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Abstract: The new age of network-based computing, known as "cloud 

computing," is characterized by the distribution and sharing of resources over 

a network. These resources are available to anyone through the Internet on a 

pay-per-use basis. Any service that anybody uses can generate massive 

amounts of data. Therefore, in this scenario, there will be a significant cost 

associated with transferring data between two dependent resources. 

Furthermore, if not planned optimally, the overall cost of executing a 

complicated program could rise due to the application's high number of tasks. 

An effective allocation method is required to satisfy the ever-increasing 

demands for resources. Cloud computing has been the focus of extensive 

research. Present methods aim aiming dynamic resource allocation but are not 

cost-effective. In light of these issues, this article proposes a heuristic 

scheduling technique “Enhanced Cat Swarm Optimization” ECSO method to 

distribute application tasks among available resources, based on Cat Swarm 

Optimisation (CSO). The foraging nature of cats has served as inspiration for 

several resource allocations, one of which is Cat Swarm Optimisation (CSO). 

The proposed novel approach ECSO offers a modification to CSO that adds a 

crossover mechanism (Uniform crossover) to minimize the total execution 

cost. To find the optimal solution, the proposed ECSO method takes into 

account the cost of data transmission between dependent resources as well as 

the cost of job execution on different resources. The ECSO method is tested 

with a made-up workflow and evaluates how well it performs in comparison 

to the state-of-the-art CSO, PSO, and BCO algorithms for scheduling tasks. 

The experimental findings demonstrate that the proposed ECSO provides a 

total cost-minimizing task to resources. The ECSO outperformed existing 

CSOs, PSOs, and BCOs concerning total execution time of 8% lower and 

execution cost of 4% less. It also guarantees that the available resources are 

fairly distributed. 

 

Keywords: Cloud Computing, Resource Allocation, Swarm Optimization, 

Uniform Crossover, Total Execution Cost 
 

Introduction 

The latest computing technology, cloud computing, 

offers secure, pay-per-use environments. According to 

Rajkumar et al. (2009), cloud computing saves 

organizations money by using virtual resources instead of 

physical servers and equipment. Cloud computing 

transforms into a more effective system for computing 

resources through the provision of multilevel abstraction 

and a succession of virtualization layers. Users can 

expand or decrease the amount of services available 

through the elastic scale-up and scale-down properties of 

cloud services. The fundamental concept is to store 

information, assets, and services in an abstract form on the 

Internet. The resources, both software and hardware, are 

available to users upon demand based on their present 

needs, whereas the supplier organizations distribute them 

based on their current availability. 
Many sectors of society, including governance, business, 

and the economy, have been impacted by cloud computing 

in recent years. As a form of parallel and distributed 

computing, "the cloud" refers to a network of interconnected 

remote servers that can store and process data centrally and 

provide users with online access to various IT services and 

resources (Pragati et al., 2017). One way to lower software 

expenses is by using cloud computing, where the customer 
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leases resources instead of buying them (Sreeram et al., 

2021). Cloud computing also offers on-demand services; 

which customers can access from anywhere. By leveraging 

the resources of remote computers, cloud computing 
eliminates the need to store and retrieve data from a single 

location (Kesavaraja and Shenbagavalli, 2018). Clients rely 

on cloud services instead of maintaining their infrastructure, 

which frees consumers from having to understand the 

internal operations of the network (Zeebaree et al., 2020). 

Software as a Service (SaaS), Infrastructure as a Service 

(IaaS), and Platform as a Service (PaaS) are the three ways 

in which virtualized computer resources can be provided to 

clients (Salah Farrag et al., 2015). 

The services are illustrated in Fig. (1). Infrastructure as a 

Service (IaaS) is in the role of providing virtualized compute 

resources, such as memory, CPU, servers, storage, and more, 

as a service. Some instances of infrastructure as a service are 

AWS, Google Cloud platform, Apple iCloud, Google Drive, 

and Google Compute Engine (Meduri et al., 2023). Platform 

as a Service (PaaS) offers services such as operating systems 

and software development frameworks. One example of a 

PaaS platform is Google App Engine, which allows 

programmers to build, test, run, and manage apps 

(Ahmed and Wafaa, 2017). Software as a Service (SaaS) 

eliminates the need for customers to download, install, and 

execute applications on their computers; instead, the user 

simply accesses the application's interface. Google Apps, 

Cisco WebEx, and Salesforce are some instances of software 

as a service (Naji et al., 2020). When it comes to the demand 

forecast schedule, the Application Service Providers check 

in on the rental services at regular intervals, decide how to 

best allocate goals and resources, and save money by not 

paying for unnecessary calculations, storage, or data 

transfers (Zebari et al., 2020). Also, instead of demanding 

complicated bids, resource distribution should be 

proportional to decentralization (Sadeeq et al., 2018). This is 

because providers, reliant on their resources, may add further 

complexity by providing services of different kinds or a 

combination of different types. Multiple customers can 

compete for similar resources because suppliers require 

submissions from suppliers, consumers submit to customers, 

and relevant resources are accessible from various sources 

(Mostafa et al., 2020). When most individuals think about 

cloud computing, they probably envision issues with data 

security, power, service availability, managing memory 

expansion, and job planning. 

Cloud computing research, on the other hand, tends 

to center on planning tasks. To make the most of 

everything that the cloud has to offer, many tasks 

require lightning-fast processing speeds, minimal 

latency, and ample resources. The various roles played 

by the allocation plan make it imperative that tasks be 

assigned appropriately. 

 
 
Fig. 1: Services of cloud 

 

There are two primary objectives for the cloud 

database provider: (1) Satisfying the client's SLAs and (2) 

Increasing their profit margin. The service provider's 

ability to accomplish these objectives is dependent on 

their resource management skills. In order to keep up with 

competing requests, the service provider needs to wisely 

distribute scarce resources like CPU and memory. Some 

additional resources, however, do not have a hard cap but 

do come with a price. As an example, consider database 
replication. When you expand your database's replicas, 

you'll incur costs for both the initial setup (like adding 

more nodes) and ongoing operations (like 

synchronization). In addition, companies are using a 

variety of resources to enhance their services further, with 

the hope that more clients will subscribe to cloud 

computing (Zaki and Saad, 2018). Therefore, SLA and 

resource allocation (Saleh et al., 2018), which indicate the 

amount of customer contentment, are among the most 

critical elements that impact service quality. 

This study concentrates on scheduling algorithms to 
check for availability and allocate resources accordingly. 

There will always be a need for an improved resource 

scheduling algorithm due to the modern trend of ever-

increasing resource demands. Heuristic swarm 

optimization has been the most widely used algorithm for 

solving the aforementioned problem, and it initially 

produced outstanding results. The key contribution of this 

article is to address resource constraints in the cloud. 

Many researchers suggest scheduling user tasks using the 

advanced cat optimization algorithm. 

Related Work 

A significant amount of resources is needed by the data 

center "cloud providers" are independent third parties that 

oversee and manage the supply of computing resources, 

such as hardware, software, and platforms, to users on 

demand. Adapting your strategy for resource allocation to 
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meet the varying demands of your clients can be quite a 

challenge. As a result, many researchers have investigated 

cloud resource allocation through the use of different 

scheduling algorithms, resource allocation strategies, RAS, 
and VM allocation methods. With the hope of enhancing 

network performance by making use of cloud resources. 

Virtualization was suggested by Tenepalli and Appini 

(2014) as a means to offer active cloud resource 

allocation. By moving Virtual Machines (VMs) from a 

busy server (the "hot spot") to an idle one (the "cold 

spot"), the offered method allows for the efficient 

distribution of numerous virtual resources. They 

calculated server resource utilization using the 

"skewness" approach, which allows them to anticipate 

future resource needs by looking at usage logs of 
previously used resources. By combining green 

computing with dynamic resource allocation, this method 

can conserve server energy by reducing wasteful server 

consumption and optimizing burdens to meet virtual 

machine needs regarding server capacity. 

