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Abstract: Satellite imagery has dramatically revolutionized the field of 

geography by giving academics, scientists, and policymakers unprecedented 

global access to spatial data. Manual methods typically require significant time 
and effort to detect the generic land structure in satellite images. This study can 

produce a set of applications such as urban planning and development, 

environmental monitoring, disaster management, etc. Therefore, the research 

presents a methodology to minimize human labor, reducing the expenses and 

duration needed to identify the land structure. This article developed a deep 

learning-based approach to automate the process of classifying geographical 

land structures. We used a satellite image dataset acquired from MLRSNet. 

The study compared the performance of three architectures, namely CNN, 

ResNet-50, and Inception-v3. We used three optimizers with any model: 

Adam, SGD, and RMSProp. We conduct the training process for a fixed 

number of epochs, specifically 100 epochs, with a batch size of 64. The 
ResNet-50 achieved an accuracy of 76.5% with the ADAM optimizer, the 

Inception-v3 with RMSProp achieved an accuracy of 93.8%, and the proposed 

approach, CNN with RMSProp optimizer, achieved the highest level of 

performance and an accuracy of 94.8%. Moreover, a thorough examination of 

the CNN model demonstrated its exceptional accuracy, recall, and F1 scores 

for all categories, confirming its resilience and dependability in precisely 

detecting various terrain formations. The results highlight the potential of deep 

learning models in scene understanding, as well as their significance in 

efficiently identifying and categorizing land structures from satellite imagery. 
 
Keywords: Geographical Classification, MLRSNet, CNN, Transfer Learning, 

Optimization Algorithms 

 

Introduction 

Satellite imaging has significantly transformed the 

discipline of geography by providing academics, 

scientists, and policymakers unparalleled access to spatial 

data on a worldwide level (Burke et al., 2021). 

Geographic Information Systems (GIS) utilize satellite 

images to generate maps, analyze geographical trends, 
and simulate environmental processes (Chuvieco, 2020). 

Researchers leverage satellite data to assess changes in 

land cover and land use, monitor deforestation, track 

urban expansion, and evaluate the impacts of natural 

disasters such as floods, wildfires, and earthquakes. In 

urban planning and changes and guiding decision-making 

processes (Zhu et al., 2019). Urban planners analyze 

population density, detect land use trends, strategize 

transit networks, and assess the environmental 

consequences of urbanization (Koroso et al., 2021). 

High-resolution satellite images facilitate an in-depth 

examination of urban morphology and agricultural 

practices. Farmers and agronomists utilize satellite data 

to evaluate crop conditions, monitor plant development, 

identify pest infestations, and optimize irrigation and 

fertilization techniques. Remote sensing technologies 

provide critical information on soil moisture levels, crop 
stress conditions, and yield forecasts, enabling farmers 

to enhance productivity, reduce input costs, and mitigate 

environmental impacts. Despite the advancements in 

satellite technology, traditional methods of categorizing 

geographical land formations often rely on subjective 

analysis by human experts (Tsatsaris et al., 2021). 

Conventional methods usually need humans to 
analyze satellite photos manually, which may be a time-
consuming and labor-intensive process. Analysts 
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frequently employ techniques such as visual 
interpretation, pixel-based categorization, and object-
based picture analysis. Nevertheless, these methods 
possess notable constraints. Firstly, their subjectivity and 
reliance on manual interpretation make them susceptible 
to human fallibility and prejudice, resulting in 
inconsistencies in classification outcomes. Secondly, the 
laborious process of manually analyzing extensive 
datasets can be time-consuming, thereby impeding 

prompt decision-making. Lastly, scalability issues may 
arise, hindering the application of these methods to larger 
datasets. With the growing amount of satellite imagery, 
traditional methods are unable to keep up, making it 
difficult to analyze large areas efficiently. Moreover, 
these methods may not accurately capture complex land 
cover types or subtle variations in land structures, leading 
to lower classification accuracy. 

More effective and trustworthy approaches to land 

structure categorization are required in light of these 

difficulties. There is a chance to automate and improve the 

accuracy of land structure categorization thanks to recent 

advances in computer vision and deep learning. A subset 

of machine learning known as “deep learning” trains 

artificial neural networks to process data by identifying 

patterns and then making predictions (Wang et al., 2023). 

Deep learning models are superior to traditional ML 
techniques in that they can learn to build hierarchical data 

representations from scratch, ignoring the necessity for 

human-created features. An example of a CNN is ResNet-

50, while another is Inception-v3, which offers an 

effective means for categorizing terrain formations using 

satellite imagery. By autonomously extracting features 

from unprocessed satellite images, these models can 

effectively distinguish between various types of land 

cover, significantly aiding environmental monitoring, 

land management, and urban planning. 

