

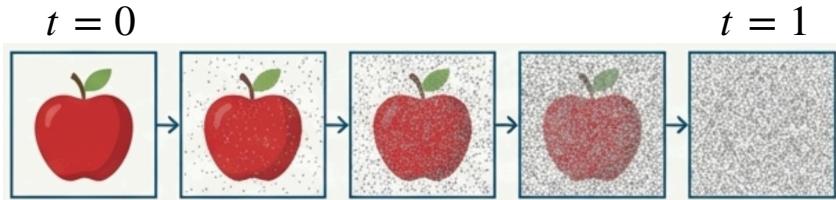
Demystifying Diffusion Objectives

Reweighted Losses are Better Variational Bounds

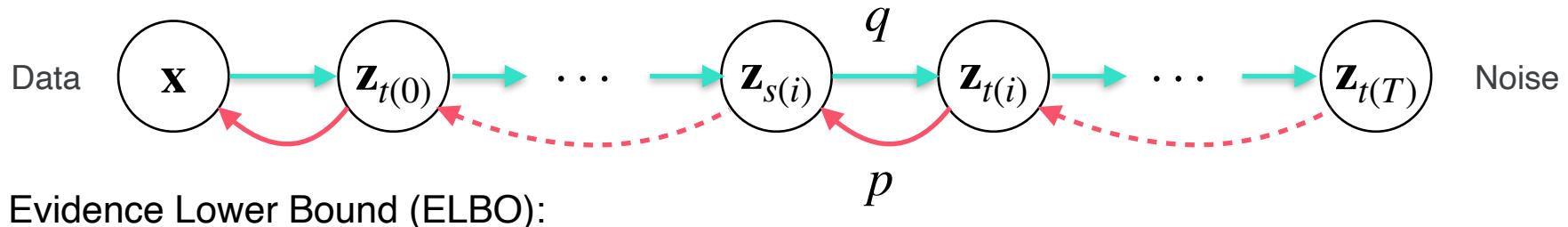
Jiaxin Shi
Work done @Google DeepMind
2025/12/6

jiaxins.io

Diffusion models



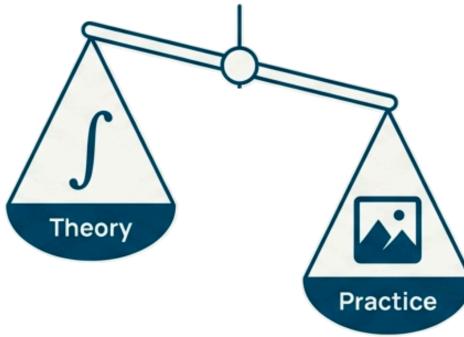
Breaking the time into T intervals $[s(i), t(i)]$, $t(i) = i/T$, $s(i) = (i - 1)/T$, we get a deep hierarchical VAE:



Evidence Lower Bound (ELBO):

$$\log p(\mathbf{x}) \geq \mathbb{E}_{q(\mathbf{z}_{t(0)}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}_{t(0)})] - \text{KL}(q(\mathbf{z}_{t(T)}|\mathbf{x})\|p(\mathbf{z}_{t(T)})) - \sum_{i=2}^T \mathbb{E}_{q(\mathbf{z}_{t(i)}|\mathbf{x})} \left[\text{KL}(q(\mathbf{z}_{s(i)}|\mathbf{z}_{t(i)}, \mathbf{x})\|p(\mathbf{z}_{s(i)}|\mathbf{z}_{t(i)})) \right]$$

Diffusion loss



Negative ELBO (cont-time limit)

Derived from maximizing the log-likelihood of data.

$$\mathcal{L}_\infty(\mathbf{x}) = \frac{1}{2} \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(0, \mathbf{I})} [\lambda'(t) \|\epsilon - \epsilon_\theta(\mathbf{z}_t)\|^2]$$

Reweighted Loss

Practically a “**reweighted**” version is used

$$\mathcal{L}_\infty(\mathbf{x}) = \frac{1}{2} \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(0, \mathbf{I})} [\tilde{w}(t) \lambda'(t) \|\epsilon - \epsilon_\theta(\mathbf{z}_t)\|^2]$$

The popular “simple” objective sets $\tilde{w}(t) = 1/\lambda'(t)$. This change has a massive positive impact on image sample quality.