Methods for allocating central processing units and 

network resources in shared hosting environments are 

presented by Urgaonkar et al. (2002). A linear system 

under control and offline parameter identification were 

the underlying assumptions of most of the earlier 

investigations (Gandhi et al., 2002). For different types of 

requests, Lu et al. dynamically change the cache size 

(Ying et al., 2004). The DBMIN technique, developed by 

Hong-Tai and David (1998). is used to control the amount 

of data stored in a relational database's buffer pool (Chou 

and David). It makes sense to undertake dynamic power 

allocation if we think of power as just another resource in 

the system. Energy and server resource management in 

data centers is crucial, according to Jeffrey et al. (2001). 

In addition, regulates power consumption and 

application-level performance (Xu et al., 2010). To 

improve the workflow's execution time, Gurmeet Singh 

and others suggest a task grouping approach. Reducing 

some of the time spent waiting in queue is how it's done 

(Singh et al., 2008). Another approach to dynamically 

scheduling several workflows is a planner-guided 

strategy. With the suggested method, performance 

improves with increasing numbers of concurrent 

workflows by dynamically scheduling each task in each 

workflow (Navjot et al., 2011). The inflexibility of above 

above-discussed scheduled algorithms and the effort 

required to arrange and develop a timeline are two major 

pitfalls. In contrast to heuristic approaches, which focus 

on a single answer, genetic algorithms consider a 

population of options while making decisions, making 

them ideal for production scheduling challenges. To 

optimize Quality of Service (QoS), deadline, and budget, 

a straightforward Genetic Algorithm (GA) is suggested. 

This method discovers the ideal solution in polynomial 

time. To discover the best solution, this algorithm uses 

a heterogeneous and reservation-based service-

oriented setup (Yu and Buyya, 2006). 
Many studies have investigated the possibility of using 

swarm intelligence to allocate cloud computing resources. 

Particle Swarm Optimisation (PSO) (Sreeram et al., 2021) 

is the most studied and long-standing swarm algorithm; it 
takes its cues from the way fish and birds forage. Artificial 

life and swarming theory are identified as the two 

theoretical foundations around which PSO was built. 

The Ant Colony Optimisation Algorithm (Warneke and 

Kao, 2011) is another algorithm that takes inspiration 

from ant behavior, specifically their biological foraging 

strategy of leaving pheromones behind to guide future ant 

colonies. Cloud load balancing using Ant Colony 

Optimisation (ACO) was suggested by Basha et al. (2017) 

as an elastic and dynamic approach. In the bio-enthused 

technique, which was suggested, the artificial algorithm is 

trained to mimic the behavior of biological ants by adding 

and removing certain characteristics. Ants utilize trail 

pheromones to mark the journey from food sources to 

their nests while they look for food. Ants locate 

pheromone trails when they forage, and they adhere to the 

ones that have the greatest concentration of pheromone 

deposits (the shortest path). 

Optimization of Bee Colonies (BCO) (Son et al., 

2013) is another methodology taken into consideration. 

An artificial colony of bees has also been defined using an 

algorithm as a multi-agent system. Research into the 

reasoning behind honeybees' nectar harvesting technique 

formed the basis of this theory. The different NPC 

challenges are effectively addressed by a Bee Colony 

Optimization (BCO) method that is suggested for simple 

application task/job scheduling. To decrease the time, it 

takes to complete a work or task, this method strives for a 

fair distribution of the load across the dispersed resources. 

According to the experimental findings of this suggested 

strategy, BCO outperforms GA in terms of the time it 

takes to complete tasks (Bitam, 2012). 
An activity-based scheduling technique is suggested 

for tasks that take into consideration a collection of 

resources that are going to be used (Qi et al., 2009). 

Workload distribution and job scheduling are addressed 

using a Multiple Ant Colony Optimization algorithm 

(MACO). The basic premise is that ant colonies can 

discover the optimal value in the search space on a global 

scale by exchanging information about their best values. 
Cooperation between them allows for the faster resolution 

of an issue with many objectives. Performance is higher 

compared to FCFS and ACS methods in the experiments 

(Liang et al., 2010). 

The scientific process scheduling in the cloud can be 

improved with the help of a particle swarm optimization 

technique. The goal of the author is to ensure that all 
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resources are evenly distributed and that the overall cost of 

workflow calculation is minimized. The basic idea is that a 

group of particles (the population in PSO) will begin to seek 

the solution space, and as they do so, they will be influenced 
by each other to find the optimal position. Particle velocities 

and states are optimized at the local level in each iteration to 

reach the global optimal point. In comparison to the state-of-

the-art Best Resources Selection (BRS) algorithm, this 

algorithm demonstrates superior performance. A discrete 

PSO is an improved version of the basic PSO that achieves 

better results concerning the makespan and cost optimization 

ratio (Wu et al., 2010). When compared to PSO, GA, ACO, 

BCO, etc. all fall short in terms of makespan. This is because 

PSO converges among swarm algorithms at a good pace and 

reaches the local optima at a far faster rate than evolutionary 
algorithms. When the application size is huge, iteratively 

obtaining the optimal answers becomes more of a hassle with 

PSO and all other methods. 

The authors propose using CSO to schedule workflow 

tasks as a solution. While CSO is quite similar to basic PSO, 

it differs in a few key ways that make it superior. People who 

are CSOs can switch between two states: Seeking and 

tracing. When cats are in searching mode, they do not move 

at all. Only the next best position is their goal. However, 

when in tracking mode, they swiftly go to the next optimal 

place. In other words, not every cat is hopping around in 

solution space simultaneously. They can discover the 
optimal next position with relative ease due to the searching 

mode, which decreases the number of repetitions necessary 

to get a solution (Chu and Tsai, 2007). 

Pei-Wei et al. (2008) created the Parallel Cat Swarm 

Optimisation (PCSO) Algorithm after the standard CSO was 

introduced; it enhanced the convergence speed of CSO for 

tiny population sizes. Binary optimization of CSO (BCSO), 
first proposed by Sharafi et al. (2013), was applied to various 

benchmark optimization tasks and the zero-one knapsack 

issue. It was determined that this method outperformed 

competing binary optimization techniques. To improve the 

algorithm's searching mode step, an alternate method is to 

employ different chaotic maps. The best options were 

logistic and sinusoidal maps. Sharafi et al. (2013) came up 

with this and termed it the Chaotic Cat Swarm Algorithm 

(CCSA). Beyond that, the Harmonious-CSO (HCSO) was 

introduced by Kuan et al. (2014). This approach modified the 

searching mode formula by including the idea of the 
Hirschberg-Sinclair algorithm. The algorithm's performance 

was verified using a Support Vector Machine (SVM), which 

outperformed CSO in the experimental findings. Wang 

(2015) significantly improved CSO by dynamically 

modifying the parameter Mixture Ratio (MR). 

The incorporation of crossover approaches is one way 

that swarm optimization algorithms have been enhanced to 

produce better outcomes. The enhanced technique was 

suggested by Sharma et al. (2018) who enhanced the Particle 

Swarm Optimisation Algorithm by adding a crossover 

operator. A comprehensive overview of the several genetic 

algorithm crossover operators was given by Padmavathi and 
Priyanka (2017). 

The summary of the survey carried out is presented in the 
below Table (1). 

 
Table 1: Analysis of existing literature 

Ref Author Approach Strength Weakness Scope in Proposed 

Method 

Urgaonkar et al., 

2002 

Urgaonkar et al.  This experiment  

assumed a linear 

system under  

control and offline 

parameter 

identification 

Depends on  

topological  

changes  

Difficult to  

identify offline  

parameters  

Task sequencing 

Sharma et al., 2018 Sharma et al.  Enhanced 

particle swarm 

optimization 

(PSO)  

Incorporated  

crossover  

operator to 

particle  

swarm  

optimisation  

algorithm 

Genetic 

algorithm 

Crossover operator 

to decide the optimal 

solution 

Jeffrey et al., 2001 Jeffrey et al. Dynamic power 

allocation  

Energy  

efficiency  

Virtual machine  

allocation is not  

done according to 

the requirement  

Dynamically 

allocating the  

resources 

Basha et al., 2017  Basha et al. Ant Colony  

Optimisation 

(ACO)  

Elastic and 

dynamic 

approach 

Not optimal Chose shortest path 

Son et al., 2013 Son et al.   Optimization of 
Bee Colonies 

(BCO)  

Nectar 
harvesting 

technique 

Exceeds 
deadlines in 

some cases 

Strives for a fair 
distribution of the 

load across the 

dispersed resources 

Pei-Wei et al., 2008 Pei-Wei et al.  Parallel Cat Swarm  

Optimisation  

(PCSO) algorithm 

Enhanced the 

convergence 

speed of CSO 

for tiny 

population 

sizes 

More  

execution  

time 

Extension to the Cat 

Swarm 

Optimisation 

(CSO) 
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This study aims to create a system for dynamically 

allocating resources and scheduling tasks using cat swarm 

optimization. To maximize throughput while minimizing 

predicted total make span through optimum scheduling 
using cat swarm intelligence. 