The objective of this article is to develop a sophisticated 
deep-learning model capable of accurately categorizing 
various geographical land formations in Malaysia through 
the analysis of satellite imagery. This study aims to evaluate 
the performance of several advanced architectures, 
including CNN, ResNet-50, and Inception-v3, to identify 
the most efficient approach for land structure classification 
and reduce the time and labor required for land structure 
identification, making it more efficient and scalable. 
Ultimately, the goal is to provide a reliable and efficient 
solution for automated scene understanding, with 
significant applications in land use planning, environmental 

conservation, and disaster management. 

Related Work 

In order to improve traffic management and road 

safety, this study introduces a classification approach that 

makes use of Convolutional Neural Networks (CNNs) 

and transfer learning. The system makes use of a dataset 

of 7616 pictures and uses a CNN architecture with 24 

convolution layers and 8 fully linked layers. With a 98.9% 

accuracy rate, InceptionV3 was the top-performing model 

throughout the validation phase. In both the validation and 

test stages, the CNN model achieved an accuracy of 
95.1% (Abed Mohammed and Sumari, 2024). 

The authors suggest a method for identifying High-

Spatial-Resolution Remote Sensing (HSRRS) scenes 
dubbed TL-DeCNN, which makes use of deep 

convolutional neural networks. This method effectively 
prevents overfitting during training and makes use of 

transfer learning and fine-tuning on a small number of 
HSRRS scene samples. The experimental findings 

indicate that the TL-DeCNN approach surpasses the 
directly trained VGG19, ResNet50, and InceptionV3 

models when applied to few-shot data. This technique 
achieves greater results without experiencing overfitting. 

Additional investigation might investigate the 
fundamental principles that contribute to InceptionV3’s 

superior performance in mitigating overfitting and 
gradient disappearance (Li et al., 2020). 

An article published in 2021 focuses on the issue of 

remote sensing scene categorization, which is crucial for 

analyzing land cover. The design presents a new encoding 

method called multi-granularity neural network encoding. 
It utilizes the models InceptionV3, InceptionResNetV2, 

VGG16, and DenseNet201. The strategy improves 

performance and reduces processing costs by using pre-

trained Convolutional Neural Networks (CNNs) and 

ensemble learning approaches. The experimental findings 

obtained from both public and custom datasets clearly 

indicate that fine-tuning deep convolutional neural 

networks for remote sensing applications yields much 

higher accuracy compared to standard approaches, hence 

demonstrating their superior efficacy. The suggested fine-

tuned complete pre-trained model achieves superior 

results on the test set and achieved a high level of accuracy 
of 97.84%, compared to the features retrieved using 

InceptionResNetV2 (Bosco et al., 2021). 

Given the large number of remote sensing pictures 

accessible for Earth observation and land monitoring, 
there is an urgent need for sophisticated analytic methods 

to achieve precise Land Use (LU) categorization. In order 
to address the challenges associated with LU 

classification, the purpose of this research is to provide a 
novel architecture known as AMUSE-CNN, which stands 

for adaptive multiscale superpixel embedding 
convolutional neural network. AMUSE-CNN uses a 

Multiscale Convolutional Neural Network (MS-CNN) to 
categorize pictures using superpixels of different sizes 

after using a superpixel representation for object-based 
analysis. Two modules are in charge of executing the 

architecture for complete LU classification and an 
adaptive approach improves the ability to classify. By 

comparing it to the state-of-the-art methods, the method’s 
superior performance is shown using remote sensing data 

from Nigeria’s Kano and Lagos (Zhang et al., 2022). 
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Models trained using ensemble learning approaches are 

more robust and accurate than those trained using 

individual models. Because of its effectiveness in 

combining cyclic learning rate schedules to capture the 
ideal model in each cycle, the snapshot ensemble 

Convolutional Neural Network (CNN) finds significant 

usage in many domains. In this research, the dropCyclic 

rate of learning scheduling is presented as a tool for 

investigating various local minima. The learning rate is 

reduced incrementally in each epoch using this step decay 

approach. We compare three foundation CNN designs 

(MobileNetV2, VGG16, and VGG19) and three learning 

rate schedules (dropCyclic, max-min cyclic cosine, and 

cyclic cosine annealing) on all three aerial image data sets 

(UCM, AID, and EcoCropsAID) to determine the 
effectiveness of the snapshot ensemble Convolutional 

Neural Networks. Szegedy et al. introduced the inception 

model, a deep Convolutional Neural Network (CNN) 

architecture built for GoogleNet, at the 2014 large-scale 

image net visual identification challenge. The dropCyclic 

method is definitely better, according to the findings. It 

proves its effectiveness in improving the performance of 

snapshot ensemble CNN by showing higher classification 

accuracy than other methods Noppitak and Surinta (2022). 