Weighting functions used in continuous diffusion

Based on Kingma & Gao (2023)

Name	Parameterization	$\lambda(t)$	$\hat{w}(\lambda)$	$\tilde{w}(t)$
EDM	mean prediction	$F_{\mathcal{N}(2.4, 2.4^2)}^{-1}(1-t)$	$p_{\mathcal{N}(2.4, 2.4^2)}(\lambda) \frac{e^{-\lambda} + 0.5^2}{0.5^2}$	$w(\lambda(t))$
IDDPM	ϵ prediction	$-2 \log \tan(\frac{\pi}{2}t)$	$\operatorname{sech}(\frac{\lambda}{2})$	$2 \sin(\frac{\pi}{2}t) \cos(\frac{\pi}{2}t)$
Sigmoid	ϵ prediction	$-2 \log \tan(\frac{\pi}{2}t)$	$\operatorname{sigmoid}(-\lambda + k)$	$\frac{1}{1 + e^{-k} \tan(\frac{\pi}{2}t)^{-2}}$
FM	velocity prediction	$2 \log \frac{1-t}{t}$	$e^{-\frac{\lambda}{2}}$	$\frac{t}{1-t}$

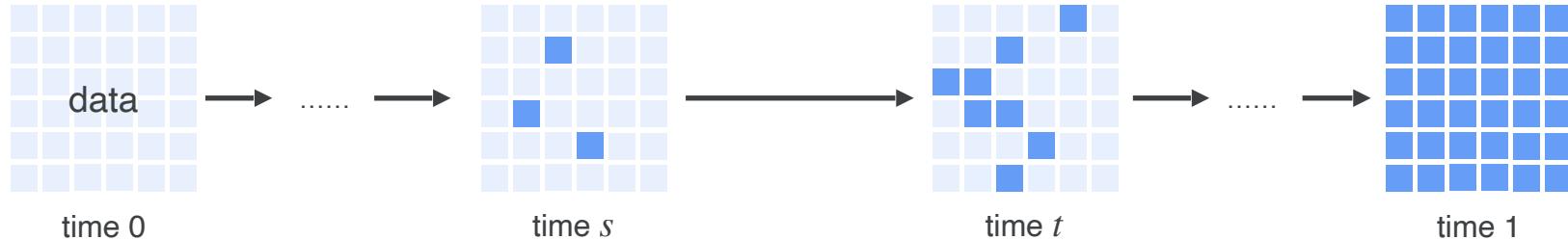
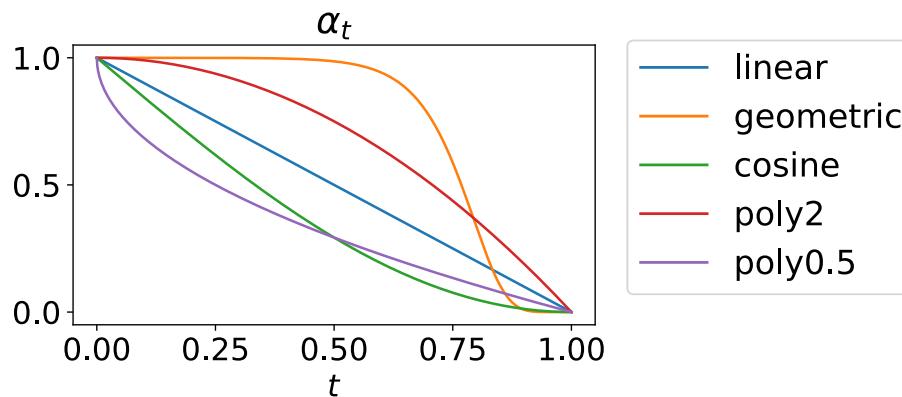
It's less well-understood why the reweighted loss has better sample quality

- Kingma & Gao (2023) interpreted the loss as the integral of ELBOs under Gaussian noise-augmented data, thus prioritizing perceptually important low-frequency signals.
- It's unclear how to generalize this beyond standard continuous diffusion

Masked Diffusion

Also known as absorbing diffusion, first proposed in Austin et al. (2021)

data
mask



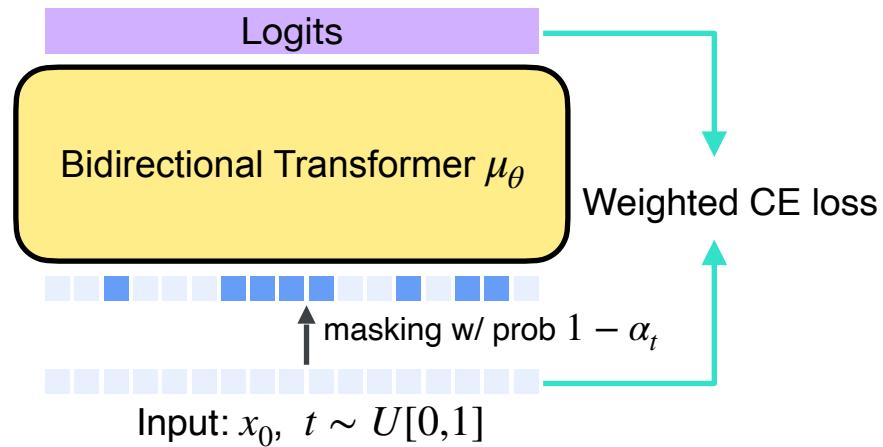
Masking schedule α_t : The expected proportion of unmasked elements at t

