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Autoregressive (AR) Models for Discrete Data

Decompose the joint distribution into conditional distributions following a specified order.
p(xy, Xg, - Xg) = pxp(xy | xp)=+p(Xg | X1, X, -, X5)
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Why Diffusion Models for Discrete Data

« Generating discrete data with parallel sampling
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Why Diffusion Models for Discrete Data

+ Generating discrete data with parallel sampling

+ AR models require imposing an ordering which may be unnatural for many data types
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https://www.minecraft.net/en-us/article/build-your-very-own-custom-mobs
Shi, Juntong, et (2025). TabDiff: a mixed-type diffusion model for tabular data generation



Why Discrete Diffusion Models

« Generating discrete data with parallel sampling

« AR models require imposing an ordering which may be unnatural for many data types

« Continuous diffusion is not great for discrete data

Cont. Diffusion vs. AR
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Gulrajani & Hashimoto (2024). Likelihood-based diffusion language models.



Recap: Diffusion Models

Forward SDE (data — noise)

x(0) dx = f(x, t)dt + g(t)dw

écré fnci; “
dx = [f(x,t) — ¢° (t)&x log p; (x)]] dt + g(t)dw

Reverse SDE (noise — data)

Song et al., (2020). Score-based generative modeling through stochastic differential equations.



Discrete Noising Processes

Uniform diffusion

Data A,A,A,B, B, B, C,C,C
A,A A, D, B, B, C, C,C
AA A KB, L, N,C, C

D,E, O, P F X K, A, C
D, N, O, P F, X, B, A, N
Noise ¥ D, N, O,S, F, X, K, A, N

Masked diffusion

A,A,A,B,B,B,C,C,C
A AR B B B, CCC
A7 A7 l) B7 B7 B7 C7 .7 C

AARBBREBEC
A7 l? l? B? I7 I? I7 I? C
'FNNNRRRN

B is 2 special mask token

It is empirically observed that masked diffusion generally works better than uniform diffusion in discrete

generative modeling.



Discrete-time Markov Chains

- Xy: Clean data, x;: noise. Finite state space of size M.
- Each (forward) transition follows the distribution g(x;|x;_;) = Cat(x;; O’ x;_,)

- O, is called the transition matrix: [Q;]; = q(x; = k|x,_; =)

M xM M+1DXM+1)
(1 —p+pIM  BIM pIM ] 1-p 0 - 0 B]
uniform pilM 1 =g+ pIM - pilM 0 1-p - 0 B
e = : : BIM omsk = | . .0 g
M M = ppM| 0 0 -~ 1-p 4
0 0 0 1
/} — _

(1 =Bl + M"HT (1 =B+ pley,



Discrete-time Markov Chains

+ Product of transition matrices is transition matrix
q(x; | xp) = le q(xy | x)q(x; | xp) = Cat(xy; (Q1Q2)Txo)
- Marginal distribution at step i:
q(x;| x,) = Cat(x; O/ x,), where O, = 0,0, 0,
- Take the masked diffusion as an example:
0, = (1 -pDI+ ple,,
Qz ={-pDA=pI+ (1 - (1 - p)1 _ﬁz))le;l

0, = ﬂ(l —ﬁj)-I: (1 _ ﬁ(l —/3j)>1eAT4 0, = al + (1 — a)le]
j=1




Discrete-time Model

- We learn a reverse generative model (decoder) p to approximate g:

p(XO:T) = P(Xo | X1)P(x1 |x2)"‘P(XT_1 |XT)
* Recall the diffusion model ELBO

T

log p(x) = By, ixy) llog p(xolxy) — KL(g(xr| xp)|[p(xr)) — Z KL(gq(x;_y [ X Xp)[Ip(x;—1 | %))
i=2
- q(x;,_; | x;, x5) can be computed analytically via Bayes’ rule

q(x; | x;i_1)g(x;_1 | x0) 0ix; 0 0/ 1xg >

Q(x'—l |-x" xO) = = Cat<x-,
l l q(x; |x0) l XoT 0,x;

p(x;_ |xi) 2 q(x;_; |Xi> Ho(X,))



From Discrete-time to Continuous-time

Data o @ o NOise

- We divide time between [0,1] into T intervals: s(i) = (i — 1)/T, t(i) =i/T
- Transition matrix Q;: [Q;1; = q(x,;) = k| x4y =J)
- Example (masked diffusion):
0;=[]Q=al+1-a)e), wherea,=]]1-5)
j=1 J=1

and T — oo (cont. time limit)

p(i))
T

t
0() 2 1im 0= a,l + (1~ a)lej,, where a 2 exp( - J ,B(s)ds)
—> 0 O



From Discrete-time to Continuous-time

- The marginal distribution at time #:

_ Clean Masked
q(x,|xy) = Cat(x,; Q(t)TxO) = Cat(x,; a,xy + (1 — a,)ey,)
Qat
1.01 —— linear . .
: Masking schedule a;: The probability
geometric ) :
o — cosine of being unmasked at time ¢
' —— poly?2
—— poly0.5

0.0-

0.00 025 050 0.75 1.00
t

. Assume the transition distribution from time s to time 7 is g(x, | x,) = Cat(x,; O(s, t)sz)
. Recall that transition matrix satisfies Q(¢) = O(s)O(s, £), we can solve for O(s, 1):
_ A A O a, -
O(s,0) = 0(s)” Q@) = ;I +(1——)1ey
S

s
Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data.



