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p(x1, x2, …, x6) = p(x1)p(x2 |x1)⋯p(x6 |x1, x2, …, x5)

Transformer architecture

Decompose the joint distribution into conditional distributions following a specified order. 
Autoregressive (AR) Models for Discrete Data



Why Diffusion Models for Discrete Data
• Generating discrete data with parallel sampling

Mayor Muriel Bowser said after meetings with Commissioner Busby on Thursday 
that the new plan will be on board in December.

Mayor � Bowser said � meetings � Commissioner � on 
Thursday that � new plan will be � board in � �

Mayor Muriel Bowser said after meetings � Commissioner � on 
Thursday that � new plan will be � board in December �

Mayor � � said � � � � � �
� that � new plan � � � � � � �



Why Diffusion Models for Discrete Data

HGFGTLEHPIYKVAKQWSMVHDTTVYFSCGLHVAAHPATYVSM
TMLYHINMESFVNLEFCNFQTDDKYLEDPWARHEKYPIRKAIK
VSMDPNHGPVYCAKWDTILYMGKDGKERRTSAYMFTGVDEQHC
GRLFRITKSCWWGCCTLDNMKPDKAKACAEDMRRCRNIPVVQN
RNSKCRAIEWEIFQYWINCSTVVKTFAPCMFGFQFRFHYGYNY
DRETPVHAVNIINIWSAYKMTRYWCRIQCDSYWLWSGMTWRWC
CWEGSYKLMFCGWWRHFISKSMVTLGGHKKDDGRRWMLQSTHH

https://www.minecraft.net/en-us/article/build-your-very-own-custom-mobs

Shi, Juntong, et (2025). TabDiff: a mixed-type diffusion model for tabular data generation

• Generating discrete data with parallel sampling
• AR models require imposing an ordering which may be unnatural for many data types



Cont. Diffusion vs. AR 
[Gulrajani & Hashimoto, 2024]
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Why Discrete Diffusion Models

Cont. Diffusion Model

ImageText

?

AR

ImageText

?

Gulrajani & Hashimoto (2024). Likelihood-based diffusion language models.

• Generating discrete data with parallel sampling
• AR models require imposing an ordering which may be unnatural for many data types
• Continuous diffusion is not great for discrete data



Recap: Diffusion Models

Song et al., (2020). Score-based generative modeling through stochastic differential equations.



Discrete Noising Processes

Hoogeboom et al., (2021). Argmax flows and multinomial diffusion: Learning categorical distributions.

Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces. 

A, A, A, B, B, B, C, C, C

A, A, A, D, B, B, C, C, C

A, A, A, K, B, L, N, C, C

D, E, O, P, F, X, K, A, C

D, N, O, P, F, X, B, A, N

D, N, O, S, F, X, K, A, N

..
.

Noise

Data A, A, A, B, B, B, C, C, C

A, A, A, B, B, B, C, C, C

A, A, A, B, B, B, C, C, C

A, A, A, B, B, B, C, C, C

A, A, A, B, B, B, C, C, C

A, A, A, B, B, B, C, C, C

..
. C is a special mask token

Uniform diffusion Masked diffusion

It is empirically observed that masked diffusion generally works better than uniform diffusion in discrete 
generative modeling.



Discrete-time Markov Chains

• : clean data, : noise. Finite state space of size .

• Each (forward) transition follows the distribution 

•  is called the transition matrix: 

x0 xT M

q(xi |xi−1) = Cat(xi; Q⊤
i xi−1)

Qi [Qi]jk = q(xi = k |xi−1 = j)

Qmask
i =

1 − βi 0 ⋯ 0 βi

0 1 − βi ⋯ 0 βi

⋮ ⋮ ⋱ 0 βi

0 0 ⋯ 1 − βi βi

0 0 ⋯ 0 1

Quniform
i =

1 − βi + βi /M βi /M ⋯ βi /M
βi /M 1 − βi + βi /M ⋯ βi /M

⋮ ⋮ ⋱ βi /M
βi /M βi /M ⋯ 1 − βi + βi /M

M × M (M + 1) × (M + 1)

(1 − βi)I +
βi

M
11⊤ (1 − βi)I + βi1e⊤

M

Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces. 

x0 x1 xi xT−1 xT. . . . . .Data Noise



Discrete-time Markov Chains

• Product of transition matrices is transition matrix 

• Marginal distribution at step :
, where 

• Take the masked diffusion as an example:

q(x2 |x0) = ∑x1
q(x2 |x1)q(x1 |x0) = Cat(x2; (Q1Q2)⊤x0)

i
q(xi |x0) = Cat(xi; Q̄⊤

i x0) Q̄i = Q1Q2⋯Qi

Q̄1 = (1 − β1)I + β11e⊤
M

Q̄2 = (1 − β1)(1 − β2)I + (1 − (1 − β1)(1 − β2))1e⊤
M

⋮

Q̄i =
i

∏
j=1

(1 − βj)I + (1 −
i

∏
j=1

(1 − βj))1e⊤
M

x0 x1 xi xT−1 xT. . . . . .