Simplified Masked Diffusion Models (MD4)

Continuous-time ELBO

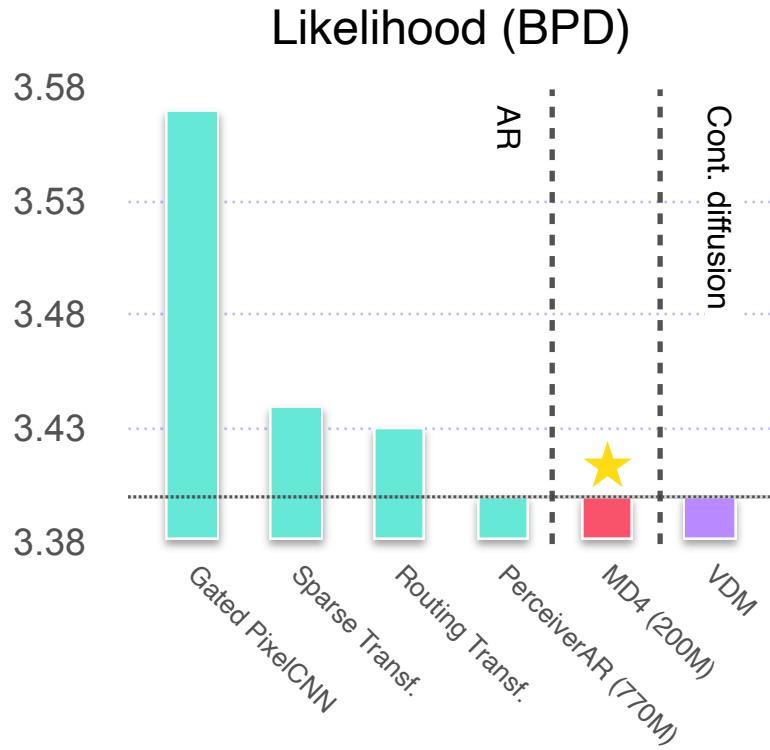
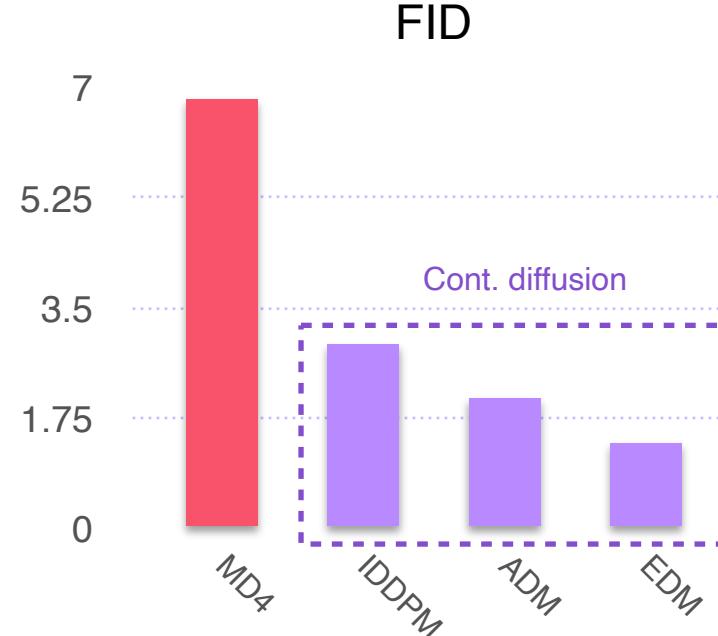
$$\log p_\theta(x_0) \geq - \int_0^1 \frac{\alpha'_t}{1 - \alpha_t} \mathbb{E}_{q(x_t|x_0)} \left[\sum_{n: x_t^{(n)} = m} (x_0^{(n)})^\top \log \mu_\theta^{(n)}(x_t, t) \right] dt.$$

- Maximum likelihood is as simple as training an **ensemble of BERTs**
- Many popular diffusion LLMs are now based on masked diffusion and this objective
- Promise for universal multimodal generation



Can masked diffusion match continuous diffusion in image generation?

