reflective paths, on the other hand, do not have this property: if a pixel

receives light from both retro-reflective and specular indirect light paths, the specular indirect paths

always take the shortest route to the camera. This turns pixel classification into a simple pixel-wise

comparison of phase values in direct and specular indirect components. See Figure 6.8 for a detailed

demonstration.
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Figure 6.8: Distinguishing between direct views and mirror reflections. (a) For a co-located camera
and projector, the direct light path m → m has length 2d1, the specular indirect paths m → n and
n → m have lengths d1+d2+d3, and the retro-reflective path n → n has length 2(d2+d3). It follows
that specular indirect paths are always longer than direct paths and shorter than retro-reflective
paths. (b) The phase of the specular indirect component of the David scene, with phases zeroed-out
at pixels where the amplitude |iω1

high| is low, and thus phase is uninformative. (c) The result of a
pixel-wise “greater than” operator between the specular indirect component shown in (b) and the
direct component in row 3 of Figure 6.7(b). Retro-reflective light paths are shown in blue and direct
light paths in red. Note that we cannot distinguish between direct and retro-reflective pixels in the
absence of a specular indirect component. (d) Color-coded mesh using the conventions in (c).

Capturing evolving wavefronts of “light-in-flight” PMD cameras provide a cheap and light-

efficient alternative to capturing transient images [53]. Unfortunately, the maximum modulation fre-

quency is limited by PMD hardware, making reconstructing transient images a highly ill-conditioned

problem, and requiring strong regularizers to perform the reconstruction.

To overcome these limitations, we propose a transport-specific reconstruction for each of the

direct, specular indirect, and diffuse indirect transport components of a scene. In particular, we

reconstruct the temporal intensity profiles for direct and specular indirect light paths by running

Algorithms 6 and 7 at frequency ω1, and fitting a Dirac peak to each pixel in iω1

direct and iω1

high. To

reconstruct the diffuse indirect wavefront of a scene, we (1) capture conventional PMD photos at

F = 65 frequencies from 12 to 140 MHz in 2 MHz increments, (2) subtract the predicted contribution

of the direct and specular indirect Dirac peaks from these photos, and (3) apply the reconstruction

method of Heide et al. [53] to recover the temporal intensity profile due to diffuse indirect light.

Figure 6.9 compares our approach to that of Heide et al. [53], which does not perform transport

decomposition. The first scene (rows 1 and 2) contains transparent objects that refract the wavefront

travelling through them. The second scene (rows 3 and 4) produces strong diffuse inter-reflections

from two large bowls that are positioned near a corner. The third scene (rows 5 and 6) includes a

mirror and a jug filled with milky water; these produce specular indirect light paths via the mirror, as

well as volumetric scattering through the water. Note that the direct and specular indirect wavefronts

propagating through the scene are well-resolved in both space and time in our reconstructions,

whereas they appear broad and poorly-localized in the absence of transport decomposition.
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(a) PMD image (b) transient frame
(τ = 1.9 ns)

(c) transient frame
(τ = 3.2 ns)

(d) transient frame
(τ = 5.0 ns)

Figure 6.9: Transient image comparisons between Heide et al. [53] and our approach. These scenes
were all imaged with a stereo projector-camera arrangement. (a) Steady state images of the scene
captured with a normal camera under ambient illumination (rows 1, 3, and 5) and our PMD camera
with Algorithm 4 under white projector illumination (rows 2, 4, and 6). (b)-(d) Frames from
the temporal intensity profile reconstructed using the conventional approach (rows 1, 3, and 5)
and our approach (rows 2, 4, and 6). Note the sharp Dirac impulses travelling along the walls in
our reconstructions, which meet in the corner of the scene. These correspond to direct transport,
although sharp specular wavefronts also occur in some cases (rows 2 and 6). Moreover, even though
reconstructing the diffuse indirect time profile remains highly ill-conditioned, reconstructing the
direct and specular indirect contributions separately simplifies the reconstruction process for the
diffuse indirect component, and improves its accuracy. This is most evident in column (b), where
contributions from diffuse scattering and inter-reflections appear to occur throughout the three scenes
in the conventional reconstructions. This is physically impossible, however, since the elapsed time
is too brief for light to have actually reached those regions. In contrast, diffuse indirect components
are dark in our reconstructions and appear to trail the direct wavefronts.
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6.6 Summary and Contributions

We uncovered a key mathematical link between time-of-flight and conventional photography, making

it possible to readily transfer computational illumination techniques from one domain to the other.

The approach hinges on an ability to probe scenes by illuminating them with coded space-time

patterns that vary sinusoidally in time, with the same frequency at every pixel. Technology with

this capability built-in is already entering the consumer market in the form of off-the-shelf devices

such as PMD cameras and the Kinect 2.

On the practical side, we have demonstrated that

• optical probing can be combined with time-of-flight depth cameras to capture shape robust to

all forms of indirect light;

• we can also use optical probing to significantly increase the temporal resolution of PMD-

captured transient images; and

• we can distinguish between direct views and mirror reflections of an object—which is impossible

to do from just stereo or time-of-flight constraints alone, and suggests that perhaps a great

deal of untapped scene information is lurking around the corner.

The design of new 3D scene analysis techniques that integrates both geometric and time-of-flight

constraints on light paths is an exciting avenue for future work.



Chapter 7

Conclusions and Future Work

Throughout this thesis, we establish a mathematical framework for active illumination, referred to as

optical linear algebra for computational light transport. This framework describes active illumination

techniques as matrix operators that we apply directly onto a scene’s light transport matrix T. These

matrix operations infer scene properties (e.g. shape, indirect appearance) from the transport matrix,

and provide a rigorous mathematical basis for describing and analyzing active illumination.