In order to determine if it is possible to integrate three 

separate industries in rural regions, this research used 

deep learning and AI clustering approaches. When used 
in conjunction with the k-means algorithm, the ResNet-50 

model outperforms competing systems by a margin of 

3.1%, achieving a success rate of 88.3% in land-use 

classification and identification. The model provides 

policymakers with a helpful tool for fostering the 

integration of rural industries and designing successful 

development plans, with an average IoU of 67.29% 

(Huang et al., 2023a). 

This study presents a new categorization method that 

utilizes a collaborative decision-making process, 

including many structures and pre-trained Convolutional 

Neural Networks (CNNs). Three Convolutional Neural 

Networks (CNNs), namely AlexNet, Inception-v3, and 

ResNet18, are used individually for land use 

categorization. The final classification outcomes are 

established by using a collaborative decision-making 

approach. The technique entails the creation of novel, 

fully connected Softmax classification layers, the training 

of the created CNNs, and the amalgamation of their 

prediction outcomes. The suggested technique 

outperforms state-of-the-art methodologies, as shown by 

the evaluation conducted on UC Merced, AID, NWPU-

45, and OPTIMAL-31 datasets (Xu et al., 2020). 
Using hyperspecific satellite images from the GaoFen-5 

(GF-5) spacecraft, this research evaluates and analyses the 

comprehensive UFZ categorization in Wuhan, China. 
Using both traditional classification methods and more 

recent deep learning techniques, we compare the 

performance of hyperspectral (GF-5) and multispectral 

(Landsat 8) data and find that hyperspectral data is far 

better. The proposed system, SSUN-CRF, integrates 

spectral and spatial data using unified networks built 
using deep learning methods. Additionally, it includes a 

conditional random field that is completely linked. The 

Underground Freezing Zone (UFZ) may be precisely 

mapped using this approach. The approach produced 

outstanding outcomes, with a total accuracy of 93.86% 

and a Kappa value of 92.08%. (Yuan et al., 2022). 

This study presents a comprehensive land-cover map 
output for Wuhan and its surrounding areas that makes use 
of the Low-to-High Network (L2HNet). To expedite the 
mapping procedure, we enhance the efficiency of L2HNet 
through the elimination of specific components. Google 
Maps offers remote sensing images at a high resolution, 
while ESA LandCover (2021) provides categorization at 
a lower resolution. When the Mean of the Intersect over 

Union (MIoU) exceeds 75.21%, the product maps with a 
resolution of precisely 1 m. Additionally, it frequently 
achieves accuracy rates exceeding 85.00% for Frequency-
Weighted Intersecting over Union (FWIoU), OA, and 
Kappa (Huang et al., 2023b). 

This article introduces a methodology for identifying 

unfamiliar patterns of airport distribution across several 

study domains by using deep learning and spatial analysis. 

The approach obtains a high recall rate of 96.4% and an 

airport integrity rate of 97.2% in a sample area of 

21,9040.5 km2 by training a scene classification model on 

Google image data and including geographical data like 

road networks and water systems (Li et al., 2021). 

This article introduces a novel approach to ensemble 
learning termed semi-MCNN, which utilizes multiple-CNN 

models in a semi-supervised manner. Semi-MCNN employs 
a semisupervised learning approach to use abundant 

unlabeled data effectively. It does this by autonomously 
picking samples and creating a dataset. To minimize the 

spread of mistakes, the technique addresses them by first 
training on carefully chosen unlabeled data and then refining 

the training on labeled data. The incorporation of 
semisupervised learning into a multi-CNN ensemble 

architecture improves the capacity to generalize and 
increases the accuracy of classification (Fan et al., 2020). 

Researchers proposed a new Convolutional Neural 
Network (CNN) model that incorporates a triple feature 

fusion pattern to improve Land Cover Zone (LCZ) 
detection. This method links many layers of cascaded 

information to make category judgments, reducing the 
loss of valuable feature information. The results obtained 

from the So2sat LCZ 42 dataset show substantial 
improvements in both overall accuracy and kappa 

coefficient when compared to sophisticated LCZ 
classification methods. The suggested model 

demonstrates an accuracy of 0.70 and a kappa value of 
0.68, indicating improvements of about 4.47-6.25%, 

respectively (Ji et al., 2023). 
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This study aims to fill the knowledge gap on land use 

in Morocco by using six machine-learning methods to 

analyze Landsat 8 satellite data. Using the Google Earth 

Engine, the machine learning methods employed in this 

study, the following machine learning algorithms are 

included: (SVM), (RF), (CART), (MD), (DT), and 

(GTB). This research evaluates the performance of many 

techniques. The MD algorithm has the highest accuracy 

of 0.93, while SVM has the lowest accuracy of 0.74. The 

inclusion of indices such as NDVI, NDBI, BSI, and 

MNDWI enhances the total accuracy, with MD showing 

an increase of about 93%. MD stands out as the most 

effective classifier, especially when dealing with difficult 

terrain (Ouchra et al., 2023). 