- MD4 reports likelihood comparable to strong continuous diffusion (VDM)
- **Challenge:** sample quality (as measured by FID) is still behind



Demystifying Diffusion Objectives: Reweighted Losses are Better Variational Bounds

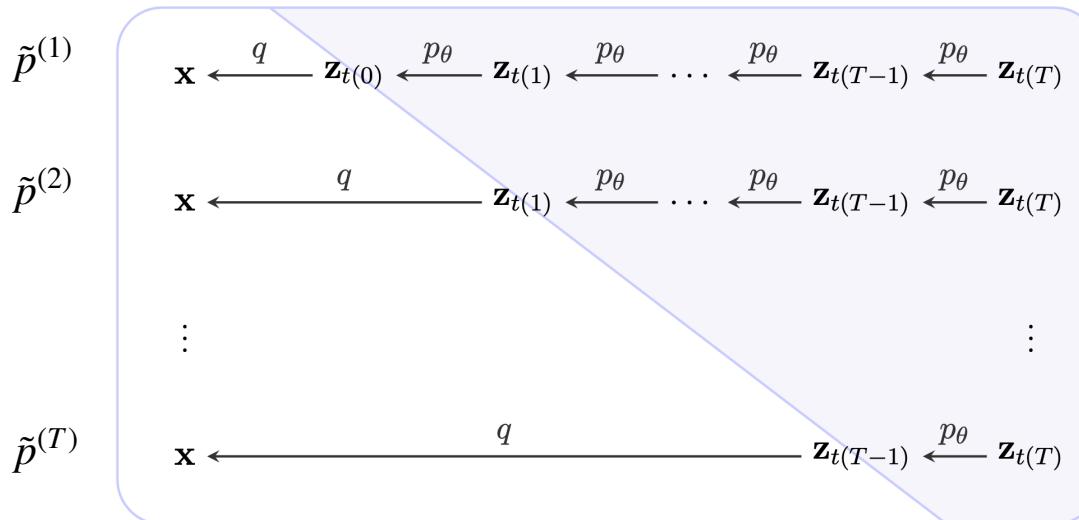
Jiaxin Shi¹ and Michalis K. Titsias¹

¹Google DeepMind
`{jiaxins,mtitsias}@google.com`

arxiv.org/abs/2511.19664

Diffusion models with “optimal decoders”

- Consider a diffusion model with a modified generative process that, for the last i reverse steps, does not use our learned denoiser.
- Instead, it uses the ground truth reverse transition $q(\mathbf{x} \mid \mathbf{z}_{t(i)}) \propto q(\mathbf{z}_{t(i)} \mid \mathbf{x})q(\mathbf{x})$
- Define a sequence of these models $\tilde{p}^{(i)}$ for $i = 1$ to T



Theorem 1: More “optimal” reverse steps lead to better ELBOs

Let $\mathcal{L}^{(i)}(\mathbf{x})$ be the ELBO of the model on the i -th row

$$\begin{aligned}\mathcal{L}^{(i)}(\mathbf{x}) \triangleq & \mathbb{E}_{q(\mathbf{z}_{s(i)}|\mathbf{x})}[\log q(\mathbf{x}|\mathbf{z}_{s(i)})] - \text{KL}(q(\mathbf{z}_{t(T)}|\mathbf{x})\|p(\mathbf{z}_{t(T)})) - \\ & \sum_{j=i}^T \mathbb{E}_{q(\mathbf{z}_{t(i)}|\mathbf{x})} \left[\text{KL}(q(\mathbf{z}_{s(i)}|\mathbf{z}_{t(i)}, \mathbf{x})\|p(\mathbf{z}_{s(i)}|\mathbf{z}_{t(i)})) \right]\end{aligned}$$