We also identify the largest practical issue plaguing computational light transport today: the

prohibitively-high cost of evaluating these operators on large, unknown transport matrices. Although

many techniques have been proposed to capture the matrix T and analyze it in the numerical

domain [22, 27, 30, 97, 99, 111, 114, 115, 130], they nevertheless require hundreds or thousands of

photos and rely on vast computational resources to store and process the matrix.

Our solution is simple: avoid measuring the matrix T in the first place. Instead, we use optical

computing principles to analyze the matrix “online” (i.e., without direct access to the elements of

T). Specifically, we

• equate numerical calculations (e.g. matrix-vector products) to the optical processes used in

light transport analysis (e.g. project-and-capture operations);

• associate the type of matrix T (e.g. its symmetry, rank, sparsity) to optical properties (e.g. the

arrangement of lights and cameras); and

• identify classes of numerical algorithms (e.g. Krylov subspace methods, matrix probing) that

can be partially or fully implemented in the optical domain.

From these principles, we derived very efficient optical solutions to a variety of problems in computer

vision and graphics.

In Chapter 2, we provided an overview of Krylov subspaces, and focused on optical implemen-

tations of two well-known Krylov subspace methods: Arnoldi and GMRES. Arnoldi iteration is

particularly efficient at finding the top few eigenvectors of a matrix from only a few dozen matrix-

vector operations, and the GMRES algorithm provides an efficient way to solve linear systems. Our

optical Arnoldi algorithm captured the eigenvectors of T to compute a low-rank approximation of it;

112



Chapter 7. Conclusions and Future Work 113

we then used this matrix approximation to relight photos of the scene under synthetic illumination

conditions. Our optical GMRES algorithm inverted the light transport equation by taking a photo

of the scene as input and computing the illumination conditions that produced it.

Chapter 3 introduced our optical matrix probing procedure. Optical probing is a new imaging

technique that offers unprecedented control over the amount of radiant energy transmitted along

specific light paths. This procedure uses programmable optics (e.g. DMDs, LCDs) to simultaneously

code the radiant energy emitted into a scene and modulate the radiant energy incident on the sensor.

For coaxial projector-camera arrangements, optical probing can be used to attenuate or enhance the

direct and indirect components of a photo. A key feature of optical probing is that it operates almost

exclusively in the optical domain: results consist of directly-acquired, unprocessed RAW photos or

differences between them.

Chapter 4 extended optical probing to general projector and camera configurations. The ap-

proach rests on a crucial link between stereo geometry and light transport: while direct light always

obeys the epipolar geometry of a projector-camera pair, indirect light overwhelming does not. We

probed for these epipolar (direct) and non-epipolar (indirect) light paths with an experimental op-

tical probing camera that operates at live video rates. We also used our prototype camera to make

existing structured-light 3D shape algorithms robust to indirect transport, and also turn them into

one-shot methods for dynamic 3D shape capture.

Chapter 5 explored how to make best use of the radiant power available for optical probing.

We derived an optimization procedure to compute energy-efficient codes for our probing procedure,

while respecting the physical constraints imposed on the coding mechanisms; these codes yield

brighter images with fewer artifacts when probing for the direct and indirect components, and offer

solutions to other probing tasks where codes were not known previously (e.g. short-range indirect

imaging). Furthermore, we developed another prototype camera that maximizes energy efficiency

for epipolar and non-epipolar imaging through the novel combination of a low-power laser projector

and a rolling shutter camera; we used this prototype to demonstrate never-seen-before capabilities

such as reconstructing the 3D shape of objects in the presence of strong indirect light and strong

ambient light, and performing dual photography at live video rates.

Finally, Chapter 6 introduced a new paradigm for light transport analysis that exploits the

finite speed of light. We jointly considered the spatial constraints on light paths and the temporal

constraints on the transient time delays they induce. We showed that the regular light transport

equation also models transient transport, provided that light sources emit a sinusoidally modulated

signal at a given frequency. This made it possible to analyze transient light transport by trivially

adapting standard analysis techniques to the transient domain. Specifically, we implemented a

transient version of optical probing to capture the direct, diffuse indirect, and specular indirect

components of a time-of-flight image. We used these images to reconstruct time-of-flight depth

images robust to indirect transport, distinguish between direct views of objects and their mirror

reflections, and also capture sharp evolving wavefronts of light propagating through a scene at sub-

nanosecond time resolutions.
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7.1 Limitations

While this thesis demonstrates several state of the art solutions to well-established problems in

computer vision and graphics, optical linear algebra has both theoretical and practical drawbacks.

Our mathematical framework is limited in three respects. First, optical calculations are signif-

icantly less accurate than their numerical counterparts. Following from Eq. (1.1) and Eq. (1.3),

computing a matrix-vector product optically is impacted by several physical factors: dynamic range,

ambient illumination, and sensor noise. Second, because of the restricted access to the elements of

T, few numerical algorithms are found to be well-suited for the optical domain. Third, the impact

of noise on our optical algorithms remains unclear. Specifically, there are open questions regarding

the effect of sensor noise on the convergence rate of our optical Krylov subspace algorithms.

On the practical side, moving the onus of computation to the optical domain significantly in-

creases hardware complexity. Our prototype systems comprise of optics (beamsplitters, relay lenses,

diffraction gratings), programmable optical elements (DMDs, LCDs, MEMS), opto-mechanical com-

ponents, and custom electronics. These components can be expensive, fragile, bulky, inflexible, and

challenging to configure. Moreover, additional optical components and hardware imperfections can

reduce image quality (e.g. lens aberrations lead to blurring of the image) and light efficiency (e.g.