Background 

In 1995, PSO was initially presented by Kennedy and 

Eberhart (1995). For non-linear function optimization, they 

offer PSO, a population-based stochastic optimization 

heuristic algorithm. Several social models were simulated to 

produce it. A swarm is an association of many particles. 

While PSO is comparable to the Genetic Algorithm (GA), it 

differs in a few key respects, such as the absence of mutation 
and crossover operators. PSO's low convergence rate and 

ability to swiftly achieve local optimal solutions have made 

it a popular choice for optimization problems in several 

domains. A worldwide optimal solution can thus be found in 

less time (Gil et al., 2007). 

One optimization strategy that uses PSO, a soft 

computing methodology, is to improve its local candidate 

solutions about the fitness function in each iteration until 

it finds the global best solution. Every one of the particles 

that make up the PSO population has its unique speed and 

location in the solution space/search space. To discover the 
best possible solution in the search space, the social behavior 

of the particles affects their relative positions and velocities. 

On the other hand, chu and Tsai's Cat Swarm 
Optimisation (CSO) technique is more efficient in 
computing terms (Sharma et al., 2018). A sort of swarm 

intelligence optimization algorithm, it takes its cues from 
the way cats hunt for food, as the name implies. The 
majority of cats are in seeking mode, where they look for 
the best nearby prey, while the minority are in tracing 
mode, where they follow their prey. After the seeking 
mode ends, the normal CSO algorithm disregards other 
cats and immediately selects potential prey for tracing. 
The present second-best cat, however, has the potential to 
surpass all others and become the best in the future. 
Consequently, this study introduces Assorted Cat Swarm 
Optimisation (ACSO), a variant of CSO that integrates the 
aforementioned improvements. A new heuristic algorithm 

for optimization called "cat swarm optimization" takes its 
cues from the cooperative nature of feline social networks. 
The idea of CSO was born out of studying two feline 
behaviours: Seeking and tracing. So, seeking mode and 
tracing mode are the two components of CSO. The trials 
and results demonstrate that CSO outperforms PSO with 
a weighting factor in terms of performance and results. 
However, in general, PSO with a weighting factor exhibits 
greater performance than plain PSO. The authors centered 
their attention on PSO and CSO to minimize total cost and 
improve performance. Both PSO and CSO were used to 
obtain the minimal cost as an optimized mapping 

technique, but CSO was found to achieve the outcome in 
the fewest iterations, which was the authors' goal. 

Further, in this article, Cat swarm optimization is 

extended with crossover operators to select the best optimal 

solution for resource allocation and task scheduling. This 

article presents Enhanced Cat Swarm Optimization ECSO, a 
novel approach based on cat swarm intelligence and the 

adoption of crossover operators for choosing the best optimal 

solution for task and resource scheduling. 

This study's primary goals are as follows: (A) To offer 

an ECSO workflow scheduling that provides an optimal 

scheduling method. (B) While scheduling workflows, the 

suggested algorithm is contrasted with existing CSO, 

PSO, and BCO algorithms. (C) The analysis of resource 

load balancing is performed. 

Motivation 

The significance of cloud computing is growing at an 
exponential rate, making it evident that it is the most 

recent and greatest technology. Cloud computing has 
been, or is rapidly becoming, an integral part of any 
company's operations. 

Given the heavy usage, keeping the computation as 
rapid and effective as possible is of the utmost 
importance. To do this, one must determine the optimal 
order in which to distribute the jobs to the available virtual 
machines. Although numerous swarm intelligence 
algorithms can handle this, they fail to take into account a 
significant factor. In several cases, the solution or order 
task allocation to Virtual Machines (VMs) that seems to 
be the worst option at the moment ends up being the best 
option. However, the swarm intelligence algorithm only 
took the best ones into account for further processing. 
This led researchers to conclude that a better final solution 
can be achieved by combining the best and second-best 
options. As one of the latest and most effective swarm 
intelligence algorithms, this method was considered and 
integrated into CSO to establish a sequence for allocating 
cloud computing resources. 

Biological Basis 

The instincts of cats to seek out and gather prey are the 

inspiration for CSO. At its core, CSO is based on cat swarm 

intelligence, which describes how swarms of cats 

communicate with one another and their surroundings. 
During their foraging activities, cats are seen either actively 

seeking out prey or tracking its scent. While working on the 

CSO algorithm, Chu and Tsai came up with these phrases. 

Chu and Tsai presented Cat Swarm Optimisation (CSO), a 

novel swarm-based adaptive method, in 2007. The social 

behavior of cats serves as an inspiration for it. 
There are two distinct behavioural states that cats can 

go into (1) Seeking and (2) Tracing. 

Seeking mode: Although cats spend much of their time 
lounging around, they are quite alert and are always 

looking for food. We call this "seeking mode." They don't 
have speed, only state, because they simply remain in one 

place and sense the best course of action. 
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Tracing mode: As soon as it spots its prey, the cat goes 

into tracking mode to get after it. In tracing mode, cats 

behave similarly to hunters by swiftly repositioning 

themselves to be in the best possible position. 

Materials and Methods 

It is always a vital and challenging effort to represent 

and schedule all the processes in a data-intensive 

application workflow. As previously mentioned, the data 

generated by these intensive applications is quite vast. 

Consequently, processing and transferring this data across 

jobs will incur a substantial cost. As a result, the authors 

have narrowed in on these hefty expenses and are working 

to reduce them while simultaneously improving 

performance compared to the current CSO in terms of 

iterations. Figure (2) shows a sample workflow that was 

taken for experiments. It consists of 9 jobs that need to be 

scheduled onto these 4 resources. It is assumed that the 

magnitude of the data flow between Ti and Tj, represented 

by 𝑑𝑖, 𝑗, remains constant for all activities. 

The authors of this study provide a customized 

algorithm that, using the CSO concept as its foundation, 

seeks to minimize the overall cost of task execution in a 

cloud environment by allocating resources efficiently. An 

initial population of N cats is used by the proposed 

method; while some of these cats are actively searching, 

others are more focused on tracing their prey, according 

to MR. Depending on the mode a cat is in, a task-resource 

mapping may be updated. By evaluating the cats' fitness 

level, determine the least expensive mapping can be 

determined. Every time around, a new set of cats are 

picked to use as our trading partners. As a result of 

maximizing efficiency, the optimal solution represented 

by the best cat position provides the lowest-cost mapping 

possible. The present second-best cat may eventually 

surpass and become the best of its kind, as stated 

aforementioned. As a result, the suggested method is an 

adaptation of CSO that finally gives due consideration to 

the second-best cat. Seeking and tracing are the two main 

models that contain the whole algorithm. Additionally, 

the standard CSO incorporates the suggested 

adjustment of several crossovers. The entire process is 

depicted in Fig. (3). 
 