≜ α i
Q̄i = αiI + (1 − αi)1e⊤

M

Data Noise



Discrete-time Model

• We learn a reverse generative model (decoder)  to approximate :

• Recall the diffusion model ELBO

   

p q
p(x0:T) = p(x0 |x1)p(x1 |x2)⋯p(xT−1 |xT)

log p(x0) ≥ 𝔼q(x1:T|x0)[log p(x0 |x1) − KL(q(xT |x0)∥p(xT)) −
T

∑
i=2

KL(q(xi−1 |xi, x0)∥p(xi−1 |xi))]

x0 x1 xi xT−1 xT. . . . . .

•  can be computed analytically via Bayes’ rule q(xi−1 |xi, x0)

q(xi−1 |xi, x0) =
q(xi |xi−1)q(xi−1 |x0)

q(xi |x0)
= Cat(xi;

Qixi ⊙ Q̄⊤
i−1x0

x⊤
0 Q̄ixi

) p(xi−1 |xi) ≜ q(xi−1 |xi, μθ(xi))

Austin et al. (2021). Structured denoising diffusion models in discrete state-spaces. 

Data Noise



From Discrete-time to Continuous-time

• We divide time between  into  intervals: , 

• Transition matrix : 

• Example (masked diffusion):

[0,1] T s(i) = (i − 1)/T t(i) = i /T

Qi [Qi]jk = q(xs(i) = k |xt(i) = j)

• Let   and  (cont. time limit)

,    where 

βi =
β(t(i))

T
T → ∞

Q̄(t) ≜ lim
T→∞

Q̄i = αtI + (1 − αt)1eT
M αt ≜ exp( − ∫

t

0
β(s)ds)

Q̄i =
i

∏
j=1

Qi = αiI + (1 − αi)1e⊤
M, where αi =

i

∏
j=1

(1 − βj)

 Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data. 

x0 xt(1) xs(i) xt(T )xt(i). . . . . .Data Noise



From Discrete-time to Continuous-time

 Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data. 

• The marginal distribution at time : t
q(xt |x0) = Cat(xt; Q̄(t)⊤x0) = Cat(xt; αtx0 + (1 − αt)eM)

Masking schedule : The probability 
of being unmasked at time 

αt
t

Clean Masked

• Assume the transition distribution from time  to time  is 

• Recall that transition matrix satisfies , we can solve for :

s t q(xt |xs) = Cat(xt; Q̄(s, t)⊤xs)

Q̄(t) = Q̄(s)Q̄(s, t) Q̄(s, t)

Q̄(s, t) = Q̄(s)−1Q̄(t) =
αt

αs
I + (1 −

αt

αs
)1e⊤

M



Continuous-time Model

• True reverse transition (knowing :

, where 

• or equivalently:

x0)

q(xs |xt, x0) ≜
q(xt |xs)q(xs |x0)

q(xt |x0)
= Cat(xs; R̄(t, s)⊤xt) R̄(t, s) = I +

αs − αt

1 − αt
eM(x0 − eM)⊤

 Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data. 

q(xs |xt, x0) =
Cat(xs; xt) xt ≠ eM

Cat(xs;
1 − αs

1 − αt
eM +

αs − αt

1 − αt
x0) xt = eM

• True reverse (unknown ):  = 

• Reverse model: .

x0 q(xs |xt) = ∑x0
q(xs |xt, x0)q(x0 |xt) q(xs |xt, 𝔼[x0 |xt])

pθ(xs |xt) ≜ q(xs |xt, μθ(xt, t))

Denoiser: Mean Parameterization



Continuous-time ELBO

• Start with the discrete-time ELBO

• For masked diffusion,  as both are delta mass at mask state

log p(x0) ≥ 𝔼q(x1:T|x0)[log p(x0 |xt(1))] − KL(q(xt(T ) |x0)∥p(xt(T ))) −
T

∑
i=2

𝔼q(xt(i)|x0)[KL(q(xs(i) |xt(i), x0)∥p(xs(i) |xt(i)))]
KL(q(xt(T ) |x0)∥p(xt(T ))) = 0