LCDs block at least 50% of the light). However, despite all these supposed limitations, we have

addressed several longstanding problems using off-the-shelf parts; new hardware, such as rolling

shutters that permit electronic masking, promises to make hardware designs for optical computing

a lot less complex.

7.2 Future Research

This work represents only the first step in establishing a complete mathematical framework for active

illumination, and there are many exciting directions left unexplored for optical linear algebra.

Although the light paths we consider are restricted to projector-camera systems, the theory itself

is not restricted to any specific arrangement of lights and sensors, or even the size of the scene. The

configuration space for light sources can range from a single point light source (an LED diode) to

an array of projectors (a light-field projector); the space for sensors can range from a single sensor

element to an array of cameras (a light-field camera).

Beyond the spatial and temporal constraints on light paths, there are several other imaging

paradigms available for light transport analysis, including those based on the wavelength (i.e. color)

and polarization. The wavelength and polarization state of light provide important radiometric cues

for analyzing scenes. Fluorescent objects absorbs light at one wavelength, and re-emit light at a

different (larger) wavelength; this transport of radiant energy from one wavelength to another is

represented by yet another extended version of the transport matrix [58]. The polarization state

of radiant energy is characterized by a Stokes vector of length 4, and the transport of radiant en-

ergy from one polarization state to another is represented by a 4 × 4 matrix known as the Mueller

matrix [13]. These additional radiometric constraints on light paths drastically increase the dimen-

sionality of light transport, emphasizing once again the need for efficient optical computations.
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There is, however, one physical characteristic incompatible with the current definition of the

real-valued light transport matrix: the wavelike nature of light. In classical physics, radiant energy

is the energy of electromagnetic waves (rather than photons), and two electromagnetic waves may

interfere either constructively or destructively. In optics, the complex-valued transmission matrix

maps monochromatic electromagnetic waves from source to sensor [95, 102], similar to our transient

frequency light transport matrix. These transmission matrices have already found many exciting

optical applications previously considered physically impossible, including the ability to focus light

or transmit images through scattering materials [103, 127]. Using optical computing principles to

analyze these transmission matrices is another exciting direction for this work.
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Appendix A

Extended Discussion

A.1 One-shot optical probing versus mask-less multi-image

acquisition

We consider the following hypothetical procedures:

• PDC: Capture one optimally-exposed photo with 512 primal and dual codes and a 30-second

exposure time at ISO 50 (i.e., slightly more time than needed for a 20 Hz display rate).

• MI: Capture 512 photos without a mask, each exposed for 30/512 seconds at ISO 50 or ISO

1600 (i.e., same total exposure time as PDC and therefore the same total photoelectrons).

• PDC×10 and MI×10: Reduce exposure time by a factor of 10 and use ISO 1600.

These procedures represent the idealized cases of a conventional high-speed system that captures

and transfers photos with no overhead and of a spatiotemporally-aligned optical probing system with

100% mask transmissivity (representative of a DMD mask, and about twice the transmissivity of

our LCD panel). We compare their SNR for a specific camera—the Canon EOS 1D Mark II—whose

noise characteristics have been studied in detail [12].

The SNR of digital sensors (Eq. (1.8)) can be expressed as

SNR(̂i) = 20 log10

[

Ψi/g
√

σ2 +Ψi/g2

]

where we ignore the (negligible) effect of quantization for simplicity. The value Ψi[m] is the number

of photoelectrons received by pixel m; gain g is measured in photoelectrons per digital number and

depends on the camera’s ISO setting; and the terms in the denominator represent the variance of

read noise and photon noise, respectively. According to Clark [12], the gain at ISO 50 is g = 26.03

photoelectrons per digital number, and the standard deviation of the read-noise component is σ =
30.62

g = 1.18 digital numbers.
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To calculate the SNR for the PDC procedure, we assume that the mean number of photoelectrons

of the optimally-exposed optically-probed photo is 10, 387 photoelectrons. This corresponds to 13%

of the full-well capacity imax = 79, 900 photoelectrons (for ISO 50) and is in accordance with general

auto-exposure criteria [14]. This yields an SNR equal to 39.79 dB (against an additive floor of 1.18).

Since a sensor pixel is masked by approximately half the primal and dual codes on average,

the photoelectrons in a PDC photo are due to 512
2 = 256 of those codes. This means that these

photoelectrons are distributed across 256 photos in the MI procedure, or 40.57 photoelectrons per

photo. Thus, the MI procedure is dominated by additive noise and has an extremely low SNR, just

2.26 dB (against the additive floor of 1.18). This makes the captured photos practically unusable

on their own. Even at ISO 1600, where g = 0.81 photoelectrons per digital number and read noise

is σ = 3.9
g = 4.81, the SNR is just 14.70 dB.

We now examine the SNR of their masked sum according to Eq. (3.4). Since only 256 photos

contribute to this sum on average, we must count the contribution of additive noise only from those

photos. The standard deviation of read noise will therefore be
√
256 = 16 times larger, or σ = 18.88

digital numbers at ISO 50 and σ = 76.96 digital numbers at ISO 1600. This yields an SNR of

26.34 dB at ISO 50 and 38.78 dB at ISO 1600. Thus, despite the significant computational burden

of acquiring, transferring and storing 512 individual photos, these photos are not very useful on their

own and do not offer an SNR gain over a well-engineered optical probing system.