 
 
Fig. 2: Sample workflow 

 
 
Fig. 3: Proposed method process flow initial steps 
 

The proposed method ECSO can be explained as: 
 
1. Allocate the VMs to the tasks that are waiting 

randomly 

2. Divide the tasks into waiting and executing classes 

3. Calculate the cost of VMs for present allocation. This 

will be the first best optimal allocation 

4. Calculate the cost of VMs for task allocation which 

are in waiting. This could be the second-best optimal 

allocation 

5. Then apply a uniform crossover operator on the first 

and second best solutions to get the final best 
solution 

6. Accordingly, apply the best solution for the 

allocation of tasks to the VMs 
 
Initial Steps 

The whole process is performed on a single data center 

with numerous hosts, each with multiple Virtual 

Machines (VMs) (i.e. 4 in our example). One 

representation of an m-dimensional solution is a cat. For 

a cat, each dimension reflects its coordinate value. In 
cloud computing, the cat represents a solution vector with 

a length equal to the number of jobs (i.e., 10 in our 

example). The vector indexes indicate tasks, with the 

value at each index indicating the VM allocated to that 

job. Tasks are completed on the assigned VM. If two jobs 

share the same VM, they are executed sequentially. The 

lower-indexed job is given the Virtual Machine (VM) first 

because it is considered to have arrived earlier. Taking 

into account the burst time of each task in this sequence 

allows us to estimate the entire execution time. 

Initially, the quantity of cats is manually set. A 
manually chosen value is used to begin the process of 

determining the total number of cats. In other words, it 
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serves as a representation of the solution size space, which 

is the number of possible solutions. By the nature of cats 

that was stated earlier, the solution space has been 

partitioned into two subgroups, with one subgroup 
undergoing the searching mode and the other subgroup 

executing the tracing mode for that specific iteration. This 

divide is carried out at the start of each iteration to ensure 

that every prospective solution has the opportunity to 

participate in both modes randomly. To make this 

difference, a variable known as the “Mixture Ratio (MR)” 

is utilized. The number of cats (solutions) in the tracing 

mode divided by the number of cats in the seeking mode 

is the definition of this variable. A smaller number of cats 

are in tracing mode, which represents how a single cat 

would likely spend most of its time hunting. To reduce the 
number of cats in this mode, MR is usually given a 

moderate value between 0 and 1. 

Fitness Function 

It is possible to determine the fitness value of any 

possible solution, as well as any temporary solutions 

generated during implementation, by using the fitness 

function. The extent to which the solution fits our 

situation is indicated by it. With each iteration, we have 

minimized the maximum fitness value using a 
minimization strategy. 

The fitness value in the suggested algorithm is the total 

of the execution and transfer costs. The virtual machine's 

execution cost, 𝐸𝐶𝑖, is calculated as follows: 
 
𝐸𝐶𝑖 =  𝑇𝑎𝑠𝑘𝐷𝑎𝑡𝑎𝑈𝑛𝑖𝑡𝑠𝐸𝑥𝑒𝑐𝑖 ×  𝑉𝑚𝐷𝑎𝑡𝑎𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖 (1) 
 
where, 𝑉𝑚𝐷𝑎𝑡𝑎𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖 stands for the execution cost 

per unit of data and 𝑇𝑎𝑠𝑘𝐷𝑎𝑡𝑎𝑈𝑛𝑖𝑡𝑠𝐸𝑥𝑒𝑐𝑖  is the total 

number of data units required by the task to be done on V mi. 

Vmi's transfer cost, 𝑇𝑖, can be expressed as: 
 

𝑇𝐹𝑖 = ∑ (𝐷𝑇𝑖𝑗 ×  𝑉𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗 )𝑖𝑗  (2) 

 

where, j represents each possible 𝑉𝑚 to which data can be 

sent from 𝑉 𝑚𝑖 𝑡𝑜 𝑉 𝑚𝑗. 
And, DTij represents the data units transferred from 

𝑉𝑀𝑖 𝑡𝑜 𝑉𝑀𝑗. 

𝑉𝑚𝑇𝑟𝑎𝑛𝑠𝐶𝑜𝑠𝑡𝑖, 𝑗  represents 𝑉𝑚’𝑠  transmission cost 

from 𝑉𝑀𝑖 𝑡𝑜 𝑉𝑀𝑗. 
The total cost, 𝐶𝑜𝑠𝑡𝑖, is the sum of execution 𝐸𝐶𝑖 and 

transfer costs 𝑇𝐹𝑖: 
 

𝐶𝑜𝑠𝑡𝑖 =  𝐸𝐶𝑖 +  𝑇𝐹𝑖 (3) 

 
This suggested approach ECSO incorporates the 

existing second-best solution to minimise the total cost 

that was described above. Using the minimization 

technique, the fitness value is calculated here based on the 

expenditures incurred. Results for fitness evaluations will 

be more conservative when expenses are reduced. 

Assigning jobs to different Virtual Machines (VMs) on 

the hosts in the cloud using this technique will result in 

extremely low costs, according to the final solution 

calculated after several iterations. 

Different cloud service providers offer different pricing 

strategies that can be used to estimate the cost of their 

services in advance. Consider Amazon and Gogrid, both of 

which have distinct pricing structures for various customer 

segments. The Amazon Web Services (AWS) cost calculator 

allows users in Amazon to evaluate their total service costs. 

Seeking Mode 

Most cats search the globe while resting using elegant 
position updates. The method employs two fundamental 
factors: CDC and SMP. SMP (seeking memory pool) 
indicates the number of copies per cat. CDC (count of 
dimension to change) determines the number of 

assignments to be modified in a single copy. This state is 
also known as the resting state. There is an initial period 
of inactivity for the cat in this state. It performs little more 
than examine its environment for threats and possible 
prey. Similarly, to get closer to the ultimate solution, the 
current seeking-mode possible solutions in the solution 
space are changed to locate the ideal next potential 
solution. Making a copy of the cat's current position (i.e., 
the configuration of virtual machine allocation to the tasks 
indicated by the indices of this possible solution) and 
slightly modifying each copy to check neighboring 
locations allows us to make this option. It is necessary to 

initialize the following parameters: 
 
 Seeking memory pool: The Seeking Memory Pool 

(SMP) is the set of all possible solutions multiplied 
by the number of copies made before choosing the 

best one. It specifies the maximum allowable 

dimensional positional change for each cat while 

copying and is called the 

 Seeking Range of the chosen Dimension (SRD): 

Specifically, the margin of error that can be used to 

adjust the index of the Virtual Machine (VM) 

assigned to each job to generate a new solution 

 Counts of Dimension to Change CDC: Every solution 

dimension remains unchanged in every iteration, 

according to the CDC (Counts of Dimension to 

Change) method. The assigned Virtual Machine 
(VM) for each job remains unchanged. Therefore, 

the number of changed dimensions is specified by 

the CDC 

 Self-Positioning Consideration (SPC): The present 

virtual machine job allocation might be taken into 

account more or less. The value of the boolean 

variable SPC dictates this choice 
 
Procedure-ESCO-Seeking Mode 

Step 1: Produce j identical copies of the i-th cat using 
SMP: 
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𝑗 =  [
𝑆𝑀𝑃 –  1 ;  𝑆𝑃𝐶 =  1 

𝑆𝑀𝑃 ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
[ (4) 

 

Step 2: Randomly change the copy CDC dimensions: 

 

𝑌 =  (1 ±  𝑆𝑅𝐷 ×  𝐾)  ×  𝑋  (5) 

 

X denotes the current position, Y indicates the next 

position, and K is a randomly produced value between 0 

and 1, in this case. 
Step 3: Assess each copy's fitness. 

Step 4: Select the most cost-effective solution from 

all copies. 

The probability of 𝑐𝑎𝑡𝑖 is determined by: 

 

𝑃𝑅𝑖 =  
𝐹𝑇𝑖 − 𝐹𝑇𝑚𝑎𝑥

𝐹𝑇𝑚𝑎𝑥 − 𝐹𝑇𝑚𝑖𝑛
 (6) 

 

Throughout this context, 𝑃𝑅𝑖  denotes the 

𝑐𝑎𝑡𝑖 probability, 𝐹𝑇𝑖  denotes the 𝑐𝑎𝑡𝑖  fitness value, 

𝐹𝑇𝑚𝑎𝑥 denotes the upper bound of the fitness function, 

and 𝐹𝑇𝑚𝑖𝑛 describes the lower bound. 
If each cat's fitness score is exactly 1, then the 

preceding selection probability is 1. 
Step 5: Pick a solution at random and swap it out for 

the i-th cat. 

Uniform Crossover 

The former cat swarm optimization algorithm's 

seeking mode culminated with the cats pursuing the cat 

allocated to the global best, which served as prey in the 

tracing mode. It has been noted, however, that the best 

solution is not always the most globalized one. A better 

pick may be the second-best cat prospect on occasion. 