Using satellite images, this essay discusses 

deforestation as a Multilabel Classification (MLC) 

problem. The ForestViT model employs self-attention to 

identify deforestation, eliminating the requirement for 

convolution operations often used in traditional deep 

learning models. ForestViT’s performance in Multilabel 

Classification (MLC) has been shown to be promising via 

experimental assessment of accessible satellite imagery 

datasets (Kaselimi et al., 2023). 

Via high-resolution multispectral WorldView-3 

satellite photos, this research presents a technique that 

accurately delineates individual tree tops via marker-

controlled watershed segmentation. The procedure of 

gradient binarisation precisely identifies the boundaries of 

tree crowns, using a supervised searching process to 

establish the appropriate threshold for binarisation. The 

spatial local maxima, which serve as markers in watershed 

segmentation, are further improved to remove spurious 

treetops (Tong et al., 2021). 

Classification of land use and land cover using deep 

learning is a novel approach that is introduced in this 

research. Locating different kinds of land cover in Remote 

Sensing Images (RSIs) using the River Formation Dynamics 

Algorithm (LULCC-RFDADL). Using RFDA to fine-tune 

hyperparameters, the LULCC-RFDADL model extracts 

features using the very small EfficientNet. Classification is 

performed using the Multi-Scale Convolutional 

Autoencoder (MSCAE) model and the Search Optimization 

Method (SOA) is employed to optimize parameter selection. 

According to benchmark dataset analysis, LULCC-

RFDADL performs better than competing approaches on 

several metrics (Aljebreen et al., 2024). 

Materials and Methods 

The methodology consists of a set of phases: Dataset 

collection, preprocessing, classification model, 

optimization models, performance metric, and selecting 

the best model as shown in Fig. (1). 

Phase 1: Dataset Description 

The satellite picture collection was acquired from 

MLRSNet, a high-resolution remote sensing dataset 

that has been particularly created for the purpose of 

semantic scene comprehension, with the ability to 

identify and classify various objects or features within 

the image. Qi et al. (2020). MLRSNet offers diverse 

perspectives of the world captured by satellites, 

providing high-resolution imagery. The dataset 

comprises a total of 46 image categories, each with an 

image size of 256256 pixels. However, for this specific 
experiment, we focused on four distinct categories: 

Farmland, terrace, meadow, and desert. These categories 

were selected for their relevance to the experiment's 
objectives. As previously mentioned, we utilized a 

dataset with four distinct labels, each containing 

approximately 2600 images, the results of which can be 

visualized in Fig. (2). 

Phase 2: Preprocessing 

We will explain all the preprocessing that will be 

done on our dataset. 

 

 
 
Fig. 1: Methodology of the study 
 

 
 
Fig. 2: Image count per label in the dataset  
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Image Resize 

It is essential preprocessing to change the size of the 

image and its dimensions while maintaining its aspect ratio 

or stretching it to fit a new size. To ensure uniformity and 

compatibility, all photos in our dataset were uniformly 

downsized to a resolution of 224224 pixels. This resizing 

procedure guarantees that all images possess identical 

dimensions, hence allowing consistent processing and 

analysis. Standardizing the picture size enables us to 

efficiently use machine learning algorithms and 

methodologies to extract significant features and patterns 

from the information. Figure (3) shows a few examples 

from the datasets based on desert, farmland, meadow, and 

terrace and the images’ size is 224224 pixels. 

Image Augmentation 

To expand the dataset further, we employed image 

augmentation techniques. Image augmentation is an 

often-used approach to enhance the general-isolation 

Model performance by introducing variations to the 

data (Shorten and Khoshgoftaar, 2019). Figure (4) 

illustrates various image augmentation and 

transformations, such as rotation, flipping, shearing, 

and more, which are done by one of the” terrace” 

images. By applying image augmentation, we increased 

the number of images for each label to ensure a 

balanced dataset. In this case, all labels were 

augmented to have a consistent count of 3500 images. 

Hence, there will be a total of 14,000 images to form the 

dataset. This augmented dataset enables the method to 

obtain from a broader scope of variations and improves its 

ability to generalize and make accurate predictions. 