KL(q(xs |xt, x0)∥p(xs |xt)) = −
αs − αt

1 − αt
δxt,M ⋅ x⊤

0 log μθ(xt, t)

 Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data. 

x0 xt(1) xs(i) xt(T )xt(i). . . . . .

lim
T→∞

ℒT = − lim
T→∞

T

∑
i=2

αs(i) − αt(i)

1 − αt(i)
𝔼q(xt(i)|x0)[δxt,M ⋅ x⊤

0 log μθ(xt(i), t(i))] = ∫
1

0

α′￼t

1 − αt
𝔼q(xt|x0)[δxt,M ⋅ x⊤

0 log μθ(xt, t)]dt

≜ ℒ T

Data Noise



Invariance

ELBO is invariant to masking schedule (Shi et al. 2024)

• Proof: Define log signal-to-noise ratio (log-SNR): . Rewrite the ELBO asλt = log
αt

1 − αt

log pθ(x0) ≥ ∫
∞

−∞
σ(λ)𝔼q̃(xλ|x0)[δxλ,M ⋅ x⊤

0 log μθ(xλ)]dλ

Ou et al. (2024). Your absorbing discrete diffusion secretly models the conditional distributions of clean data.

Shi et al. (2024). Simplified and generalized masked diffusion for discrete data. 

Optimal denoiser is time-independent (Ou et al. 2024)

• we can use  to approximate . 

• Proof: Write out the form of  via Bayes’ rule and observe it’s independent of .

μθ(xt, t) = μθ(xt) 𝔼[x0 |xt]

q(x0 |xt) αt



Masked Diffusion Models (multidimensional)

……

time 0 time 1 

mask
data

time s time t

……data

Forward process q(xt |xs) =
N

∏
n=1

q(x(n)
t |x(n)

s )

w/ prob. , remains unmasked

w/ prob. , mask 

αt

αs

1 −
αt

αs

≈ μ (n)
θ (xt)j ≜ softmax(NNθ(xt))j

w/ prob. , unmask to state 

w/ prob. , remains masked 

αs − αt

1 − αt
𝔼[x(n)

0, j |xt] j

1 − αs

1 − αt

Reverse process  as q(xs |xt) ≈
N

∏
n=1

q(x(n)
s |xt) s → t

Each element is noised independently in the forward process 



Continuous-time Negative ELBO (T → ∞)

log pθ(x0) ≥ −

• Maximum likelihood = training a weighted ensemble of BERTs
• The simplified model and training objective lead to significant performance boost

Masked Diffusion Models (multidimensional)

Bidirectional Transformer μθ

Logits μθ(xt)

Weighted CE loss

Input: ,  x0 t ∼ U[0,1]

masking w/ prob 1 − αt



Compressing Text

• Many popular diffusion LLMs are now based on masked diffusion and this objective

• Concurrent work by Sahoo et al. (2024), Ou et al. (2024) studied similar losses for language

GPT2 zero-shot language modeling tasks OpenWebText validation set

Ou et al. (2024). Your absorbing discrete diffusion secretly models the conditional distributions of clean data.

Sahoo et al. (2024). Simple and effective masked diffusion language models. 



Compressing Image (Pixels)
CIFAR-10

2.6

3.1

3.6

4.1

4.6

D3PM Absorb
D3PM Gauss
tauLDR (36M)
MD4 (28M)
AR (59M)

Discrete diffusion

ImageNet 64x64

3.38

3.43

3.48

3.53

3.58

Gated PixelCNN
Sparse Transf.
Routing Transf.
Perceiver AR (770M)

MD4 (200M)
VDM

C
ont. diffusion

AR D
iscrete diffusion
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er

 D
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si

on

• Beating same-size AR & comparable with strong cont. diffusion such as VDM
• SoTA masked image models (MaskGIT/MAR) are non-likelihood-weighted MDMs



Faster Generation via Parallel Sampling

• Algorithm: Ancestral sampling from discrete-time reverse process

• Significant latency reduction, which has been validated by industry deployment (Google, Bytedance)

• Many details (e.g., schedules, JAX numerics, diversity/quality tradeoff) to get right in order to produce 
coherent samples with parallel sampling



Importance of Schedules

• The masking schedule controls the the quantity of simultaneously predicted tokens.

• The cosine schedule that gradually increases parallel predictions works best.