This becomes a crucial aspect of the CSO algorithm to 

be disregarded. 

A genetic algorithm's crossover operator was 

integrated to embrace the second-best cat position as well, 

and the crossovers of the global best and second-best cat 

positions were additionally taken into account. Two 

crossover operators were tested. Two-point crossover and 

uniform crossover are used in this context. The results 

were recorded, plotted, and compared. Later, the results 

are discussed in the Performance section. We found that 

the uniform crossover operator yielded the best results. 

So, this algorithm uses it for better outcomes. 

The proposed method incorporates a uniform 

crossover operator in the CSO algorithm and selects the 

optimal solution for task and resource scheduling. 

Procedure-ESCO-Uniform Crossover Operator 

The new algorithm's implementation of this section 

follows these four simple steps: 

Algorithm: ESCO_Uniform Crossover Operator Begin 

1. Assign the global best-fitting cat as Parent1 using the 
most recent changes to the positions and velocities of 

the cats (the solutions and future modifications to the 

virtual machine allocation of each job, respectively). 

Locate the cat that ranks second in terms of fitness and 

designate it as Parent2. 

2. Create two solutions, Child1 and Child2, by applying 

the Uniform crossover operator to Parent1 and 
Parent2.  

3. Keep track of Child1's and Child2's fitness values. 

4. Pick the best fitness candidate from among Parent1, 

Parent2, Child1, and Child2 for global best cat and 

update its value. 

5. End  
 

The second-best possible sequence for virtual 

machines' work allocation is also taken into consideration 

here. By selecting the best option from the set consisting 

of the best, second best, and their generated descendants, 

the best possible option for this configuration is updated. 

This global best is now being considered as a possible 

solution to be followed at the tracing phase. 

Tracing Mode 

The cat begins to follow its prey as it spots it. Before 

pursuing its prey, it determines its velocity, which 

includes both its speed and direction. This triggers an 

abrupt transition from a state of sedentary rest to one of 

vigorous activity. Cats in this state are energetically 

searching the local space by moving toward the next best 

position quickly and efficiently. Within the framework of 

cloud-computing resource allocation, this comparison 

implies that after obtaining the optimal sequence of 

Virtual Machines (VMs) to assign to tasks, potential 
solutions may, while in tracing mode, determine the 

difference between the index of the present VM assigned 

to a task and the optimal VM to be assigned to it (i.e., 

compute its velocity) and swap the indexes accordingly. 

This is done for all the tasks. This means that the global 

best solution is used to update the index of virtual 

machines kept at each task of a solution. 

Here is a general outline of the steps: 
 
1. The following formula is used to update the velocity. 

Present velocity: 
 
𝑣𝑖1 =  𝑤𝑡. 𝑣𝑖 +  𝑝. 𝑐. (𝑋𝑏𝑒𝑠𝑡 −  𝑋𝑖 )  (7) 

 
where, c is the acceleration constant, wt is the inertia 

weight, and p is a random number such that 0 < = 𝑝 < =
1. The present position is denoted as 𝑋𝑖, the best location 

is 𝑋𝑏𝑒𝑠𝑡, and the previous velocity is 𝑣𝑖: 
 

2. Assign the upper bound to the cat's velocity if its 
updated velocity is greater than it 



Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695 

DOI: 10.3844/jcssp.2024.1681.1695 

 

1689 

3. Using the current position as input and the revised 

velocity, we can update the cat's location using the 

following formula: 
 
𝑋𝑖1 =  𝑋𝑖 +  𝑣𝑖1 (8) 
 
where, 𝑋𝑖 is the current position, 𝑋𝑖 1 is the new location 

and vi1 is the updated velocity: 
 
4. Determine the cats' fitness level 

5. Incorporate the solution set with the present 

iteration's best positions 
 
Procedure for Enhanced CSO-ECSO 

Procedure-ESCO 
 

Algorithm: ESCO Begin 

1. Accept user input for parameters. 
2. Create the initial cat population by randomly 

allocating location (X) and velocity (V) vectors for 

each dimension. 

3. Initiate MR/SPC. 

4. Repeat steps 5-7 until culmination requirements are 

met. 

5. Place modes (seeking or tracing) for all cats per 

MR. 

Evaluate cat fitness and determine the global best. 

6. For each cat: 

a) If the cat is in seeking mode, execute seeking 

mode. Perform various Crossover Optimised 
local best selection. 

b) For cats in tracing mode, execute tracing mode. 

7. End 

 

Simulation Setup 

The Cloudsim simulator is used to simulate the 

algorithm that is being suggested. By facilitating the 

creation of Virtual Machines (VMs) in data centers, 

each with its own processing capability, the Cloudsim 

toolkit (Yu and Shi, 2008) allows for the modeling of 

systems of cloud computing environments. This can be 

used to simulate jobs, which are cloudlets, and then 

allocate them to different virtual machines. The values that 

were initialized for the simulation are shown in Table (2). 

Experimental Data 

The data produced during simulation is presented in 

Tables (3-4). The cost matrix is presented in Table (3). It 

represents the execution cost of VMs to the tasks. Table (4) 

shows the transfer costs between VMs. 

 

𝐸𝑀[𝑖, 𝑗] =  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑇𝑖 𝑜𝑛 𝑃𝐶𝑖 𝑖𝑛 𝑐𝑒𝑛𝑡𝑠 

 
𝑇𝑀[𝑖𝑗 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑃𝐶𝑖 𝑡𝑜 𝑃𝐶𝑗 𝑖𝑛 𝑐𝑒𝑛𝑡𝑠

/𝑀𝐵  

Table 2: Simulation configuration 

No. of datacenters 1 

RAM 2560 MB 
Host memory  1000000 MB 
Bandwidth 10000 
No virtual machines 6 
No of hosts 4 
SMP 5 
SRD 0.8 
CDC 5 
MR Random Value 

SPC Random Value 

 

Table 3: Execution cost computation 

 PC1 PC2 PC3 PC4 

T1 1.24 1.10 1.12 1.13 
T2 1.12 1.10 1.10 1.14 
T3 1.23 1.11 1.15 1.16 
T4 1.19 1.14 1.22 1.15 
T5 1.24 1.15 1.16 1.15 
T6 1.14 1.13 1.12 1.14 
T7 1.24 1.13 1.16 1.17 

T8 1.10 1.12 1.14 1.16 
T9 1.23 1.14 1.15 1.18 
T10 1.15 1.14 1.26 1.13 

 

Table 4: Transfer cost matrix 

 PC1 PC2 PC3 PC4 

PC1 0.01 0 0.15 0.19 
PC2 0.15 0.15 0 0.20 
PC3 0.19 0.19 0.20 0 
PC4 0.20 0.01 0.11 0.15 

 

Results and Discussion 

Performance Benchmarks 

The following benchmarks were used to evaluate and 

compare the proposed strategy: 

 

a) Total cost required to schedule all workflow tasks 

using available resources. The overall cost 

comprises execution costs for all jobs and 

transmission costs for data flow between tasks 

b) Total number of Iterations till optimal solution space 

outcome is achieved 

c) Load Distribution over available resources 

 

Results and Analysis 

A comparison was made between the traditional Cat 

Swarm Optimization algorithm CSO, Particle Swarm 

Optimization algorithm PSO, Bee Colony Optimization 

Algorithm BCO, and the Enhanced Cat Swarm 

Optimization algorithm ECSO, which was put into 

practice. To choose the best crossover method, 

however, several were tested before the actual ECSO 

was put into existence. 
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Crossover Comparison 

The outcomes of. Comparing uniform crossover, and 

two-point crossover, in terms of execution time, and total 

cost are as follows. 

Execution Time 

Figure (4) and Table (5) show that the execution time 

grows with the no. of jobs since more jobs need to be 

accomplished before the full work can be completed. 

When looking at the execution times of several methods, 

it is clear that uniform crossover has the lowest compared 

to two-point crossover. Uniform crossover exhibits less 

execution time of 4% reduction over two-point crossover 

for an average of 5 jobs. 