Encoding 

It is a technique used to transform values from one 

representation to another. In the context of categorical 

variables, label encoding, also known as ordinal encoding, 

assigns a unique integer value to each category within the 

dataset (Potdar et al., 2017). This process allows for 

converting categorical labels into a numerical format that 

machine learning algorithms can process. In this study, 

label encoding has been applied to the labels within the 

dataset, enabling the model to interpret and learn from the 

encoded representations during the training and prediction 

stages. Decoding will be applied during visualization to 

enhance result interpretation, restoring the encoded labels 

to their original categorical form for easier understanding 

of the outcomes. 

Random Sampling 

It is a widely used technique for creating a 

representative subset of a dataset (Gemulla, 2008). It is 

beneficial for dividing the data into training and testing 

sets. Another related method is stratified sampling, a 

probability sampling approach that considers the 

distinct groups or categories within the dataset; 
stratified sampling ensures that the number of sampled 

items from each group is proportional and balanced. In 

this article, random sampling was employed to split the 

dataset of 14,000 images into training, testing, and 

validation sets. The training set consists of 8,400 

images (60%), the testing set contains 4,200 images 

(30%) and the validation set comprises 1,400 images 

(10%). Random sampling ensures that the selected 

samples represent the overall dataset and helps 

maintain the integrity of the data during model 

evaluation and testing. 

Phase 3: Classification Model 

We will explain all the models that will be used in 

this study. 

 

 

 

Fig. 3: Samples of image 

 

 

 

Fig. 4: Samples of image augmentation 
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Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is an 

artificial neural network that is distinguished by its deep 

feed-forward architecture (Palakodati et al., 2020). 

Convolutional Neural Networks (CNNs) are specifically 

designed to effectively process and analyze visual input, 

namely images. A Convolutional Neural Network (CNN) 

typically comprises convolutional layers that use sets of 

adaptive filters to analyze the input image. This enables 

the network to identify and extract significant features and 

patterns. In a CNN, there are typically two main sections: 

The feature extraction section and the Fully Connected 

(FC) layer section, as illustrated in Fig. (5). The feature 
extraction section focuses on extracting relevant 

characteristics derived from the supplied data. In 

contrast, the FC layers are responsible for the final 

classification. Typically, the input of a CNN generally is 

a 3-dimensional tensor representing the height, width, and 

depth of the input data. The depth dimension refers to the 

number of channels in the image. For instance, in an RGB 

image, the depth would be three, representing the red, 

green, and blue channels. Local operations are carried out 

by the CNN’s convolutional filters, which determine the 

dot product of the input and the filter weights. Through 
these processes, the network is able to extract spatial 

information and identify important characteristics from 

the input picture (Alzubaidi et al., 2021). 

It is common practice to use pooling layers to reduce the 

size of the feature maps that come after the convolutional 

layers. Training becomes quicker and overfitting is reduced 

with pooling layers because they summarise the most 

significant data in the feature maps, reducing the spatial 

dimensionality (Alzubaidi et al., 2021). Finally, the fully 

connected layers in the CNN create high-level abstractions 

and perform classification tasks. These layers take the 

flattened feature maps from the previous layers and apply 
weights to produce the final classification output. We have 

proposed a CNN model to classify the geographical land 

structure. The CNN architecture takes input images with 

dimensions of 2242243, representing the height, width, 
and depth of the photos. 

 

 
 
Fig. 5: The feature extraction section and (FC) layer section 

(Mohammad et al., 2021) 

The 1st convolutional layer of the Convolutional 

Neural Network (CNN) has 32 filters, each with a size of 

33, and does not have any padding. This layer uses filters 
to process the incoming picture and extract crucial 

characteristics. Afterward, the outputs of the first 
convolutional layer undergo max pooling with a pool size 

of 22. The result obtained from the max pooling layer is 
then sent into the subsequent convolutional layer, which 

consists of 68 filters of size 33. This layer performs 
further feature extraction on the previous layer’s outputs. 

The same steps are repeated for the last convolutional 

layer, which employs 128 filters. Each convolutional 

layer learns and captures different features from the input 

image and max pooling reduces the spatial dimensions 

and retains the features of the images. 

Furthermore, the Glorot uniform initialization, also 

known as the Xavier uniform initialization, is utilized as 

the kernel initialization method (Glorot and Bengio, 

2010). This initialization technique aims to set the initial 

weights of the network in a way that preserves the 
variance of the activations and gradients across layers 

during both forward and backward propagation. By 

maintaining a balanced initialization, the learning process 

becomes more stable and the convergence of the network 

is improved. The Glorot uniform initialization is 

particularly beneficial in deep learning architectures like 

CNNs, where the network consists of multiple layers. By 

initializing the weights appropriately, the network can 

effectively propagate information through the layers, 

preventing issues such as vanishing or exploding 

gradients. This initialization strategy enhances the overall 
stability and efficacy of the learning process in CNN, 

allowing the model to acquire and extract significant 

features from the input data. 