• For linear schedule, using the cosine grid has the same effect: 



Any-Order Generation

skydiving is a fun sport, but it’s extremely 
risky. You can have so many injuries one time 
and then one next time. There are so many 
ways you can hurt, so, neuroconcussions, 
especially from Skydiving, are continuing to 
rise every year

skydiving is a fun sport, but it’s pretty risky. 
You’re getting is one to get last one for the 
season if something goes wrong and it can 
happen you know, we know about season, 
especially in Skydiving, but anybody that wins 
this year

MD4-M linear 
schedule

MD4-M cosine 
schedule

Then some time on Saturday you should pretty 
much say: "This is what I am going to be doing 
right now." It's just the simplest thing—that is 
why I always shampoo twice a day and shower 
three times a day.

Though antibacterial products are a poison, the 
skin needs a chemical solution that protects it 
from bacteria and spots that form within it —that 
is why I always shampoo twice a day and 
shower three times a day.

Conditional text generation



Advanced Topics

Campbell et al. (2022). A continuous time framework for discrete denoising models.

Hoogeboom et al. (2021). Autoregressive diffusion models. 

Lou et al. (2023). Discrete diffusion modeling by estimating the ratios of the data distribution.

Amin et al. (2025). Why Masking Diffusion Works: Condition on the Jump Schedule for Improved Discrete Diffusion. 

Zhao et al. (2024). Informed correctors for discrete diffusion models. 

Wang et al. (2025). Remasking discrete diffusion models with inference-time scaling. 

Arriola et al. (2025). Block diffusion: Interpolating between autoregressive and diffusion language models.  

Kim et al. (2025). Any-Order Flexible Length Masked Diffusion. 

• Continuous-time Markov chain (CTMC) representation and transition rates
• Equivalence between cont. time masked diffusion models and any-order AR models
• Discrete “score function” and score parameterization
• Connection between uniform diffusion and masked diffusion (why mask works better?)
• Predictor-corrector sampling for discrete diffusion, remasking
• Hybrid autoregressive + discrete diffusion models
• Variable-length generation
• …

An active area of research!



Thanks



Score v.s. Mean Parameterization

Proposition 1. The discrete score  for  and  can be expressed ass(xt, t)j =
qt( j)
qt(xt)

xt = m j ≠ m

s(m, t)j =
αt

1 − αt
𝔼[x0 |xt = m]⊤ej

Implications

• True score satisfies the constraint 

• Score parameterization breaks this and leads to inconsistency between forward & reverse processes

∑j≠m s(m, t)j =
αt

1 − αt

See also concurrent work based on this (Ou et al, 2024)

sθ(m, t)j =
αt

1 − αt
μθ(m, t)j

mean parameterization fixes 
the problem

Shi et al. (2025). Simplified and Generalized Masked Diffusion for Discrete Data. 



Relation to Score Entropy Loss

Plugging in the mean parameterization

sθ(m, t)j =
αt

1 − αt
μθ(m, t)j

Score Entropy loss (Lou et al., 2024; Benton et al., 2024):

ℒsθ
= ∫

1

0
𝔼qt|0(k|x0)[∑

j≠k

Q(t)jk(sθ(k, t)j −
qt|0( j |x0)
qt|0(k |x0)

log sθ(k, t)j + ψ(
qt|0( j |x0)
qt|0(k |x0) ))]dt

recovers the MD4 objective.



MD4 as Parallel Any-Order AR Models
xσ(1)

xσ(2)

xσ(3)

xσ(1)

xσ(2)

xσ(3)
xσ(4)

xσ(5)xσ(6)
xσ(7)

t

xσ(4)

P(τ(n) ≤ t) = P(x(n)
t = m) = 1 − αt

τ(σ(1))

τ(σ(2))

τ(σ(3))
τ(σ(4))

CDF of the jump times:

A new dimension of freedom in AO-ARMs

• Masking schedules control parallel 
sampling bandwidth

Uria, B. et al. (2014). A deep and tractable density estimator. 

Hoogeboom et al. (2021). Autoregressive diffusion models.



MD4 as Parallel Any-Order AR Models
xσ(1)

xσ(2)

xσ(3)
xσ(4)

xσ(5)xσ(6)
xσ(7)

P(τ(n) ≤ t) = P(x(n)
t = m) = 1 − αt

CDF of the jump times:

A new dimension of freedom in AO-ARMs

• Masking schedules control parallel 
sampling bandwidth

Uria, B. et al. (2014). A deep and tractable density estimator. 

Hoogeboom et al. (2021). Autoregressive diffusion models.

xσ(1)

xσ(2)

xσ(3)

t

xσ(4)

τ(σ(1))

τ(σ(2))

τ(σ(3))
τ(σ(4))