Total Cost 

The overall cost vs the number of jobs is plotted in 

Fig. (5). There is a direct correlation between the 

number of jobs and the total cost. A higher number of 

tasks necessitates more computing power, which is 

exactly why this occurs. Uniform crossover and two-point 

crossover have the lowest total execution costs. Table (6) 

shows the total cost comparison of various crossovers 

concerning no of obs. It is evident from the chart and table 

that uniform crossover exhibits lower total cost over an 

average of 5 jobs with a 5% reduction when compared to 

a two-point crossover. 

 

 

 

Fig. 4: Crossover comparison based on execution time 

Table 5: Crossover comparison depending on execution time 

No of Jobs 
CSO with 
two-point 
crossover 

CSO with uniform 
crossover(ECSO) 

0 760 730 

2 980 946 
4 1343 1289 
6 1567 1436 
8 1784 1678 
10 1985 1908 

 
Table 6: Crossover comparison depending on execution time 

No of Jobs 
CSO with Two-point 
Crossover 

CSO with Uniform 
Crossover(ECSO) 

0 80086 80002 
2 80134 80076 
4 92345 91254 
6 100042 99068 
8 118589 115462 
10 123587 118486 

 
 

 
 
Fig. 5: Crossover comparison depending on total cost 

 

Fitness Comparison 

Figure (6) shows that fitness values drop as iteration 

counts go up. This is the natural consequence of the 

reasoning that states a lower fitness value is obtained with 

an increasing number of iterations, leading to greater 
performance. Once again, when plotting Fitness values 

against several iterations, the uniform crossover was 

much ahead of the two-point crossover strategy. Table (7) 

shows the stats of Fitness values mapping over no of 

iterations for uniform and two-point crossovers. Uniform 

crossover exhibits a 4% lowering over two-point 

crossover for an average number of iterations. 
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Table 7: Fitness value comparison over Uniform Crossover 
and Two-point crossover 

No of Jobs 
CSO with Two-point 
Crossover 

CSO with Uniform 
Crossover (ECSO) 

0 21945 21324 

20 18898 18045 
40 14756 13985 
60 12368 11895 
80 9584 8983 
100 7568 6756 
 

 
 
Fig. 6: Fitness comparison over crossovers 
 
Performance Analysis of Proposed ECSO Methods 

After deciding that the uniform crossover was the best 

crossover method, it was used in CSO to create the 

Enhanced Cat Swarm Optimization proposed method 

ECSO. In addition, proposed ECSO, regular-pure CSO, 

PSO, and BCO were evaluated in terms of fitness value, 

total execution cost, and execution time. 

Fitness Value 

It was evident that ECSO performed better than pure 

CSO, PSO, and BCO when looking at the results of fitness 

values versus several iterations as shown in Fig. (7) and 

Table (8) which were acquired by running the above-

mentioned algorithms. Because a minimization model 

was employed in the proposed ECSO, it is preferred to 

have lower fitness values. ECSO produces more 

satisfactory fitness values. ECSO shows 8% lower fitness 

values when compared with other algorithms. 

Total Execution Cost 

Figure (8) shows an association between job number 

and total execution cost. This graph shows that ECSO has 

a lower total cost than pure CSO, PSO, and BCO. ECSO's 

uniform crossover operation leads to faster, better 

solutions in fewer iterations, reducing costs in subsequent 

iterations. In pure CSO and other algorithms, this does not 

occur, resulting in low-quality outcomes. Table (9) shows 

the total execution costs for the proposed ECSO and other 
existing algorithms like pure CSO, PSO, and BCO. The 

stats show that ECSO exhibits a lower cost of 12% 

whereas pure CSO shows 21%, PSO shows 24%, and 

BCO shows a 27% lower cost over an average no of jobs. 
 

 
 
Fig. 7: Fitness comparison for ECSO, CSO, PSO, and BCO 

algorithms 
 

 
 
Fig. 8: Total execution cost for ECSO, CSO, PSO, band CO 

algorithms 
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Table 8: Fitness value comparison for proposed ECSO, CSO, 
PSO, and BCO 

No of 
Jobs 

Proposed 
ECSO 

Pure CSO PSO BCO 

0 20354 21445 22945 24455 

20 17035 18128 20989 22891 

40 12925 14265 16756 18556 

60 10955 12248 14824 16242 

80 7843 9143 12864 14642 

100 5546 7184 9945 11453 
 
Table 9: Total execution cost comparison for proposed ECSO, 

CSO, PSO, and BCO 

No of 
Jobs 

Proposed 
ECSO 

Pure CSO PSO BCO 

0 80012 80036 83245 87425 

2 86054 86114 88423 92243 

4 91224 92315 93245 97452 

6 99018 100031 110234 113314 

8 115423 118535 128354 135564 

10 118434 123537 133637 146672 
 

Table 10: Total execution cost comparison for proposed 
ECSO, CSO, PSO, and BCO 

No of 
Jobs 

Proposed 
ECSO 

Pure CSO PSO BCO 

0 520 516 712 978 

2 896 882 1034 1156 

4 1192 1174 1254 1467 

6 1563 1556 1738 1985 

8 1772 1764 1992 2134 

10 1928 1905 2284 2376 

 

Total Execution Time 

As seen in Fig. (9), execution time was plotted versus 

job count. ECSO takes equivalent execution times as pure 

CSO. ECSO lags in this field a bit. The reasons for this 
are legitimate. The addition of a new operator (Uniform 

crossover) for each iteration incurs additional 

computation time, unlike pure CSO. However, this 

additional step led to other improvements and yielded 

satisfactory outcomes. Table (10) shows the total 

execution time of all the algorithms ECSO, pure CSO, 

PSO, and BCO. From the graph and Table (9) it is clear 

that the proposed ECSO shows a little bit high execution 

time compared to pure CSO and less execution time 

compared to PSO and BCO algorithms. ECSO shows 

1.2% more execution time whereas pure CSO, PSO, 
and BCO show 2.4, 3.8, and 4.6% respectively over an 

average no of jobs, due to the incorporation of 

crossover operator. 

 

 

Fig. 9: Total execution time for ECSO, CSO, PSO, and 

BCO algorithms 

 

Conclusion and Future Directions 

The results of this study reveal that swarm intelligence 

algorithms consistently disregard the second-best 

sequence for allocating resources. In cases when the final 

sequence may have included elements from the second-

best sequence this resulted in additional cycles to get the 

same outcome. Because of this, the best-sequence 

resource allocation algorithm's execution cost went up 
slightly. As a result, researchers looked into crossover 

methods. After comparing the two-point and uniform 

crossover operators the chosen problem was best 

solved by the uniform crossover. 

Enhanced cat swarm optimization is a new swarm-

based strategy that is introduced in this study as a 

scheduling technique. The convergence speed of this 

method is much faster than that of CSO, PSO, and BCO. 

The proposed method ECSO achieves the ideal solutions 

in significantly fewer iterations by utilizing two modes of 

operation: Calculated update of cat positions and reduced 

energy wastage in random movement. Therefore, it is 
more efficient than pure CSO, PSO, and BCO since it 

converges to solutions faster. The next step in this line of 

research could be to expand ECSO such that it can 

schedule tasks with several goals such as minimizing 

execution time and energy consumption. The Enhanced 

Cat Swarm Optimisation method (ECSO), a modified 

version of the CSO algorithm, was the subsequent 

contribution; it included this crossover mechanism. Using 

the uniform crossover operator, this method can 

successfully consider the second-best option at every 

0

500

1000

1500

2000

2500

0 2 4 6 8 10

E
x
ec

u
ti

o
n
 t
im

e 

No. of jobs

Total execution time comparision

Proposed ECSO Pure CSO

PSO BCO



Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695 

DOI: 10.3844/jcssp.2024.1681.1695 

 

1693 

point in time. By doing so, a more effective algorithm is 

created and utilized to eliminate the problem of 

disregarding the second-best option. To save costs, the 

best technique to assign current jobs to the available 
virtual machines was provided by the final solution. As a 

result, the method for allocating resources in the cloud is 

now superior. The results were plotted and analyzed 

according to several characteristics such as execution time 

execution cost and fitness function. The results showed 

that the overall execution cost of the jobs on the accessible 

VMs dropped substantially and the fitness values dropped 

to good levels in this minimization scenario. However, the 

time it took to complete the jobs slightly increased and 

that was for reasonable and practical reasons. This study's 

foundational finding is that when using ECSO to allocate 
resources to conduct the necessary activities on available 

VMs there is a cost improvement. 