In addition, the CNN design applies an activation 

function after every convolutional operation before 

sending the output tensor to the next max-pooling layer. 

The activation function used here is the rectified linear 

activation function or ReLU. A simple but powerful non-

linear function, the Rectified Linear Unit (ReLU) 

activation function incorporates non-linearity into the 

network’s computations. The Rectified Linear Unit 

(ReLU) is an activation function that efficiently 

overcomes the vanishing gradient problem and avoids 

saturation in the positive zone. It is computationally 

efficient. When the input is positive, the ReLU activation 

function returns the value of the input; when the input is 

negative, it returns zero, as shown in Eq. (1): 

 

   0,f x max x  (1) 

 

After that, for classification, the CNN is linked to a fully 

connected layer. The second convolutional layer’s feature 

map is first flattened, or reshaped, into a 1-dimensional 
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vector, before it is linked to the fully connected layer. The 

next dense layers are able to handle the characteristics that 

were extracted efficiently because of this phase. The 

flattening procedure is followed by the use of 2 thick 
layers. The 1st dense layer uses the Rectified Linear 

Activation function (ReLU) as its activation function to 

link the flattened features to 64 nodes. Lastly, a softmax 

activation function is linked to the output of the last dense 

layer, which converts the numerical outputs into a 

probability distribution across the four classes: Terrace, 

meadow, farmland, and desert. The softmax activation 

assigns probabilities to each class, allowing the model to 

predict by selecting the class with the highest probability. 

Transfer Learning 

It is a method that entails using the information and 

insights acquired from performing one challenge and 

transferring them to tackle similar tasks (Sharma and 

Parikh, 2022). It is often used when the domains of the 

functions are comparable in order to have a more 

substantial beneficial influence (Zhuang et al., 2020). 

Within the realm of artificial neural networks, transfer 

learning refers to the practice of using a pre-trained model 

as a starting point. The pre-trained model, with its current 

layers and weights, acts as a basis for the bespoke model. 

The pre-trained model’s layers and weights are 

transferred to the custom model and extra custom final 

layers are appended to adapt the model for the job. This 

strategy enables the custom model to use the information 

and representations acquired by the pre-trained model, 

resulting in improved performance and increased 

accuracy on the target task. 

Resnet-50: This residual network, often known as 

ResNet, was introduced by He et al. (2016) and is very 

influential in improving the training of neural networks. It 

represents the layers as residual functions that learn from 

the preceding layer. The idea of residual arises from the 

discrepancy between the observed and estimated values 

(Liang, 2020). It is a well-known example of ResNet. 

Included in the network’s 50 layers are a max pooling 

layer and an average pooling layer in addition to 48 

convolutional layers. The use of ResNet-50 for scene 

classification has been successful. On the other hand, a 

dense layer with four nodes that predicts the four 

categories of the labels using the softmax activation 

function has been substituted for ResNet-50’s original 

output layer for this assignment. 

Inception-v3: A deep Convolutional Neural Network 

(CNN) architecture that was created as a component of 

GoogleNet for the large-scale image visual identification 

challenge (Alom et al., 2021). The goal of Inception-v3 

was to strike a balance between computational efficiency 

and low parameter count, making it suitable for practical 

applications (Cao et al., 2021). This CNN architecture, 

which consists of 48 layers, was trained on the ImageNet 

dataset, which comprises over 1 million images. In this 

model, the initial convolutional layer receives input data 

with dimensions of 2992993 and produces an output 

tensor of size 882048. The inception-v3 model has also 

been used to identify the scenes or landscape. Similar to the 

approach adopted for ResNet-50, the original output layer 

of Inception-v3 has been replaced with a dense layer 

comprising four nodes. This modification allows the model 

to generate predictions for the four categories of labels in 

the dataset. Furthermore, the input layer has been adjusted 

to accommodate images with dimensions of 2242243, 

aligning with the specific requirements of the dataset3. 

Phase 4: Optimization Algorithms 

An optimizer is a technique or approach used in deep 

learning to train a neural network to minimize the loss 

function by adjusting its parameters (Mehmood et al., 2023). 

