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Diffusion models
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Breaking the time into T intervals [s(i), ()], t(i) = i/T, s(i) = (i — 1)/T, we get a deep
hierarchical VAE:

q
Data ° @ o ZS(i) @ o @ NOise

Evidence Lower Bound (ELBO):
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Diffusion loss

Practice

Negative ELBO (cont-time limit) Reweighted Loss

Derived from maximizing the log- Practically a “reweighted” version is used

likelihood of data.
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The popular “simple” objective sets w(¢) = 1/A(¢). This change has a massive
positive impact on image sample quality.




Weighting functions used in continuous diffusion

Based on Kingma & Gao (2023)

Name Parameterization A(t) w(N) w(t)
. . —>\ 2
EDM mean prediction FN(l2 42. 42)(1 t)  Da(2.4,2.42)(N) 5T w(A(t))
IDDPM e prediction —2log tan(5t) sech(3) 2sin(5t) cos(5t)
Sigmoid e prediction —2log tan(5t) sigmoid(—\ + k) TR L R
e an(5t)
FM velocity prediction 2log +* e~ 2 T

It’s less well-understood why the reweighted loss has better sample quality

- Kingma & Gao (2023) interpreted the loss as the integral of ELBOs under Gaussian noise-
augmented data, thus prioritizing perceptually important low-frequency signals.

- It’s unclear how to generalize this beyond standard continuous diffusion

Kingma, D., & Gao, R. (2023). Understanding diffusion objectives as the ELBO with simple data augmentation.



Masked Diffusion

data

Also known as absorbing diffusion, first proposed in Austin et al. (2021) W mask
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Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces.



Simplified Masked Diffusion Models (MD4)

Continuous-time ELBO
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- Maximum likelihood is as simple as

Logits
training an ensemble of BERTs
- Many popular diffusion LLMs are now Bidirectional Transformer p,
: : : Weighted CE loss
based on masked diffusion and this
objective

Tmasking w/ prob 1 — o,
* Promise for universal multimodal

generation Input: xo, 7~ U[0,1]

Shi et al. (2024). Simplified and Generalized Masked Diffusion for Discrete Data.
Concurrent work RADD and MDLM (Ou et al., 2024; Sahoo et al., 2024) studied similar loss for language



Can masked diffusion match continuous diffusion
In image generation?
« MD4 reports likelihood comparable to strong continuous diffusion (VDM)

+ Challenge: sample quality (as measured by FID) is still behind
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Diffusion models with “optimal decoders”

- Consider a diffusion model with a modified generative process that, for the last i reverse
steps, does not use our learned denoiser.

- Instead, it uses the ground truth reverse transition g(x | z,;)) & q(z,, | X)q(x)

- Define a sequence of these models 5 fori = 1to T
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Theorem 1: More “optimal” reverse steps lead to
better ELBOs

Let £ (x) be the ELBO of the model on the i-th row
LO(x) &|Eq (s, 150108 q(x|25(5))] = KL(q(ze(1) %) |p(2e(7)))—

T
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From top to bottom, the ELBO improves
E g [£0F (%)) 2 By [£ (%))

Since KL(g(x)[5'” (x)) = —Eyxllog 5 (x)] + C < —E, ) [£?(x)] + C, this implies that incorporating
an additional optimal reverse step results in a smaller upper bound on data-model KL
divergence

Although the decoder term in tractable to compute, it is constant wrt. 8. We can
still train the denoiser using the improved ELBO.




Tradeoff between better ELBO & tractable sampling

Tractable sampling Better ELBO
—
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Can we construct an objective that leverages the improved ELBOs while at the same time
explicitly trains the denoiser at all noise levels?



Theorem 2: Common diffusion objectives are a
weighted sum of the improved ELBOs
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Conclusion: Reweighted losses work better because they provide improved training signals
for denoisers at high-noise level. This also implies W(#) must be monotonic increasing, which

aligns with the conclusion of Kingma & Gao (2023).



Reweighted Losses are Better Variational Bounds
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Diffusion objectives: £?(x) = lim Z?:l w; L&) (x) = f ! W(t)Eq(z,1x) [Ldenoise (Zt, X, t)] dt + C



Reweighted loss for masked diffusion

- The framework is general and can be applied to any diffusion processes

 Repeating the Theorem 2 derivation for masked diffusion yields:
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How to choose w(?)?
« Migrate the common continuous diffusion weightings

- Match in log-SNR (4) space instead of ¢ space to maintain schedule invariance

Name A(t) w(A) w(t)
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The “simple” weighting
- Masked image models (MaskGIT/MAR): a class of generative models closely related to

masked diffusion

 Loss computation in these models: sum all mask-prediction losses in the batch and normalize
by #masks

- Under CLT (large minibatch), this equals using a constant CE weighting, or equivalently,

l —a,
w(t) =
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gfv(x) - - J [Eq(z,|x) [5Zt,mXT log ”Q(Zt) dt
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Chang et al. (2022). MaskGIT: Masked generative image transformer.
Li et al. (2024). Autoregressive image generation without vector quantization.



w(t)

Weighting functions for masked diffusion models

w(r) CE weight
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Impact of different weighting functions

Class-conditional generation of ImageNet 64x64 (pixels)

Method #Params FID () IS (1)
Gaussian Diffusion

IDDPM (Nichol and Dhariwal, 2021) 2.92

ADM (Dhariwal and Nichol, 2021) 296M 2.07

EDM (Karras et al., 2022) 296 M 1.36
VDM++ (Kingma and Gao, 2023) 296M 1.43 63.7
Masked Image Models

MAR (Li et al., 2025) 479M 2.93
FractalMAR (Li et al., 2025) 2.72
Masked Diffusion

MD4 (ELBO) 204M 6.84 30.3
Weighting:

- IDDPM (non-monotonic) 204M 11.14 22.9
- EDM (nearly-monotonic) 204M 4.42 37.3
- Sigmoid (k = 0) 204M 3.91 40.1
- FM 204M 3.43 43.3
- Simple 204M 2.96 46.7
- Simple 324M 1.92 57.9
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3.5

1.75

FID

Cont. diffusion



Sample (324M Params, FID 1.92)




Final thoughts: Diffusion is really not so different from AR

- Masked diffusion is random-order autoregression
- With loss-reweighting, a pixel-space autoregression can give diffusion-level sample quality
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ANY-ORDER AR
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Figure: Nano Banana
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Masked Diffusion as Any-Order AR

— 7(0(1)) @ Consider the continuous-time reverse process

E - 7(n): unmasking time of the n-th component

R + there exists an ordering of the unmasking times
o) (o) : :

¢ CDF of jump times:

= 7(0(3))

™ r(0(4) - @ P <) =P =m=1-q

E - When ¢, is global, all 7(n)s share the same distribution,
E_ @ @ the unmasking order is uniform across all permutations
- @ + The equivalence is no longer true for generalized masked
5 diffusion (Shi et al. 2024)

\ A .

Uria, B. et al. (2014). A deep and tractable density estimator.
Hoogeboom et al. (2021). Autoregressive diffusion models.



Masked Diffusion as Any-Order AR
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Masking schedule: a new degree of freedom in any-order AR

- In continuous time (training), all choices of a, lead to the
same any-order AR model

- In discretized time (sampling), shape of a, determines the
parallel sampling bandwidth
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