Finally, applying PDC×10 and MI×10 means that ten times fewer photoelectrons contribute to

a pixel. While the resulting under-exposed photo has an SNR of 30.10 dB under PDC×10, MI×10’s

reduction to 23.40 dB for the masked sum is much more severe.
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Proofs and Derivations

B.1 Expanded derivations

B.1.1 Derivation of Direct-Enhanced and Indirect-Only Probing Matri-

ces

Suppose (pk)+ and (pk)− refer to the positive and negative components of a Rademacher vector

pk, where pk = (pk)+ − (pk)−. Note that the codes (pk)+ and (pk)− have a Bernoulli distribution

with success probability p = 0.5, where the elements have value 1 with probability p and value 0

with probability 1− p. The following derives from Eq. (3.12):

pk(pk)
T
= [(pk)+((pk)+)

T
+ (pk)−((pk)−)

T
]

︸ ︷︷ ︸

direct-enhancing term

− [(pk)−((pk)+)
T
+ (pk)+((pk)−)

T
]

︸ ︷︷ ︸

indirect-only term

(B.1)

The direct-enhancing term converges to a probing matrix containing the value 1 for diagonal elements,

and the value 0.5 for off-diagonal elements. The indirect-only term converges to a matrix with 0

for diagonal elements and 0.5 for off-diagonal elements. As expected, subtracting the indirect-only

probing matrix from the direct-enhanced matrix produces the identity matrix.

Random vectors xk sampled from the Bernoulli distribution form the direct-enhanced matrix in

the limit:

Π = lim
K→∞

1

K

K∑

k=1

xkxk
T (B.2)

The diagonal entries Π[m,m] of the probing matrix have the following expected value:

Π[m,m] = E

[

1

K

K∑

k=1

xk[m]xk[m]

]

=
1

K

K∑

k=1

E
[
(xk[m])2

]
= p (B.3)
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A similar derivation produces the expected value of the off-diagonal entries Π[m,n] where m 6= n:

Π[m,n] = E

[

1

K

K∑

k=1

xk[m]xk[n]

]

=
1

K

K∑

k=1

E [xk[m]xk[n]]

=
1

K

K∑

k=1

E [xk[m]] E [xk[n]] = p2 (B.4)

In the limit, the probing matrix has value p on the diagonal, and p2 for off-diagonal elements. As

the value p becomes smaller, the diagonal terms become larger relative to the off-diagonal terms.

The same set of vectors xk, with a minor modification, forms the indirect-only probing matrix:

Π = lim
K→∞

1

K

K∑

k=1

xk(1− xk)
T

(B.5)

The diagonal entries Π[m,m] of the probing matrix converge to the following:

Π[m,m] = E

[

1

K

K∑

k=1

xk[m](1− xk[m])

]

=
1

K

K∑

k=1

E [xk[m](1− xk[m])]

=
1

K

K∑

k=1

(E [xk[m]]− E
[(
xk[m])2

])
= 0 (B.6)

Once again, we derive the off-diagonal entries Π[m,n] where m 6= n for the indirect-only probing

matrix:

Π[m,n] = E

[

1

K

K∑

k=1

xk[m](1− xk[n])

]

=
1

K

K∑

k=1

E [xk[m](1− xk[n])]

=
1

K

K∑

k=1

(E [xk[m]]− E [xk[m]] E [xk[n]]) = p(1− p)

The off-diagonal term is maximum when p = 0.5. Note that, unlike the direct-enhanced case, there

is no benefit in setting p to any other value.

When computing the direct-enhanced and indirect-only probing matrices, we generate the il-

lumination and mask codes such that their sum produces a uniform image, as in the case of the

direct-enhancing and indirect-only terms of Eq. (B.1). This results in a set of mask codes that

uniformly exposes each sensor pixel.
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B.1.2 Derivation of Eq. (3.9)

The stochastic diagonal estimator converges to the diagonal matrix when using independent and

identically distributed random vectors sampled from a distribution with mean 0 and variance 1. We

derive the variance of pixel i[m] for a K-term estimate of the diagonal element T[m,m] as follows:

Var (i[m]) = Var

(

1

K

K∑

k=1

P∑

n=1

pk[m]pk[n]T[m,n]

)

=
1

K2

K∑

k=1

Var

(
P∑

n=1

pk[m]pk[n]T[m,n]

)

=
1

K
Var

(
P∑

n=1

p[m]p[n]T[m,n]

)

=
1

K



E





(
P∑

n=1

p[m]p[n]T[m,n]

)2


− E

[
P∑

n=1

p[m]p[n]T[m,n]

]2




=
1

K

(

E

[
P∑

n=1

p[m]2p[n]2T[m,n]2

]

− E
[
p[m]2T[m,m]

]2

)

=
1

K




E

[
p[m]4T[m,m]2

]
+ E






P∑

n=1
n6=m

p[m]2p[n]2T[m,n]2




− E

[
p[m]2T[m,m]

]2






=
1

K




E

[
p[m]4

]
T[m,m]2 +

P∑

n=1
n6=m

T[m,n]2 −T[m,m]2




 (B.7)

The Rademacher sequence (where elements have a 50% chance of being either 1 or −1) is the

optimal distribution for the stochastic diagonal estimator, in the sense that the sequence minimizes

the variance Eq. (B.7). This is the case because E
[
p[m]4

]
≥ E

[
p[m]2

]2
= 1 for all distributions

with variance 1, and E
[
p[m]4

]
= 1 for the Rademacher distribution. The variance of the stochastic

diagonal estimator using the Rademacher sequence is the following:

Var (i[m]) =
1

K




E

[
p[m]4

]
T[m,m]2 +

P∑

n=1
n6=m

T[m,n]2 −T[m,m]2






=
1

K

P∑

n=1
n6=m

T[m,n]2 (B.8)

According to Eq. (B.8), the number of codes K must increase by a factor of 2 to decrease the

variance by a factor of 2. Note that the variance term only depends on the off-diagonal matrix

entries; when the off-diagonal elements are zero, the stochastic diagonal estimator returns the exact

value of element T[m,m] for any K ≥ 1.
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B.1.3 Derivation of Eq. (4.8)

Combining Eqs. (3.4) and (4.4) we have

ie =
1

K

K∑

k=1

E∑

f=1

qek ◦ [ Tef qf k ] (B.9)

where the 1/K factor captures the fact that each term in the sum is allocated 1/K of the total

exposure time. We now split the sum into its epipolar and non-epipolar terms

ie =
1

K

K∑

k=1

{

qek ◦ [ Tee qek ] +
E∑

f=1
f 6=e

qek ◦ [ Tef qf k ]

}

(B.10)

and observe that the first term is always a vector of zeros. So,

ie =
1

K

K∑

k=1

E∑

f=1
f 6=e

qek ◦ [ Tef qf k ] . (B.11)

Letting K → ∞ and applying the Central Limit Theorem to Eq. (B.11) we get the expected image

E [ie] for epipolar line e:

E [ie] = E

[ E∑

f=1
f 6=e

qe ◦ [ Tef qf ]

]

= E [qe] ◦
E∑

f=1
f 6=e

Tef E [qf ]

= 0.25
E∑

f=1
f 6=e

Tef 1 , (B.12)

where Eq. (B.12) follows from the fact that epipolar lines e and f are distinct and thus their

corresponding random vectors qe and qf are independent.

B.1.4 Derivation of Eq. (4.13)

Combining Eqs. (3.4) and (4.4) for the indirect-invariant mask and pattern we have:

ie =
1

K

K∑

k=1

E∑

f=1

mek ◦
{

Tef [ mf k ◦ rf k +mf k ◦ rf k ]

}

(B.13)
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We split the sum into its epipolar and non-epipolar terms,

ie =
1

K

K∑

k=1

{

mek ◦Tee [ mek ◦ rek ] + mek ◦Tee [ mek ◦ rek ] +

E∑

f=1
f 6=e

mek ◦Tef [ mf k ◦ rf k ] +
E∑

f=1
f 6=e

mek ◦Tef [ mf k ◦ rf k ]

}

(B.14)

and note that the second term of Eq. (B.14) is always a vector of zeros. Letting K → ∞ and

applying the Central Limit Theorem to Eq. (B.14) we get the expected image for epipolar line e:

E [ie] = E

[

qe ◦
[
Tee (qe ◦ re)

]
+

E∑

f=1
f 6=e

qe ◦
[
Tef (qf ◦ rf + qf ◦ rf )

]
]

. (B.15)

Now, qe is a random binary vector whose probability of being either 1 or 0 is 0.5. Using this fact as

well as qe’s independence from all other random vectors, the expectation in Eq. (B.15) becomes

E [ie] = 0.5 Tee E [re] + 0.5

E∑

f=1
f 6=e

Tef E [qf ◦ rf + qf ◦ rf ] . (B.16)

Finally, using the definition of binary random vector rf in Eq. (4.11) the expectation becomes

E [ie] = 0.5 Tee pe + 0.5

E∑

f=1
f 6=e

Tef

{
Pr (qf = 1) pe + Pr (qf = 0) (1− pe)

}

= 0.5 Tee pe + 0.25
E∑

f=1
f 6=e

Tef1 . (B.17)

B.1.5 Derivation of Eq. (5.15)

The homogeneous factorization equation maximizes energy efficiency subject to all imaging con-

straints, by maximizing the scalar γ or, equivalently, minimizing its reciprocal γ−1:

min
γ,t,M,P

γ−1 (B.18)

subject to 0 ≤ mk, ‖mk‖∞ ≤ 1

0 ≤ pk, ‖pk‖†̺ ≤ tk

0 ≤ tk,

K∑

k=1

tk ≤ T

γΠ = MPT
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This is a difficult problem to solve in general, given the nonlinear nature of the equality constraint.

Instead, we reformulate and then relax this problem into a simpler form.

Reformulation There is a bilinear relation between the masks mk and illumination patterns

pk. Substituting the mask and illumination variables with akpk and a−1
k mk satisfies the equality

constraint for all scalars ak > 0. Eq. (B.18) can be rewritten as follows:

min
γ,t,M,P

γ−1 (B.19)

subject to 0 ≤ mk, a−1
k ‖mk‖∞ ≤ 1

0 ≤ pk, ak‖pk‖†̺ ≤ tk

0 ≤ tk,

K∑

k=1

tk ≤ T

γΠ = MPT

The formulation can be relaxed by combining the inequality constraints on mk and pk:

min
γ,t,M,P

γ−1 (B.20)

subject to 0 ≤ mk, 0 ≤ pk

‖mk‖∞‖pk‖†̺ ≤ tk

0 ≤ tk,

K∑

k=1

tk ≤ T

γΠ = MPT

Similarly, we can eliminate the time variable tk from the formulation by relaxing the inequality

constraints, as follows:

min
γ,M,P

γ−1 (B.21)

subject to 0 ≤ mk, 0 ≤ pk

1

T

K∑

k=1

‖mk‖∞‖pk‖†̺ ≤ 1

γΠ = MPT

By replacing the mask with γ−1mk, the formulation reduces to the following form:

min
γ,M,P

γ−1 (B.22)

subject to 0 ≤ mk, 0 ≤ pk

1

T

K∑

k=1

‖mk‖∞‖pk‖†̺ ≤ γ−1

Π = MPT
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Note that the solution of Eq. (B.22) is closely related to that of Eq. (B.18). Suppose that γ′, m′
k,

and p′
k minimize Eq. (B.22). The solution to Eq. (B.18) is then given by the following:

γ = γ′ (B.23)

tk = ‖m′
k‖∞‖p′

k‖†̺ (B.24)

mk =
m′

k

‖m′
k‖∞

(B.25)

pk = tk
p′
k

‖p′
k‖†̺

(B.26)

Relaxation The final step is to relax the equality constraint through Lagrangian relaxation. First,

we rewrite Eq. (B.22) equivalently in the following form:

min
M,P

1

T

K∑

k=1

‖mk‖∞‖pk‖†̺ (B.27)

subject to 0 ≤ mk, 0 ≤ pk

‖Π−MPT‖2F ≤ 0

The inequality with respect to the homogeneous factorization can be brought into the objective

using a Lagrange multiplier, as follows:

min
M,P

‖Π−MPT‖2F + λ

K∑

k=1

‖mk‖∞‖pk‖†̺ (B.28)

subject to 0 ≤ mk, 0 ≤ pk

for some scalar λ > 0. When λ is sufficiently small, the solution to Eq. (B.28) is a close approximation

to the solution of the original problem.
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B.2 Proofs of Propositions 1 and 2

B.2.1 Proof of Proposition 1

Proposition 1. If TNE and TEI are discretized forms of transport functions that are square-

integrable and positive over the rectified projector and image planes, then

limǫ→0
TEI p

TNE p
= 0 (B.29)

where division is entrywise and ǫ is the pixel size for discretization.

Proof sketch. We begin by identifying the rectified projector and image planes with the continuous

domain D = [−1, 1]× [−1, 1] ⊂ ℜ2. Let n = (nx, ny) be a point on the projector plane and let Iǫ(n)

be an indicator function over D that specifies the spatial extent of the discrete epipolar line through

the origin:

Iǫ(p) =







1 if |nx| ≤ ǫ
2 and |ny| ≤ 1

0 otherwise .
(B.30)

In the continuous setting, light transport from the projector plane to the image plane is described

by the rendering equation [64]. Given an image point m ∈ D on the epipolar line through the origin,

this equation describes the total radiant energy transported to m from points on the projector plane:

I(m) = T (n̂, m) P(n̂)
︸ ︷︷ ︸

direct

+

∫

D−{n̂}

T (n, m) P(n) dn

︸ ︷︷ ︸

indirect

(B.31)

where n̂ is the projector point in stereo correspondence with image point m; P(n) is the radiant

energy along the ray through projector point n; and T (n,m) is the transport function describing

the proportion of radiant energy from n that gets transported to m.

Without loss of generality, we prove the continuous form of the ratio in Eq. (B.29) for an image

point i; this point is taken to be inside a discrete image pixel of dimension ǫ× ǫ on the epipolar line

through the origin.

More specifically, we consider the epipolar indirect, total indirect, and non-epipolar indirect

contributions at m:

IEI(m) =

∫

D−{n̂}

Iǫ(n) T (n,m) P(n) dn (B.32)

II(m) =

∫

D−{n̂}

T (n,m) P(n) dn (B.33)

INE(m) = II(m) − IEI(m) . (B.34)
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We now show that for any δ > 0, there is an ǫ > 0 such that

∣
∣
∣
∣

IEI(m)

INE(m)

∣
∣
∣
∣
< δ . (B.35)

We use the Cauchy-Schwarz inequality [108], which states that if two functions f and g are square-

integrable (i.e.
∫
|f(x)|2 dx < ∞), then

∣
∣
∣
∣

∫

f(x)g(x) dx

∣
∣
∣
∣
≤
{∫

|f(x)|2 dx

} 1
2
{∫

|g(x)|2 dx

} 1
2

(B.36)

Since T () is a square-integrable function, we can apply the Cauchy-Schwarz inequality to Eq. (B.32)

to get an upper bound on the epipolar indirect contributions:

IEI(m) ≤
{∫

D−{n̂}

Iǫ(n)dn

} 1
2
{∫

D−{n̂}

[
T (n, m) P(n)

]2
dn

} 1
2

= (2ǫ)
1
2

{∫

D−{n̂}

[
T (n, m) P(n)

]2
dn

} 1
2

. (B.37)

By combining Eqs. (B.33), (B.34) and (B.37) we also get a lower bound on the non-epipolar contri-

butions:

INE(m) ≥
∫

D−{n̂}

T (n,m) P(n) dn − (2ǫ)
1
2

{∫

D−{n̂}

[
T (n, m) P(n)

]2
dn

} 1
2

. (B.38)

Eq. (B.35) now follows by choosing ǫ to be

ǫ =
1

2

(
δ

2 + δ

)2

{
∫

D−{n̂}
T (n,m) P(n) dn

}2

∫

D−{n̂}

[
T (n, m) P(n)

]2
dn

. (B.39)

Substituting Eq. (B.39) into Eqs. (B.37) and (B.38) we get

∣
∣
∣
∣

IEI(m)

INE(m)

∣
∣
∣
∣
≤

δ
2+δ

1− δ
2+δ

=
δ

2
< δ . (B.40)
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B.2.2 Proof Sketch of Proposition 2

We prove Proposition 2 for generic scenes consisting of a finite collection of objects, each of which

is an open set in ℜ3 bounded by a smooth generic surface [39, 70].