ADAM 

Adaptive Moment Estimation (ADAM) is an 

optimization technique that is often used for training deep 

learning models. It combines RMSProp and AdaGrad, 

two more optimization approaches, into one. The 

efficiency, quick convergence and handling of sparse 

gradients that ADAM is famous for are well-known 

(Reyad et al., 2023). The main characteristics of ADAM 

include parameter-specific adaptive learning rates, 

direction-bias correction for estimation biases, L2 

regularization to avoid overfitting, and momentum to 

accelerate appropriate gradients. For these reasons, 

ADAM is a go-to tool for improving neural networks 

across the board regarding deep learning. 

SGD 

Stochastic Gradient Descent (SGD) is a crucial 

optimization method for training ML models, including 

deep NNys. The SGD algorithm iteratively changes the 

model parameters by using the gradients of the loss function 

with respect to those parameters (Tian et al., 2023). 

RMSProp 

Root mean square propagation, or RMSProp, is a 

popular optimization method for training deep-learning 

neural networks. Because it adjusts the learning rate for 

every parameter, RMSProp overcomes some of the 

shortcomings of the standard Stochastic Gradient 

Descent (SGD) approach (Hong and Chen, 2024). 

Optimizing learning rates according to historical 

gradients aids in neural network training and is an 

efficient optimization strategy. It has proven helpful in 

several neural network designs and is extensively 

included in deep learning frameworks. 
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Phase 5: Performance Metric 

The testing step is all about seeing how well the CNN 

models do. The accuracy of a Convolutional Neural Network 

(CNN) is one of the most common metrics used to assess its 

performance. Relative to the total number of photos, 

accuracy measures how many predictions were right. The 

equation for accuracy may be expressed as Eq. (2): 

 

 % 100%
TP TN

Acc
TP FP TN FN


 

  
 (2) 

 

In this context, TP indicates that the model properly 

assigns a class to a sample, and TN indicates that the 

model correctly assigns no class to the sample, If the 

model gets a sample’s class membership prediction wrong 

(FP), then the sample is definitely part of that class; if it 

gets the class membership prediction wrong (FN), then 

the sample is part of that class. 

Results and Discussion 

In order to fine-tune and validate the model, we 

have chosen several optimizers and learning rates. 

These optimizers include the Adam optimizer, 

Stochastic Gradient Descent (SGD) optimizer, and 

RMSprop optimizer. The learning rates selected for 

training are 0.001 and 0.0001. Each combination of 

optimizer and learning rate is used to train the model. 

The training process is conducted for a fixed number of 

epochs, specifically 100 epochs, with a batch size of 

64. These models will be trained, tested, and validated 

on the same sample of the dataset, in which the training 

set consists of 8,400 images (60%), the testing set 

contains 4,200 images (30%) and the validation set 

comprises 1,400 images (10%). 

Results 

We will show all the results obtained from our study. 

Convolution Neural Network(CNN) 

Figure (6) illustrates the training history of a CNN 

model utilizing the RMSProp optimizer with a learning 
rate of 0.0001. The plot showcases the progression of 

training and validation accuracy throughout the epochs. 

Initially, both training and validation accuracy steadily 

improve, demonstrating the model’s capacity to acquire 

knowledge and apply it to new situations based on the 

training data. However, as the training progresses, the 

rate of improvement in training accuracy begins to slow 

down, reaching a plateau around the 50-epoch mark. 

Regarding training loss and validation loss, both metrics 

exhibit a consistent decrease during the training process. 

This suggests that the model is effectively minimizing 

the discrepancy between predicted and actual labels. 

However, it’s worth noting that the validation loss 

experiences sporadic spikes, particularly in the range of 
0.2-0.4, starting from epoch 30 until the end of training. 

It is essential to mention that the CNN model did not 

train for the entire 100 epochs as specified. The early 

stopping mechanism was implemented during training, 

monitoring the model’s progress based on the validation 

loss. After a certain amount of epochs, if the loss of 

validation has not improved, the training phase is ended 

too soon. In order to avoid overfitting and maximize 

training time, this method stops training the model when 

its validation results don’t improve. 

Table (1) presents the training results of the CNN 

model using different combinations of optimizer and 

learning rates. The findings indicate that CNN performs 

better with a lower learning rate of 0.0001, regardless of 

the optimizer used. Among the models trained with 

various parameters, the CNN model trained with 

RMSProp optimizer stands out with a test accuracy of 

94.8% and a test loss of 0.1727. On the other hand, the 

CNN model trained with SGD optimizer did not perform 

well in this case, exhibiting the lowest results with a test 

accuracy of 61.3% and a test loss of 1.0444 when the 

learning rate was set to 0.001. These observations 

suggest that a lower learning rate facilitates better 

performance for the CNN model in this scenario and the 

choice of optimizer also plays a significant role in 

achieving optimal results. 

