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Diffusion models

Evidence Lower Bound (ELBO):

log p(x) ≥ 𝔼q(zt(0)|x)[log p(x |zt(0))] − KL(q(zt(T ) |x)∥p(zt(T ))) −
T

∑
i=2

𝔼q(zt(i)|x)[KL(q(zs(i) |zt(i), x)∥p(zs(i) |zt(i)))]

x zt(0) zs(i) zt(T )zt(i). . . . . .Data Noise
q

p

Breaking the time into  intervals , , , we get a deep 
hierarchical VAE:

T [s(i), t(i)] t(i) = i /T s(i) = (i − 1)/T

t = 0 t = 1



Diffusion loss

Negative ELBO (cont-time limit)  
Derived from maximizing the log-
likelihood of data.

ℒ∞(x) =
1
2

𝔼t∼U[0,1],ϵ∼𝒩(0,I) [λ′￼(t)∥ϵ − ϵθ(zt)∥2]

Reweighted Loss
Practically a “reweighted” version is used

ℒ∞(x) =
1
2

𝔼t∼U[0,1],ϵ∼𝒩(0,I) [w̃(t)λ′￼(t)∥ϵ − ϵθ(zt)∥2]

The popular “simple” objective sets . This change has a massive 
positive impact on image sample quality. 

w̃(t) = 1/λ′￼(t)



Weighting functions used in continuous diffusion

Kingma, D., & Gao, R. (2023). Understanding diffusion objectives as the ELBO with simple data augmentation. 

Based on Kingma & Gao (2023)

It’s less well-understood why the reweighted loss has better sample quality

- Kingma & Gao (2023) interpreted the loss as the integral of ELBOs under Gaussian noise-
augmented data, thus prioritizing perceptually important low-frequency signals.

- It’s unclear how to generalize this beyond standard continuous diffusion



Masked Diffusion
Also known as absorbing diffusion, first proposed in Austin et al. (2021)

Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces. 
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Continuous-time ELBO

Shi et al. (2024). Simplified and Generalized Masked Diffusion for Discrete Data.

Concurrent work RADD and MDLM (Ou et al., 2024; Sahoo et al., 2024) studied similar loss for language

log pθ(x0) ≥ −

• Maximum likelihood is as simple as 
training an ensemble of BERTs 

• Many popular diffusion LLMs are now 
based on masked diffusion and this 
objective

• Promise for universal multimodal 
generation 

Simplified Masked Diffusion Models (MD4)

Bidirectional Transformer μθ

Logits

Weighted CE loss

Input: ,  x0 t ∼ U[0,1]

masking w/ prob 1 − αt



Can masked diffusion match continuous diffusion 
in image generation?
• MD4 reports likelihood comparable to strong continuous diffusion (VDM)

• Challenge: sample quality (as measured by FID) is still behind
FID
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Diffusion models with “optimal decoders”
• Consider a diffusion model with a modified generative process that, for the last  reverse 

steps, does not use our learned denoiser.
• Instead, it uses the ground truth reverse transition 

• Define a sequence of these models  for  to 

i

q(x |zt(i)) ∝ q(zt(i) |x)q(x)
p̃(i) i = 1 T

p̃(1)

p̃(2)

p̃(T )



Theorem 1: More “optimal” reverse steps lead to 
better ELBOs
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Eq(x)[L(i+1)(x)] � Eq(x)[L(i)(x)]

Although the decoder term in tractable to compute, it is constant wrt. . We can 
still train the denoiser using the improved ELBO.