Proposition 2. In a generic scene, a specular transport path does not intersect any of the k-bounce

specular transport paths that originate from the corresponding epipolar line for k ≥ 1.

Proof. For simplicity, we reverse the direction of light travel through image pixels, treating the

camera as a second projector that also sends light onto the scene. These image pixels generate j-

bounce specular transport paths, which undergo j specular bounces before reaching a non-specular

point within the scene. For example, a specular transport path with no specular bounces (j = 0) is

a ray directly connecting an image pixel to a non-specular point in the scene.

Without loss of generality, let m be a point on the camera’s image plane that generates a specular

transport path with j ≥ 0 specular bounces. Also, let L be the corresponding epipolar line on the

(continuous) projector plane, and n ∈ L be a point on this epipolar line. We assume this point n

generates a specular transport path with k ≥ 1 bounces.

To prove the proposition, we show that the following cannot hold simultaneously:

1. the transport paths through m and n intersect at their (j + 1)
th

and (k + 1)
th

bounce respec-

tively, i.e., the paths meet at a common non-specular surface point within the scene; and

2. this intersection is generic, i.e., it occurs for some point n in L for (nearly) all arbitrarily small

perturbations of the scene.

In particular, let lj(m) be the 3D ray that light follows after j specular bounces from point m.

Similarly, let l′k(n) be the corresponding 3D ray for point n. Note that, for specular reflections, the

3D rays lj(m) and l′k(n) only coincide (i.e. they share the same origin and direction) if points m and

n represent the same point in 3D space (i.e. the camera and projector are in a coaxial configuration).

Since these transport paths bounce off smooth open surfaces, the mapping n 7→ l′k(n) is a smooth

function for some open subset Q ⊂ L where n ∈ Q. This mapping defines a ruled surface in ℜ3;

intuitively, as point n ranges over Q, the 3D ray l′k(n) twists and translates in space, tracing a ruled

surface. Because the origins of 3D rays lj(m) and l′k(n) cannot coincide, we can freely perturb the

ruled surface l′k(Q) by smoothly perturbing the surface normal at the origin of each ray l′k(n).

Now, for transport paths to meet at a non-specular point, two surfaces and a ray must intersect

at a point: the ray lj(m), the ruled surface l′k(Q), and a surface in the scene. This, however, is not a

generic condition because the intersection does not hold for almost all arbitrarily small perturbations

of the ruled surface l′k(Q).
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B.3 Fourier Transform and Convolution for Matrix-valued

Functions

We start by defining a Fourier Transform for matrix-valued functions

Tω = F{T̃}(ω) =
∫ ∞

−∞

T̃(τ)e−2πiωτ dτ (B.41)

and an analogous Fourier transform for vector valued functions

pω = F{p̃}(ω) =
∫ ∞

−∞

p̃(t)e−2πiωt dt (B.42)

Using the definition of convolution of a matrix-valued function and a vector valued function from

the main paper

(T̃ ∗ p̃)(t) =
∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ (B.43)

we can show that the convolution theorem holds:

F{T̃ ∗ p̃}(ω) =

∫ ∞

−∞

(∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ

)

e−2πiωt dt

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t− τ)e−2πiωt dt

)

dτ

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t′)e−2πiω(t′+τ) dt′
)

dτ

=

∫ ∞

−∞

T̃(τ)

(∫ ∞

−∞

p̃(t′)e−2πiωt′ dt′
)

e−2πiωτ dτ

=

(∫ ∞

−∞

T̃(τ)e−2πiωτ dτ

)(∫ ∞

−∞

p̃(t′)e−2πiωt′ dt′
)

= F{T̃}(ω)F{p̃}(ω) (B.44)

Similar derivations can be made for other key properties known from the scalar Fourier transform

(e.g. the shift and correlation theorems).



Appendix C

Hardware

To encourage reproducibility, we include the complete parts list for our two experimental systems

from Chapter 4 in Table C.1.

# Part Description
Quan-

tity
Model Name Company

Low-

speed

Part

High-

speed

Part
1 color camera 1 GT1920C Allied Vision Technologies 3

2 monochrome camera 1 GT1920 Allied Vision Technologies 3

3 connector housing 2 WM1722-ND Digi-Key Corporation 3

4 connector housing 2 WM1728-ND Digi-Key Corporation 3

5 power supply 1 T1228-Z12P-ND Digi-Key Corporation 3

6 power supply 1 LC3000-Pro Power Supply Keynote Photonics 3

7 low-speed DMD (projector) 1 LC3000-Pro Pico Projector Keynote Photonics 3

8 low-speed DMD (mask) 1 DLP LightCrafter Texas Instruments 3

9 high-speed DMD 2 DLi4130VIS-7XGA Digital Light Innovations 3

10 high-power LED light engine 1 High Power S2+ w/ LED Digital Light Innovations 3