There are several ways in which the current work on 

this topic can be expanded. Optimization of the tasks' 

response time, waiting time, and throughput should 

take precedence over total execution cost and execution 

time. Adding a uniform crossing step has recently 

reduced the execution time. It is possible to try and 

improve upon the same. The pattern of the CSO 

population can be better matched by synthesizing a new 

crossover technique. 

Acknowledgment 

The authors acknowledge the support and cooperation 

rendered by all the members directly and indirectly. 

Funding Information 

The authors have no support or funding to report. 

Author’s Contributions 

Panuganti Hanumantha Rao: Problem notification, 
and implementation. 

Rajakumar Subramanian: Results and conclusion. 

Geetha Soman: Overall edited and proof checking. 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all of the 

other authors have read and approved the manuscript and 

no ethical issues involved. 

References 

Ahmed, O. M., & Wafaa, A. M. (2017). A Review on Recent 

Steganography Techniques in Cloud Computing. 

Academic Journal of Nawroz University, 6(3), 106–111. 

https://doi.org/10.25007/ajnu.v6n3a91 

Basha, Shaik. M., & Padmavathi, M. (2017). Dynamic 

and Elasticity ACO Load Balancing Algorithm for 

Cloud Computing. 2017 International Conference on 

Intelligent Computing and Control Systems 

(ICICCS), 77–81. 

https://doi.org/10.1109/iccons.2017.8250571 

Bitam, S. (2012). Bees Life Algorithm for Job Scheduling 

in Cloud Computing. Proceedings of the Third 

International Conference on Communications and 

Information Technology, 186–191. 

Chu, S.-C., & Tsai, P.-W. (2007). Computational 

Intelligence Based on the Behavior of Cats. 

International Journal of Innovative Computing, 

Information and Control, 3(1), 163–173. 

Gandhi, N., Tilbury, D. M., Diao, Y., Hellerstein, J., & 

Parekh, S. (2002). MIMO Control of an Apache Web 

Server: Modeling and Controller Design. 

Proceedings of the 2002 American Control 

Conference (IEEE Cat. No.CH37301), 4922–4927. 

https://doi.org/10.1109/acc.2002.1025440 

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., 

Gannon, D., Goble, C., Livny, M., Moreau, L., & 

Myers, J. (2007). Examining the challenges of 

scientific workflows. Computer, 40(12), 24-32. 

https://doi.org/10.1109/MC.2007.421 

Hong-Tai, C., & David J., D. (1998). An Evaluation of 

Buffer Management Strategies for Relational Database 

Systems. Morgan Kaufmann Publishers Inc. 

Jeffrey, S. C., Darrell, C. A., Prachi, N. T., Amin, M. V., 

& Ronald, P. D. (2001). Managing Energy and Server 

Resources in Hosting Centers. ACM SIGOPS 

Operating Systems Review, 35(5), 103–116. 

https://doi.org/10.1145/502059.502045 

Kennedy, J., & Eberhart, R. (1995). Particle Swarm 

Optimization. Proceedings of ICNN’95 - International 

Conference on Neural Networks, 1942–1948. 

https://doi.org/10.1109/icnn.1995.488968 

Kesavaraja, D., & Shenbagavalli, A. (2018). QoE 

Enhancement in Cloud Virtual Machine Allocation 

Using Eagle Strategy of Hybrid Krill Herd 

Optimization. Journal of Parallel and Distributed 

Computing, 118, 267–279. 

https://doi.org/10.1016/j.jpdc.2017.08.015 

Kuan, C. L., Kai, Y. Z., & Jason, C. H. (2014). Feature 

Selection of Support Vector Machine Based on 

Harmonious Cat Swarm Optimization. 2014 7th 

International Conference on Ubi-Media Computing 

and Workshops, 205–208. 

https://doi.org/10.1109/u-media.2014.38 

Liang, B., Yan-Li, H., Song-Yang, L., & Wei-Ming, Z. 

(2010). Task Scheduling with Load Balancing Using 

Multiple Ant Colonies Optimization in Grid 

Computing. 2010 Sixth International Conference on 

Natural Computation, 2715–2719.  

 https://doi.org/10.1109/icnc.2010.5582599 

https://doi.org/10.25007/ajnu.v6n3a91
https://doi.org/10.1109/iccons.2017.8250571
https://no.ch/
https://doi.org/10.1109/acc.2002.1025440
https://doi.org/10.1145/502059.502045
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1016/j.jpdc.2017.08.015
https://doi.org/10.1109/u-media.2014.38
https://doi.org/10.1109/icnc.2010.5582599


Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695 

DOI: 10.3844/jcssp.2024.1681.1695 

 

1694 

Meduri, R. K. K., Gutha, S., & Jadala, V. C. (2023). An 

Architectural Review of Multi-Tenancy in Cloud 

Computing. In J. Zhao, V. Kumar, R. Natarajan, & T. 

Mahesh (Eds.), Handbook of Research on 

Advancements in AI and IoT Convergence 

Technologies (pp. 178–196). IGI Global. 

https://doi.org/10.4018/978-1-6684-6971-2.ch010 

Mostafa, S. A., Gunasekaran, S. S., Mustapha, A., 

Mohammed, M. A., & Abduallah, W. M. (2020). 

Modeling an Adjustable Autonomous Multi-Agent 

Internet of Things System for Elderly Smart Home. 

In H. Ayaz (Ed.), Advances in Neuroergonomics and 

Cognitive Engineering. AHFE 2019 (Vol. 953, pp. 

301–311). Springer International Publishing. 

 https://doi.org/10.1007/978-3-030-20473-0_29 

Naji, H., Abdulraheem, J. A., & Lailan, M. H. (2020). 

CPU Scheduling Techniques: A Review on Novel 

Approaches Strategy and Performance Assessment. 

Journal of Applied Science and Technology Trends, 

1(1), 48–55.https://doi.org/10.38094/jastt1215 

Navjot, K., Taranjit, S. A., & Rajbir, S. C. (2011). 

Comparison of Workflow Scheduling Algorithms in 

Cloud Computing. International Journal of 

Advanced Computer Science and Applications, 2(10). 

 https://doi.org/10.14569/ijacsa.2011.021013 

Padmavathi, K., & Priyanka, Y. (2017). Crossover Operators 

in Genetic Algorithms: A Review. International 

Journal of Computer Applications, 162(10), 34–36. 

https://doi.org/10.5120/ijca2017913370 

Pei-Wei, T., Jeng-Shyang, P., Shyi-Ming, C., Bin-Yih, L., 

& Szu-Ping, H. (2008). Parallel Cat Swarm 

Optimization. 2008 International Conference on 

Machine Learning and Cybernetics, 3328–3333. 

https://doi.org/10.1109/icmlc.2008.4620980 

Pragati, P., Rakesh, D. R., Manoj, K. J., & Bhaskar B., G. 

(2017). Understanding and Predicting the 

Determinants of Cloud Computing Adoption: A Two 

Staged Hybrid SEM - Neural Networks Approach. 

Computers in Human Behavior, 76, 341–362. 

https://doi.org/10.1016/j.chb.2017.07.027 

Qi, C., Zhi-Bo, W., & Wen-Mao, G. (2009). An 

Optimized Algorithm for Task Scheduling Based on 

Activity Based Costing in Cloud Computing. 2009 

3rd International Conference on Bioinformatics and 

Biomedical Engineering, 1–3. 

https://doi.org/10.1109/icbbe.2009.5162336 

Rajkumar, B., Chee Shin, Y., Srikumar, V., James, B., & 

Ivona, B. (2009). Cloud Computing and Emerging IT 

Platforms: Vision, Hype, and Reality for Delivering 

Computing as the 5th Utility. Future Generation 

Computer Systems, 25(6), 599–616. 

https://doi.org/10.1016/j.future.2008.12.001 

Sadeeq, M. A. M., Zeebaree, S. R. M., Qashi, R., Ahmed, S. 