Continuous-time Model

- True reverse transition (knowing x):

X | X X | X — _
o [ 2 WG R 9T, where Rer.s) = T+

q (x| xp) l —a

Ay — &

.
ep(Xo — €yr)

* or equivalently:

Cat(x,; x,) X, #F ey
q(‘xsl'xt’ XO) = . 1 — O o — o
Cat X 1T{){teM + Tatxo X, = €y

N—

- True reverse (unknown Xx): g(x,|x,) = ZXO q(x,|x,, x0)g(xg | x,) = q(x, | x,,[E[x | x,]

- Reverse model: py(x, | x,) £ q(x, | x{uy(x,, t)l).

Denoiser: Mean Parameterization

Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data.



Continuous-time ELBO

g
- Start with the discrete-time ELBO > %E

log p(xp) = [Eq(xl:Tlxo)[log pxy |'xt(1))] — KL(g X7y |x0)||p(xt(T))) - Z [Eq(x,(i)|x0) [KL(C] (X5 |-xt(i)’ xo)“P(xs(i) |xt(i)))]
i=2

- For masked diffusion, KL(q(x, 7, | xp)llp(x,7))) = 0 as both are delta mass at mask state

a,—a
KL(q0x; % %)l (x| 6)) = = —— a’éx - Xg 10g pp(x,, 1)
- Uy

1 a/

E el * Xo ) 1og pg(x;iy, 1(0))] = ‘ 1 —ta
0 '

lim & =— lim Z

T—- o0 T— o0 ; — at(i)

E e ey (B, * %o 108 (X, D)]dlt

Derivation follows Shi et al. (2024). Simplified and generalized masked diffusion for discrete data.



Invariance

Optimal denoiser is time-independent (Ou et al. 2024)
- We can use py(x,, 1) = py(x,) to approximate E[x,|x,].

- Proof: Write out the form of g(x, | x,) via Bayes’ rule and observe it’s independent of «,.

ELBO is invariant to masking schedule (Shi et al. 2024)
Rewrite the ELBO as

- Proof: Define log signal-to-noise ratio (log-SNR): 4, = log

;
1 —a,



Masked Diffusion Models (multidimensional) ..

Each element is noised independently in the forward process B mask
| HEENEEEN
- am EEmEEm
data —» ... — = T —_— — EEEEEE
| | HEENEEEN
N EEEEEE
time O \_/ time s \_/ time ¢ \_/ time 1
N N
Forward process q(x, | x,) = [ [ 4™ ]x) Reverse process q(x,|x) ~ [ [ ¢(x|x) as s — 1
n=1 n=1
a; . A= X ) -
- W/ prob. —, remains unmasked i ~w/ prob. [E[xoj | x,], unmask to state j i
as - at ?
R 4 ()
Hy(x,). A
0 Y1)j = softmg
2 R X(NNH(X,))/.
1 at 1 - aS .
- w/prob. I ——, mask " “ w/ prob. , remains masked

as l—at



Masked Diffusion Models (multidimensional)

Continuous-time Negative ELBO (7' — o)

1
log pg(xp) = — /0 1= o Ba(atloo) [Zn:xgm:m (z"”) " log g™ (wt)]dt-

« Maximum likelihood = training a weighted ensemble of BERTs

/
'y

« The simplified model and training objective lead to significant performance boost
Logits p4(x,)

Bidirectional Transformer
Weighted CE loss

T masking w/ prob 1 — a,

Input: x,, ¢ ~ UJ[0,1]



Compressing Text

GPT2 zero-shot language modeling tasks OpenWebText validation set
Size Method LAMBADA  WikiText2 PTB  WikiText103 IBW Size Method Perplexity ({)
Small ~ GPT-2 (WebText)* 45.04 42.43 138.43 41.60 75.20 Small Gaussian Diffusion <27.28
D3PM <9347 <77.28 <200.82 <75.16 < 13892 SEDD Absorb (reimpl.) <24.10
Plaid < 57.28 <51.80 < 142.60 <50.86 <91.12 MD#4 (Ours) <22.13
SEDD Absorb <5092 <4184 < 114.24 <4062 <79.29 GenMD4 (Ours) < 21.80
SEDD Absorb (reimpl.) <4973 <3894 <107.54 <39.15 <7296 - —
MD4 (Ours) < 48.43 <3494 <102.26 <3590 <68.10 Medium  MD4 (Ours) < 16.64
Medium GPT-2 (WebText)* 35.66 31.80 123.14 31.39 55.72
SEDD Absorb <4277 <3104 <8712 <2998 <61.19
MD#4 (Ours) <4412 <2584 < 66.07 <2584 <5145

- Many popular diffusion LLMs are now based on masked diffusion and this objective

« Concurrent work by Sahoo et al. (2024), Ou et al. (2024) studied similar losses for language

QOu et al. (2024). Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
Sahoo et al. (2024). Simple and effective masked diffusion language models.