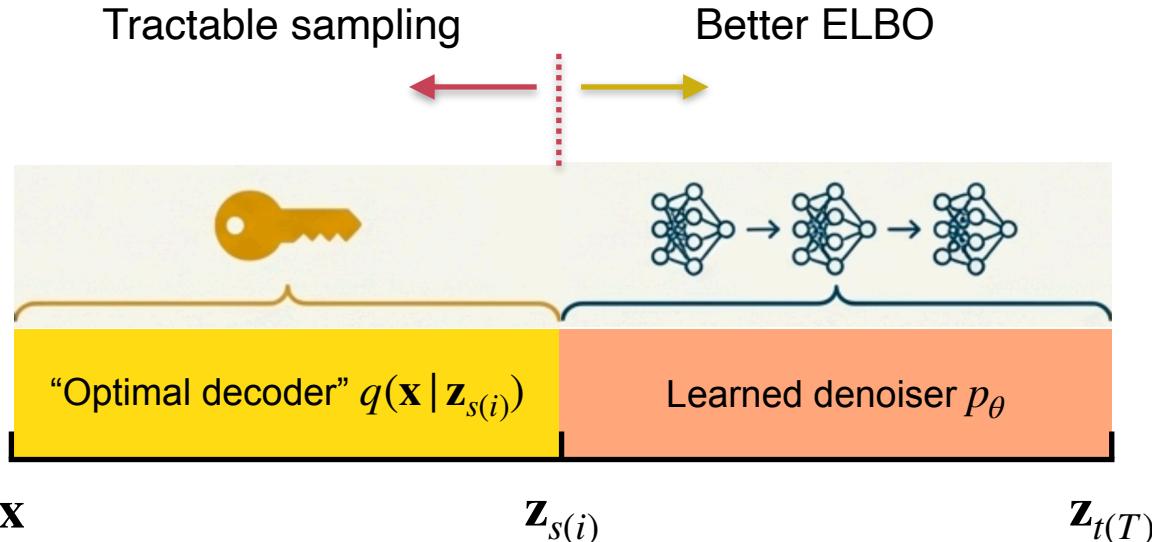
From top to bottom, the ELBO improves

$$\mathbb{E}_{q(\mathbf{x})}[\mathcal{L}^{(i+1)}(\mathbf{x})] \geq \mathbb{E}_{q(\mathbf{x})}[\mathcal{L}^{(i)}(\mathbf{x})]$$

Since $\text{KL}(q(\mathbf{x})\|\tilde{p}^{(i)}(\mathbf{x})) = -\mathbb{E}_{q(\mathbf{x})}[\log \tilde{p}^{(i)}(\mathbf{x})] + C \leq -\mathbb{E}_{q(\mathbf{x})}[\mathcal{L}^{(i)}(\mathbf{x})] + C$, this implies that incorporating an additional optimal reverse step results in a **smaller upper bound on data-model KL divergence**

Although the decoder term is tractable to compute, it is constant wrt. θ . We can still train the denoiser using the improved ELBO.

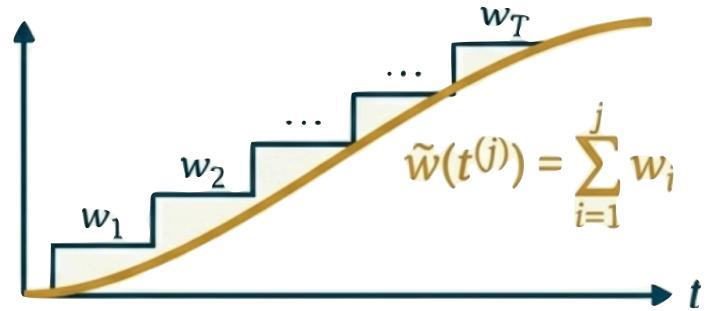
Tradeoff between better ELBO & tractable sampling



Can we construct an objective that leverages the improved ELBOs while at the same time explicitly trains the denoiser at all noise levels?

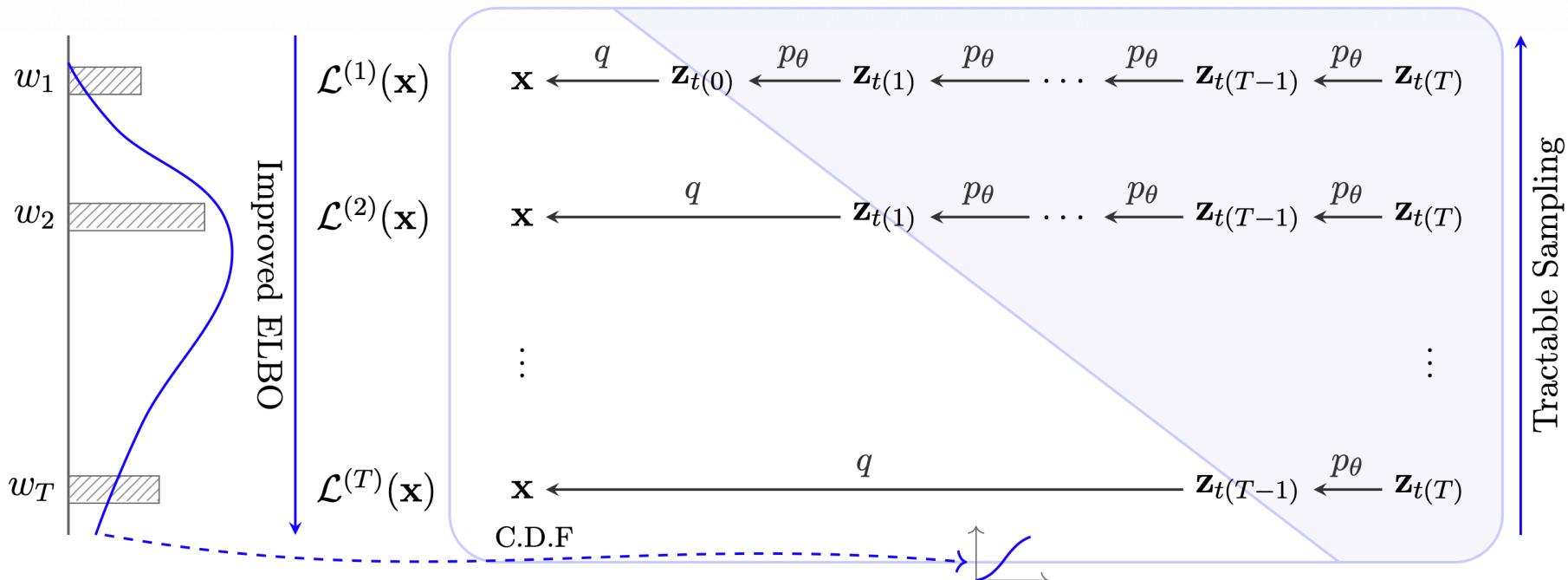
Theorem 2: Common diffusion objectives are a weighted sum of the improved ELBOs

