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Why Diffusion Models for Discrete Data

« Generating discrete data with parallel sampling
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Why Diffusion Models for Discrete Data

« Generating discrete data with parallel sampling

« AR models require imposing an ordering which may be unnatural for many data types
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Challenge

Diffusion yet to match AR performance on discrete data
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Gulrajani & Hashimoto (2024). Likelihood-based diffusion language models.



Masked Diffusion Models

Also known as absorbing diffusion, first proposed in Austin et al. (2021) M mask
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Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces.



Masked Diffusion Models
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Masked Diffusion Models
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MD4 Objective: Weighted Cross-Entropy Losses

Continuous-time Negative ELBO (7' — o)
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Three Interpretations of MD4

VDM (Kingma et al., 2021) version of D3PM (Austin et al., 2021)
« Continuous-time model

« Simplification as weighted cross-entropy loss

Adaptation of CTMC ELBO (Campbell et al., 2022) to enable low-variance estimate
« Campbell et al. (2022) requires multiple NN passes—estimation has high variance

- MD4 applies discrete “integration-by-part” to fix this

Mean parameterization counterpart of score parameterization (Lou et al., 2023)

« Score parameterization breaks consistency between forward & reverse processes

Kingma et al. (2021). Variational diffusion models.
Campbell et al. (2022). A continuous time framework for discrete denoising models.
Lou et al. (2023). Discrete diffusion language modeling by estimating the ratios of the data distribution.



Score v.s. Mean Parameterization
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Proposition 1. The discrete score s(x,, t)j =
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See also concurrent work based on this (Ou et al, 2024)
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« Score parameterization breaks this and leads to inconsistency between forward & reverse processes



GenMD4: State-dependent Schedules

Idea: Tokens are not created equal — make the probability of masking a token depend on
the token value
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« ELBO is a bit complicated in discrete time

« Good news: it significantly simplifiesas T — oo
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GenMD4: Learned State-Dependent Schedules

a, : [0,1] — [0,1]1V]. Schedule for token type i: (@,); = 1 — t"

Token types with largest ws (unmask first)

-

'<|lendoftext|>',
|\n|’

10

'strutConnector’,
"\xaO\xaO/',
' DevOnline'

~

Token types with smallest ws

-

" diligently’,
‘unreliable’,
“irresistible’,
‘dart’,
'tracing’,
‘enlarged;,
' playful’,
‘freeing’,
‘weighted',
'407'




Perplexity on GPT-2 Zero-Shot Eval

Size Method LAMBADA  WikiText2 PTB WikiText103 IBW
Small  GPT-2 (WebText)* 45.04 4243 138.43 41.60 75.20
D3PM <9347 <7728 <200.82 <7516 < 138.92
Plaid <5728 <5180 < 142.60 <50.86 <91.12
SEDD Absorb <5092 <4184 <114.24 <4062 <7929
SEDD Absorb (reimpl.) <4973 <3894 < 107.54 <39.15 <7296
MD4 (Ours) <4843 <3494 <102.26 <3590 <68.10
Medium GPT-2 (WebText)* 35.66 31.80  123.14 31.39 55.72
SEDD Absorb <4277 <3104 <8712 <2998 <61.19

MD4 (Ours) <44.12 <2584 <66.07 <2584 <5145




Perplexity on OpenWebText Validation Set
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Unifying Discrete & Continuous Modalities

« Continuous diffusion suffers on discrete data [Dieleman et al., 22; Gulrajani et al., 23]

- (We will show) discrete diffusion models are effective for inherently continuous data
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Pixel-level Image Modeling

ImageNet 64x64

CIFAR-10
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Pixel-level Image Modeling
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« The masking schedule controls the the quantity of simultaneously predicted tokens.

« The cosine schedule that gradually increases parallel predictions works best.

- For linear schedule, using the cosine grid has the same effect:  t(i) = cos <g (1- %))



Any-order Generation

Conditional text generation

MD4-M linear
schedule

MD4-M cosine
schedule

skydiving is a fun sport, but it's pretty risky.
You're getting is one to get last one for the
season if something goes wrong and it can
happen you know, we know about season,
especially in Skydiving, but anybody that
wins this year

skydiving is a fun sport, but it's extremely
risky. You can have so many injuries one time
and then one next time. There are so many
ways you can hurt, so, neuroconcussions,
especially from Skydiving, are continuing to
rise every year

Then some time on Saturday you should pretty
much say: "This is what | am going to be doing
right now." It's just the simplest thing—that is
why | always shampoo twice a day and shower
three times a day.

Though antibacterial products are a poison, the
skin needs a chemical solution that protects it
from bacteria and spots that form within it —
that is why | always shampoo twice a day and
shower three times a day.



Concurrent Work
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Takeaways

Simplified and Generalized
) ) ) o ) Masked Diffusion for Discrete Data
« Masked diffusion model is a promising candidate for wc

models that can reason in any modality and direction Jiaxin Shi*, Kehang Han’, Zhe Wang, Arnaud Doucet, Michalis K. Titsias

Google DeepMind

« MD4 is as simple as training an ensemble of BERTs. Abeteact

° G e n M D 4 a I IOWS State - d e pe n d e nt u nm a S ki n g be h avi O rs Masked (or absorbing) diffusion is actively explored as an alternative to autore-

gressive models for generative modeling of discrete data. However, existing work
in this area has been hindered by unnecessarily complex model formulations and
- . unclear relationships between different perspectives, leading to suboptimal parame-
° M a ny excitin g avenues fO r fU ture researc h (e . g ., 1M p rov terization, training objectives, and ad hoc adjustments to counteract these issues. In
this work, we aim to provide a simple and general framework that unlocks the full
. . potential of masked diffusion models. We show that the continuous-time variational
sam pl N g S pee d & q u al ItY) objective of masked diffusion models is a simple weighted integral of cross-entropy
losses. Our framework also enables training generalized masked diffusion models
with state-dependent masking schedules. When evaluated by perplexity, our models
trained on OpenWebText surpass prior diffusion language models at GPT-2 scale
and demonstrate superior performance on 4 out of 5 zero-shot language modeling
tasks. Furthermore, our models vastly outperform previous discrete diffusion mod-
els on pixel-level image modeling, achieving 2.75 (CIFAR-10) and 3.40 (ImageNet
64 x64) bits per dimension that are better than autoregressive models of similar
sizes. Our code is available at https://github.com/google-deepmind/md4.

Paper: arxiv.org/abs/2406.04329

Code: https://github.com/google-deepmind/md4

Slides: jiaxins.io Kehang Han Zhe Wang Arnaud Doucet  Michalis K. Titsias
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MD4 as Parallel Any-Order AR Models

@ few @
A new dimension of freedom in AO-ARMs
@ 7(6(2)) @ « Masking schedules control parallel

sampling bandwidth
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Uria, B. et al. (2014). A deep and tractable density estimator.
Hoogeboom et al. (2021). Autoregressive diffusion models.



MD4 as Parallel Any-Order AR Models
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A new dimension of freedom in AO-ARMs

« Masking schedules control parallel
sampling bandwidth

CDF of the jump times:
P(z(n) <) = Px™ =m)=1-aq,

Uria, B. et al. (2014). A deep and tractable density estimator.
Hoogeboom et al. (2021). Autoregressive diffusion models.