Compressing Image (Pixels)

CIFAR-10 ImageNet 64x64
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- Beating same-size AR & comparable with strong cont. diffusion such as VDM
« SOTA masked image models (MaskGIT/MAR) are non-likelihood-weighted MDMs



Faster Generation via Parallel Sampling

HER RIS
@ Predict

7 - -~ I
J | predict

TAe- amf. citffng- to come -
J | Predict

The emiling cat i¢ citting next to come waffles.

+ Algorithm: Ancestral sampling from discrete-time reverse process

+ Significant latency reduction, which has been validated by industry deployment (Google, Bytedance)

« Many details (e.g., schedules, JAX numerics, diversity/quality tradeoff) to get right in order to produce
coherent samples with parallel sampling



FID

Importance of Schedules
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« The masking schedule controls the the quantity of simultaneously predicted tokens.

+ The cosine schedule that gradually increases parallel predictions works best.

+ For linear schedule, using the cosine grid has the same effect:

t(i) = cos <g(1 — %))



Any-Order Generation

Conditional text generation

MD4-M linear
schedule

MD4-M cosine
schedule

skydiving is a fun sport, but it’s pretty risky.
You’re getting is one to get last one for the
season if something goes wrong and it can
happen you know, we know about season,
especially in Skydiving, but anybody that wins
this year

skydiving is a fun sport, but it’s extremely
risky. You can have so many injuries one time
and then one next time. There are so many
ways you can hurt, so, neuroconcussions,
especially from Skydiving, are continuing to
rise every year

Then some time on Saturday you should pretty
much say: "This is what | am going to be doing
right now." It's just the simplest thing—that is
why | always shampoo twice a day and shower
three times a day.

Though antibacterial products are a poison, the
skin needs a chemical solution that protects it
from bacteria and spots that form within it —that
is why | always shampoo twice a day and
shower three times a day.



Advanced TOpiCS An active area of research!

+ Continuous-time Markov chain (CTMC) representation and transition rates

+ Equivalence between cont. time masked diffusion models and any-order AR models

* Discrete “score function” and score parameterization

« Connection between uniform diffusion and masked diffusion (why mask works better?)
+ Predictor-corrector sampling for discrete diffusion, remasking

+ Hybrid autoregressive + discrete diffusion models

+ Variable-length generation

Campbell et al. (2022). A continuous time framework for discrete denoising models.

Hoogeboom et al. (2021). Autoregressive diffusion models.

Lou et al. (2023). Discrete diffusion modeling by estimating the ratios of the data distribution.

Amin et al. (2025). Why Masking Diffusion Works: Condition on the Jump Schedule for Improved Discrete Diffusion.
Zhao et al. (2024). Informed correctors for discrete diffusion models.

Wang et al. (2025). Remasking discrete diffusion models with inference-time scaling.

Arriola et al. (2025). Block diffusion: Interpolating between autoregressive and diffusion language models.

Kim et al. (2025). Any-Order Flexible Length Masked Diffusion.
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Score v.s. Mean Parameterization

” . q,J) .

Proposition 1. The discrete score s(x,, t)j =" for X, = m and j # m can be expressed as

1\ X

— % E _ T
s(m, 1); = [xo|x, = m] e

- W

See also concurrent work based on this (Ou et al, 2024) e ST 2 SIS
the problem
Implications a;
a, Sg(m, t)J — - //le(m, t)J

. True score satisfies the constraint Z]. i s(m, t)j =1 a \_ t )

+ Score parameterization breaks this and leads to inconsistency between forward & reverse processes



Relation to Score Entropy Loss

Score Entropy loss (Lou et al., 2024; Benton et al., 2024):

1 . .
B q10(J | Xo) d110(J | Xo)
gsg - [0 [Eq,|0(k|xo) l Jg]‘: Q(l)jk<59(k, t)j - m lOg Se(k, l)j + W(W) >] dt

Plugging in the mean parameterization

at

Sp(m, t)j = 1 po(m, t)j

recovers the MD4 objective.



MD4 as Parallel Any-Order AR Models

@ 7(o(1)) @
A new dimension of freedom in AO-ARMs
@ 7(6(2)) @ + Masking schedules control parallel
sampling bandwidth

7(6(3)) @ CDF of the jump times:
7(c(4)) \‘ P(T(l’l) < f) — P(xt(n) — m) =1 - a,

ittt et b | ekl el 't Skl aiuiel St Skl i

—
[ ]

Uria, B. et al. (2014). A deep and tractable density estimator.
Hoogeboom et al. (2021). Autoregressive diffusion models.



MD4 as Parallel Any-Order AR Models

ittt et b | ekl el 't Skl aiuiel St Skl i

—

2(o(1)) @
2(6(2)) @
7(6(3))
(0(4))

A new dimension of freedom in AO-ARMs

« Masking schedules control parallel
sampling bandwidth

CDF of the jump times:
P(z(n) <) = Px™ =m)=1-aq,

Uria, B. et al. (2014). A deep and tractable density estimator.
Hoogeboom et al. (2021). Autoregressive diffusion models.