$$\lim_{T \rightarrow \infty} \sum_{i=1}^T w_i \mathcal{L}^{(i)}(\mathbf{x}) = \mathcal{L}^{\tilde{w}}(\mathbf{x}) + C$$



Conclusion: Reweighted losses work better because they provide improved training signals for denoisers at high-noise level. This also implies $\tilde{w}(t)$ must be monotonic increasing, which aligns with the conclusion of Kingma & Gao (2023).

Reweighted Losses are Better Variational Bounds



Diffusion objectives: $\mathcal{L}^{\tilde{w}}(\mathbf{x}) = \lim_{T \rightarrow \infty} \sum_{i=1}^T w_i \mathcal{L}^{(i)}(\mathbf{x}) = \int_0^1 \tilde{w}(t) \mathbb{E}_{q(\mathbf{z}_t | \mathbf{x})} [L_{\text{denoise}}(\mathbf{z}_t, \mathbf{x}, t)] dt + C$

Reweighted loss for masked diffusion

- The framework is general and can be applied to any diffusion processes
- Repeating the Theorem 2 derivation for masked diffusion yields:

$$\mathcal{L}^{\tilde{w}}(\mathbf{x}) = - \int_0^1 \tilde{w}(t) \frac{\alpha'_t}{1 - \alpha_t} \mathbb{E}_{q(\mathbf{z}_t | \mathbf{x})} \left[\delta_{\mathbf{z}_t, m} \mathbf{x}^\top \log \mu_\theta(\mathbf{z}_t) \right] dt$$

How to choose $\tilde{w}(t)$?

- Migrate the common continuous diffusion weightings
- Match in log-SNR (λ) space instead of t space to maintain schedule invariance

Name	$\lambda(t)$	$\hat{w}(\lambda)$	$\tilde{w}(t)$
EDM		$p_{\mathcal{N}(2.4, 2.4^2)}(\lambda) \frac{e^{-\lambda} + 0.5^2}{0.5^2}$	$w(\lambda(t))$
IDDPMP	$\log \frac{\alpha_t}{1 - \alpha_t}$	$\operatorname{sech}(\frac{\lambda}{2})$	$2\sqrt{\alpha_t(1 - \alpha_t)}$
Sigmoid		$\operatorname{sigmoid}(-\lambda + k)$	$\frac{1 - \alpha_t}{1 - (1 - e^{-k})\alpha_t}$
FM		$e^{-\frac{\lambda}{2}}$	$\sqrt{\frac{1 - \alpha_t}{\alpha_t}}$

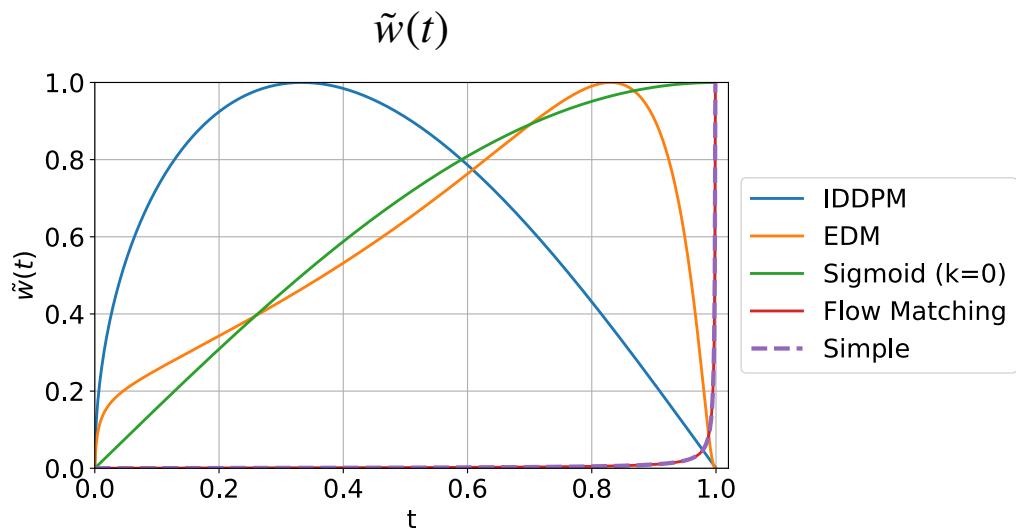
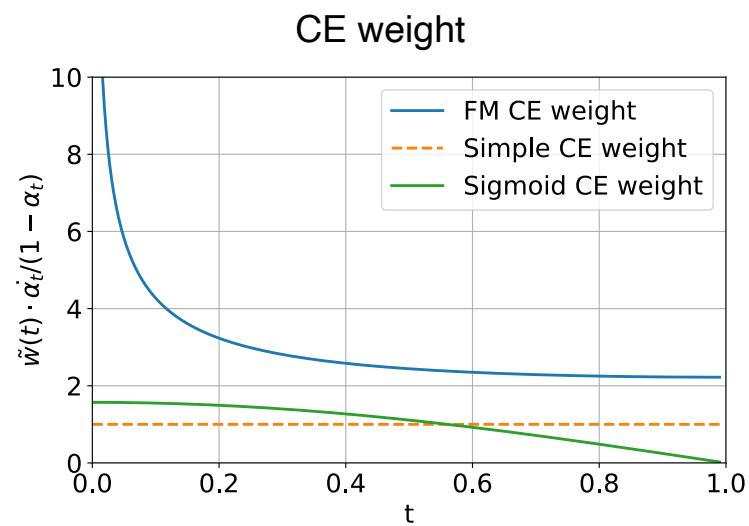
The “simple” weighting