θ

Let            be the ELBO of the model on the -th row i
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L(i)(x) , Eq(zs(i)|x)[log q(x|zs(i))]�KL(q(zt(T )|x)kp(zt(T )))�
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j=i

Eq(zt(i)|x)

h
KL(q(zs(i)|zt(i),x)kp(zs(i)|zt(i)))

i
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j=i

Eq(zt(i)|x)

h
KL(q(zs(i)|zt(i),x)kp(zs(i)|zt(i)))

i

From top to bottom, the ELBO improves

Since                                                                                          , this implies that incorporating 
an additional optimal reverse step results in a smaller upper bound on data-model KL 
divergence

<latexit sha1_base64="XLPN5c/pASruAcJSHQuEIgg8lxw="></latexit>

KL(q(x)kp̃(i)(x)) = �Eq(x)[log p̃
(i)(x)] + C  �Eq(x)[L(i)(x)] + C



Tradeoff between better ELBO & tractable sampling

“Optimal decoder” q(x |zs(i)) Learned denoiser pθ

x zs(i) zt(T )

Better ELBOTractable sampling

Can we construct an objective that leverages the improved ELBOs while at the same time  
explicitly trains the denoiser at all noise levels?



Theorem 2: Common diffusion objectives are a 
weighted sum of the improved ELBOs

<latexit sha1_base64="tqYwwQeL3mqUoW6LNQAboHw0Aug="></latexit>

lim
T!1

TX

i=1

wiL(i)(x) = Lw̃(x) + C

Conclusion: Reweighted losses work better because they provide improved training signals 
for denoisers at high-noise level. This also implies  must be monotonic increasing, which 
aligns with the conclusion of Kingma & Gao (2023). 

w̃(t)



Reweighted Losses are Better Variational Bounds



Reweighted loss for masked diffusion
• The framework is general and can be applied to any diffusion processes

• Repeating the Theorem 2 derivation for masked diffusion yields:

ℒw̃(x) = − ∫
1

0
w̃(t)

α′￼t

1 − αt
𝔼q(zt|x) [δzt,mx⊤ log μθ(zt)] dt

• Migrate the common continuous diffusion weightings

• Match in log-SNR ( ) space instead of  space to maintain schedule invarianceλ t

How to choose ?w̃(t)



The “simple” weighting
• Masked image models (MaskGIT/MAR): a class of generative models closely related to 

masked diffusion

• Loss computation in these models: sum all mask-prediction losses in the batch and normalize 
by #masks

• Under CLT (large minibatch), this equals using a constant CE weighting, or equivalently, 

w̃(t) =
1 − αt

α′￼t

ℒw̃(x) = − ∫
1

0
𝔼q(zt|x) [δzt,mx⊤ log μθ(zt)] dt

Chang et al. (2022). MaskGIT: Masked generative image transformer.

Li et al. (2024). Autoregressive image generation without vector quantization. 



Weighting functions for masked diffusion models

w̃(t) CE weight



Impact of different weighting functions
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Sample (324M Params, FID 1.92) 



Final thoughts: Diffusion is really not so different from AR
• Masked diffusion is random-order autoregression
• With loss-reweighting, a pixel-space autoregression can give diffusion-level sample quality

Figure: Nano Banana



Thanks



Masked Diffusion as Any-Order AR
xσ(1)

xσ(2)

xσ(3)
xσ(4)

xσ(5)xσ(6)
xσ(7)

t

τ(σ(1))

τ(σ(2))

τ(σ(3))
τ(σ(4))

Uria, B. et al. (2014). A deep and tractable density estimator. 

Hoogeboom et al. (2021). Autoregressive diffusion models.

Consider the continuous-time reverse process

• : unmasking time of the -th component

• there exists an ordering of the unmasking times

τ(n) n

CDF of jump times: 

• When  is global, all s share the same distribution, 
the unmasking order is uniform across all permutations

• The equivalence is no longer true for generalized masked 
diffusion (Shi et al. 2024) 

P(τ(n) ≤ t) = P(x(n)
t = m) = 1 − αt

αt τ(n)



Masked Diffusion as Any-Order AR
xσ(1)

xσ(2)

xσ(3)
xσ(4)

xσ(5)xσ(6)
xσ(7)

t

τ(σ(1))

τ(σ(2))

τ(σ(3))
τ(σ(4))

Masking schedule: a new degree of freedom in any-order AR

• In continuous time (training), all choices of  lead to the 
same any-order AR model

• In discretized time (sampling), shape of  determines the 
parallel sampling bandwidth

αt

αt