11 fixed filter holder 40 mm Sq. 1 #54-997 Edmund Optics 3

12 45 degree mounting adapter 1 #59-001 Edmund Optics 3

13 crimp 4 WM1142CT-ND Digi-Key Corporation 3 3

14 Hirose contact plug 1 HR1623-ND Digi-Key Corporation 3 3

15 12mm f/1.4 objective lens 1 Cinegon 1.4/12-0906 Schneider Optics 3 3

16 visible achromatic doublet pairs 2 MAP10100100-A Thorlabs 3 3

17 300 grooves/mm transmission grating 1 GT25-03 Thorlabs 3 3

18 ring-activated threaded iris diaphragm 2 SM1D12D Thorlabs 3 3

19 C-mount to SM1 adapter 1 SM1A9 Thorlabs 3 3

20 SM1 to C-mount adapter 1 SM1A10 Thorlabs 3 3

21 SM1 Coupler 1 SM1T10 Thorlabs 3 3

22 SM1 Lens Tube, 2 inch Thread Depth 1 SM1L20 Thorlabs 3 3

23 SM1 Lens Tube, 3 inch Thread Depth 1 SM1L30 Thorlabs 3 3

24 SM1-threaded cage plate 1 CP4S Thorlabs 3 3

25 cage plate with 1.2 inch double bore 5 CP12 Thorlabs 3 3

26 cage plate with 35 mm aperture 4 CP03/M Thorlabs 3 3

27 cylindrical lens mount 1 CH1A Thorlabs 3 3

28 rod swivel coupler (set of four) 1 C2A Thorlabs 3 3

29 rod end swivel connector (set of four) 1 C3A Thorlabs 3 3

30 cage assembly rod, 2 inch long 2 ER2 Thorlabs 3 3

31 cage assembly rod, 3 inch long 4 ER3 Thorlabs 3 3

32 cage assembly rod, 4 inch long 4 ER4 Thorlabs 3 3

33 aluminum breadboard 1 MB3030/M Thorlabs 3 3

34 12.7 mm x 40 mm optical post 1 TR40/M Thorlabs 3 3

35 12.7 mm x 100 mm optical post 6 TR100/M Thorlabs 3 3

36 post holder, 40 mm 1 PH40/M Thorlabs 3 3

37 post holder, 100 mm 6 PH100/M Thorlabs 3 3

38 studded pedestal base adapter 7 BE1/M Thorlabs 3 3

39 small clamping fork 7 CF125 Thorlabs 3 3

40 30 mm single axis translation stage 1 #66-397 Edmund Optics 3 3

41 bottom adapter plate 1 #66-620 Edmund Optics 3 3

42 top adapter plate 1 #66-493 Edmund Optics 3 3

43 metric base plate 1 #54-975 Edmund Optics 3 3

44 thread-to-thread adapter 1 #56-323 Edmund Optics 3 3

Table C.1: List of parts for the low-speed system shown in Figure 4.8 and the high-speed system shown
in Figure 4.9. Both systems use identical optics; the only differences between the two systems are (1) the
DMD projector and mask, (2) their mounts, and (3) a color vs. monochrome camera. The camera in both
systems outputs live video at a rate of 28 FPS. For the low-speed system, each video frame requires 96
binary masks/projection patterns, i.e., each mask/projection pair is active for 375 µs of the frame’s 36000
µs total exposure time. Each video frame of the high-speed system consists of 800 binary mask/projection
patterns, i.e., each mask/pattern is active for 45 µs.

130



Bibliography

[1] Nils Abramson. Light-in-flight recording by holography. Optics Letters, 3(4):121–123, 1978.

[2] Supreeth Achar, Stephen T. Nuske, and Srinivasa G. Narasimhan. Compensating for motion

during direct-global separation. Proc. ICCV, pages 1481–1488, 2013.

[3] Toshiyuki Amano and Hirokazu Kato. Real world dynamic appearance enhancement with

procam feedback. Proc. PROCAMS, pages 5:1–5:2, 2008.

[4] Pierre Ambs. A short history of optical computing: rise, decline, and evolution. Proc. SPIE,

7388(1):1–14, 2009.

[5] Ravindra A. Athale and William C. Collins. Optical matrix-matrix multiplier based on outer

product decomposition. Applied Optics, 21(12):2089–2090, 1982.

[6] Francis Bach, Julien Mairal, and Jean Ponce. Convex sparse matrix factorizations.

arXiv:0812.1869, pages 1–12, 2008.

[7] Jiamin Bai, Manmohan Chandraker, Tian-Tsong Ng, and Ravi Ramamoorthi. A dual theory

of inverse and forward light transport. Proc. ECCV, pages 294–307, 2010.

[8] Constantine Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal

of a matrix. Applied Numerical Mathematics, 57(11-12):1214–1229, 2007.

[9] David Casasent. Optical information processing. Topics in Applied Physics, pages 181–233,

1981.

[10] Jack Cederquist and Sing H. Lee. The use of feedback in optical information processing.

Applied Physics A: Materials Science & Processing, 18(4):311–319, 1979.

[11] Tongbo Chen, Hans-Peter Seidel, and Hendrik P. A. Lensch. Modulated phase-shifting for 3D

scanning. Proc. CVPR, pages 1–8, 2008.

[12] Roger N. Clark. Canon 1D Mark II analysis. http://www.clarkvision.com/articles/evaluation-

1d2/, 2007.

[13] Edward Collett. Field guide to polarization. SPIE Press, 2005.

131



BIBLIOGRAPHY 132

[14] Photography-Cameras-Automatic controls of exposure. ISO 2721:1982. International Organi-

zation for Standardization, 1982.

[15] Timothy R. Corle and Gordon S. Kino. Confocal scanning optical microscopy and related

imaging systems. Academic Press, 1996.

[16] Oliver Cossairt, Mohit Gupta, and Shree K. Nayar. When does computational imaging improve

performance? IEEE Transactions on Image Processing, 22(2):447–458, 2012.
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