H., & Jacksi, K. (2018). Internet of Things Security: A 

Survey. 2018 International Conference on Advanced 

Science and Engineering (ICOASE, 162–166. 

https://doi.org/10.1109/ICOASE.2018.8548785 

Salah Farrag, A. A., Mahmoud, S. A., & El-Horbaty, E. 

S. M. (2015). Intelligent Cloud Algorithms for Load 

Balancing Problems: A Survey. 2015 IEEE Seventh 

International Conference on Intelligent Computing 

and Information Systems (ICICIS), 210–216. 

https://doi.org/10.1109/intelcis.2015.7397223 

Saleh, A., Abdullah, A., & Mohammad, A. S. (2018). 

Impact of Virtualization on Cloud Computing Energy 

Consumption: Empirical Study. Proceedings of the 

2nd International Symposium on Computer Science 

and Intelligent Control, 1–7. 

https://doi.org/10.1145/3284557.3284738 

Sharafi, Y., Khanesar, M. A., & Teshnehlab, M. (2013). 

Discrete Binary Cat Swarm Optimization Algorithm. 

2013 3rd IEEE International Conference on 

Computer, Control and Communication (IC4), 1–6. 

https://doi.org/10.1109/ic4.2013.6653754 

Sharma, D. K., Garg, A., & Jha, A. (2018). Assorted Cat 

Swarm Optimisation for Efficient Resource 

Allocation in Cloud Computing. 2018 Fourteenth 

International Conference on Information Processing 

(ICINPRO), 1–6. 

https://doi.org/10.1109/icinpro43533.2018.9096807 

Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman, 

B., Good, J., Katz, D. S., & Mehta, G. (2008). 

Workflow Task Clustering for Best Effort Systems 

with Pegasus. Proceedings of the 15th ACM Mardi 

Gras Conference: From Lightweight Mash-Ups to 

Lambda Grids: Understanding the Spectrum of 

Distributed Computing Requirements, Applications, 

Tools, Infrastructures, Interoperability and the 

Incremental Adoption of Key Capabilities, 1–8. 

https://doi.org/10.1145/1341811.1341822 

Son, S., Jung, G., & Jun, S. C. (2013). An SLA-Based 

Cloud Computing that Facilitates Resource 

Allocation in the Distributed Data Centers of a Cloud 

Provider. The Journal of Supercomputing, 64(2), 606–

637.https://doi.org/10.1007/s11227-012-0861-z 

Sreeram, G., Pradeep, S., Rao, K. S., Raju, B. D., & 

Nikhat, P. (2021). Moving Ridge Neuronal 

Espionage Network Simulation for Reticulum 

Invasion Sensing. International Journal of Pervasive 

Computing and Communications, 17(1), 64–77.  

 https://doi.org/10.1108/ijpcc-05-2020-0036 

Tenepalli, D., & Appini, N. R. (2014). Active Resource 

Provision in Cloud Computing through Virtualization. 

2014 IEEE International Conference on Computational 

Intelligence and Computing Research, 1–4. 

https://doi.org/10.1109/iccic.2014.7238373 

https://doi.org/10.4018/978-1-6684-6971-2.ch010
https://doi.org/10.1007/978-3-030-20473-0_29
https://doi.org/10.38094/jastt1215
https://doi.org/10.14569/ijacsa.2011.021013
https://doi.org/10.5120/ijca2017913370
https://doi.org/10.1109/icmlc.2008.4620980
https://doi.org/10.1016/j.chb.2017.07.027
https://doi.org/10.1109/icbbe.2009.5162336
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1109/ICOASE.2018.8548785
https://doi.org/10.1109/intelcis.2015.7397223
https://doi.org/10.1145/3284557.3284738
https://doi.org/10.1109/ic4.2013.6653754
https://doi.org/10.1109/icinpro43533.2018.9096807
https://doi.org/10.1145/1341811.1341822
https://doi.org/10.1007/s11227-012-0861-z
https://doi.org/10.1108/ijpcc-05-2020-0036
https://doi.org/10.1109/iccic.2014.7238373


Panuganti Hanumantha Rao et al. / Journal of Computer Science 2024, 20 (12): 1681.1695 

DOI: 10.3844/jcssp.2024.1681.1695 

 

1695 

Urgaonkar, B., Shenoy, P., & Roscoe, T. (2002). 

Resource Overbooking and Application Profiling in 

Shared Hosting Platforms. ACM SIGOPS Operating 

Systems Review, 36(SI), 239–254. 

https://doi.org/10.1145/844128.844151 

Wang, J. (2015). A New Cat Swarm Optimization with 

Adaptive Parameter Control. In H. Sun, C.-Y. Yang, 

C.-W. Lin, J.-S. Pan, V. Snasel, & A. Abraham 

(Eds.), Genetic and Evolutionary Computing (Vol. 

329, pp. 69–78). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-12286-1_8 

Warneke, D., & Kao, O. (2011). Exploiting Dynamic 

Resource Allocation for Efficient Parallel Data 

Processing in the Cloud. IEEE Transactions on 

Parallel and Distributed Systems, 22(6), 985–997. 

 https://doi.org/10.1109/tpds.2011.65 

Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010). A Revised 

Discrete Particle Swarm Optimization for Cloud 

Workflow Scheduling. 2010 International 

Conference on Computational Intelligence and 

Security, 184–188. 

 https://doi.org/10.1109/cis.2010.46 

Xu, Z., Tu, Y.-C., & Wang, X. (2010). Exploring Power-

Performance Tradeoffs in Database Systems. 2010 

IEEE 26th International Conference on Data 

Engineering (ICDE 2010), 485–496. 

 https://doi.org/10.1109/icde.2010.5447840 

Ying, L., Tarek, A., & Avneesh, S. (2004). Design, 

Implementation and Evaluation of Differentiated 

Caching Services. IEEE Transactions on Parallel 

and Distributed Systems, 15(5), 440–452. 

 https://doi.org/10.1109/tpds.2004.1278101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yu, J., & Buyya, R. (2006). Scheduling Scientific 

Workflow Applications with Deadline and Budget 

Constraints Using Genetic Algorithms. Scientific 

Programming, 14(3–4), 217–230. 

 https://doi.org/10.1155/2006/271608 

Yu, Z., & Shi, W. (2008). A Planner-Guided Scheduling 

Strategy for Multiple Workflow Applications. 2008 

International Conference on Parallel Processing 

Workshops,1–8. 

https://doi.org/10.1109/icppw.2008.10 

Zaki, K., & Saad, H. (2018). Adoption of Cloud Human 

Resource Information System in Egyptian Hotels: An 

Experimental Design Research. International 

Journal of Heritage, Tourism and Hospitality, 12(1), 

233–245.https://doi.org/10.21608/ijhth.2018.31514 

Zebari, R. R., Abdulazeez, A. M., Zeebaree, D. Q., Zebari, 

D. A., & Saeed, J. N. (2020). A Comprehensive 

Review of Dimensionality Reduction Techniques for 

Feature Selection and Feature Extraction. Journal of 

Applied Science and Technology Trends, 1(1), 56–70. 

 https://doi.org/10.38094/jastt1224 

Zeebaree, S. R., Jacksi, K. F., & Zebari, R. R. (2020). 

Impact Analysis of SYN Flood DDOS Attack on 

HAPROXY and NLB Cluster-Base Web Servers. 

Indonesian Journal of Electrical Engineering and 

Computer Science, 19(1), 505–512.  

 https://doi.org/10.11591/ijeecs.v19.i1.pp505-512 

https://doi.org/10.1145/844128.844151
https://doi.org/10.1007/978-3-319-12286-1_8
https://doi.org/10.1109/tpds.2011.65
https://doi.org/10.1109/cis.2010.46
https://doi.org/10.1109/icde.2010.5447840
https://doi.org/10.1109/tpds.2004.1278101
https://doi.org/10.1155/2006/271608
https://doi.org/10.1109/icppw.2008.10
https://doi.org/10.21608/ijhth.2018.31514
https://doi.org/10.38094/jastt1224
https://doi.org/10.11591/ijeecs.v19.i1.pp505-512