- Masked image models (MaskGIT/MAR): a class of generative models closely related to masked diffusion
- Loss computation in these models: sum all mask-prediction losses in the batch and normalize by #masks
- Under CLT (large minibatch), this equals using a constant CE weighting, or equivalently,

$$\tilde{w}(t) = \frac{1 - \alpha_t}{\alpha'_t}$$

$$\mathcal{L}^{\tilde{w}}(\mathbf{x}) = - \int_0^1 \mathbb{E}_{q(\mathbf{z}_t|\mathbf{x})} \left[\delta_{\mathbf{z}_t, m} \mathbf{x}^\top \log \mu_\theta(\mathbf{z}_t) \right] dt$$

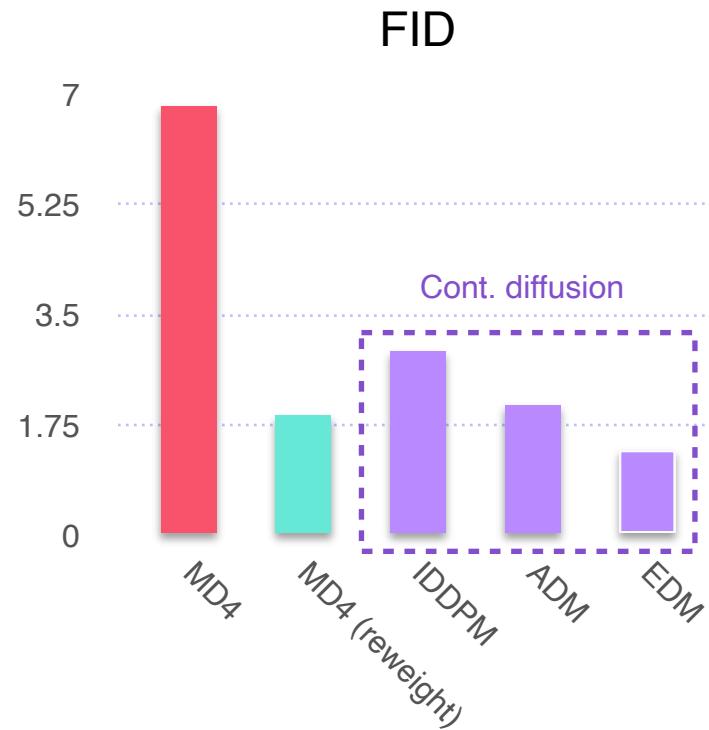
Weighting functions for masked diffusion models



Impact of different weighting functions

Class-conditional generation of ImageNet 64x64 (pixels)

Method	#Params	FID (↓)	IS (↑)
Gaussian Diffusion			
IDDPMP (Nichol and Dhariwal, 2021)		2.92	
ADM (Dhariwal and Nichol, 2021)	296M	2.07	
EDM (Karras et al., 2022)	296M	1.36	
VDM++ (Kingma and Gao, 2023)	296M	1.43	63.7
Masked Image Models			
MAR (Li et al., 2025)	479M	2.93	
FractalMAR (Li et al., 2025)		2.72	
Masked Diffusion			
MD4 (ELBO)	204M	6.84	30.3
<i>Weighting:</i>			
- IDDPMP (non-monotonic)	204M	11.14	22.9
- EDM (nearly-monotonic)	204M	4.42	37.3
- Sigmoid ($k = 0$)	204M	3.91	40.1
- FM	204M	3.43	43.3
- Simple	204M	2.96	46.7
- Simple	324M	1.92	57.9



Sample (324M Params, FID 1.92)

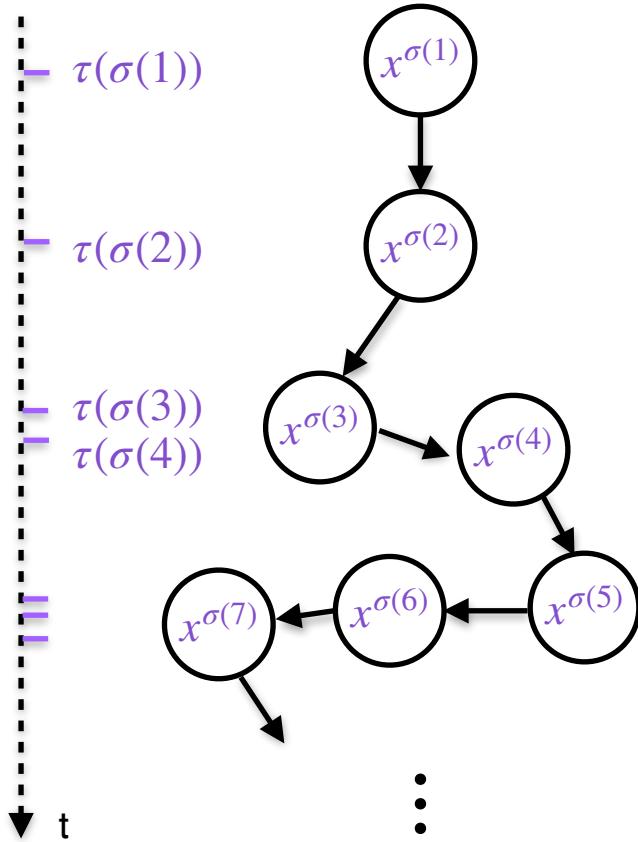
Final thoughts: Diffusion is really not so different from AR

- Masked diffusion is random-order autoregression
- With loss-reweighting, a pixel-space autoregression can give diffusion-level sample quality

Figure: Nano Banana

Thanks

Masked Diffusion as Any-Order AR



Consider the continuous-time reverse process

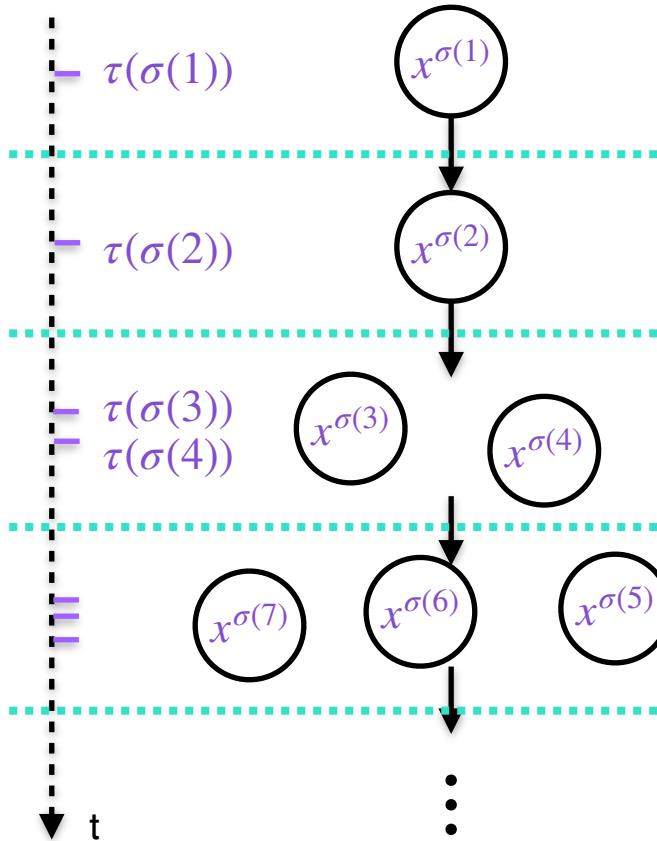
- $\tau(n)$: unmasking time of the n -th component
- there exists an **ordering** of the unmasking times

CDF of jump times:

$$P(\tau(n) \leq t) = P(x_t^{(n)} = m) = 1 - \alpha_t$$

- When α_t is **global**, all $\tau(n)$ s share the same distribution, the unmasking order is **uniform across all permutations**
- The equivalence is no longer true for generalized masked diffusion (Shi et al. 2024)

Masked Diffusion as Any-Order AR



Masking schedule: a new degree of freedom in any-order AR

- In continuous time (training), all choices of α_t lead to the same any-order AR model
- In discretized time (sampling), shape of α_t determines the parallel sampling bandwidth