 

 

 
Fig. 6: Training history of a CNN model 

 

Table 1: Performance CNN with optimizers 

Model Optimizer Learning rate Accuracy % Loss 

 ADAM 0.001 92.1 0.2331 

  0.0001 93.7 0.2079 

CNN SGD 0.001 61.3 1.0444 

  0.0001 74.9 0.6328 

 RMSProp 0.001 92.1 0.2530 

  0.0001 94.8 0.1727 
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ResNet-50 Model 

Table (2) shows the performance of ResNet-50 

trained with different parameters. In contrast to the CNN 

model, the impact of a low learning rate on the ResNet-

50 model’s performance is not as significant. However, 

it is worth noting that using a low learning rate in 

combination with the RMSProp optimizer may result in 

poorer performance. Among the ResNet-50 models 

trained with various parameters, the model trained with 

the Adam optimizer, with a learning rate of 0.0001, 

performs better than other models trained. It achieved a 

test accuracy of 77.3% and a test loss of 0.6219. On the 

other hand, the ResNet-50 model trained with the SGD 
optimizer exhibited the lowest performance, with a test 

accuracy of 45.3% and a test loss of 1.1683. This finding 

shows that the impact of the learning rate is lesser 

compared to CNN and the selection of an appropriate 

optimizer remains crucial in achieving optimal results. 

Inception-v3 Model 

Table (3) shows the training performance of Inception-v3 

under different parameter configurations. Interestingly, the 

performance of the three optimizers is quite similar in 

this case. The Inception-v3 model trained with the 

RMSProp optimizer and a learning rate of 0.0001 

achieved the best results, with a test accuracy of 93.8% 

and a test loss of 0.1849. Close behind, the model trained 

with the Adam optimizer, with a learning rate of 0.0001, 

achieved a test accuracy of 93.7% and a test loss of 

0.1867. Although slightly lower, it is a competitive 

performance. Furthermore, the performance gap 

between the SGD optimizer and the other optimizers has 

narrowed. The SGD model trained with a learning rate 

of 0.0001 achieved an 85.7% test accuracy and a test loss 

of 0.4225. While still not performing as well as the other 

optimizers, this demonstrates a relatively improved 

performance for the SGD optimizer with Inception-v3. 

Discussion 

To summarise the previous results, Fig. (7) presents 

a bar chart comparing the performance of the best model 

from each of the different algorithms. The chart clearly 

demonstrates that the CNN model utilizing the 

RMSProp optimizer and a learning rate of 0.0001 

performs better than the ResNet-50 and Inception-v3 

models. It achieved the lowest test loss (0.17) and the 

highest test accuracy (95%). Based on these findings, the 

suggested CNN model is deemed better appropriate for 

identifying scenes in the current experiment. 
Following the identification of the optimal model a 

CNN trained using the RMSProp, the optimizer, and a 

rate of learning of 0.0001 further analysis was carried 

out. The top model's categorization report is shown in 

Fig. (8). The results demonstrate that the trained model 

did an excellent job, with high F1 scores, recall, and 

accuracy in every class. All of the classes have very high 

accuracy ratings, between 0.92-0.98. What this means is 

that the model is generally accurate when it predicts that 
a picture belongs to a particular class. All of the courses 

had excellent recall ratings, too, between 0.92-0.98. This 

proves that the model is accurate in identifying most 

occurrences of each class. All classes show good 

performance for the model with F1-scores that range 

from 0.93-0.98, which takes accuracy and recall into 

account. This points to the model's dependable overall 

performance, which is likely the result of a balanced 

trade-off between recall and accuracy. 

 
Table 2: Performance ResNet-50 WIT H optimizers  

Model Optimizer Learning Rate Accuracy %  Loss 

 ADAM 0.0010 76.5 0.6137 
  0.0001 77.3 0.6219 

ResNet-50 SGD 0.0010 45.3 1.1683 
  0.0001 50.3 1.3311 
 RMSProp 0.0010 75.0 0.6712 
  0.0001 65.2 0.8243 

 
Table 3: Performance Inception-v3 with Optimizers  

Optimizer Learning Rate Accuracy % Loss 

ADAM 0.001 93.5 0.1958 
 0.0001 93.7 0.1867 
SGD 0.001 91.9 0.2350 

 0.0001 85.7 0.4225 
RMSProp 0.001 93.2 0.2048 
 0.0001 93.8 0.1849 

 

 
 
Fig. 7: Comparing the performance of the best model 
 

 
 
Fig. 8: Result of the best model 
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Figure (9) displays the confusion matrix, providing a 

visual representation of the model’s predictions. The 

confusion matrix reveals the model’s performance in 

correctly predicting the classes or labels of the images. 
Upon examining the matrix, it is evident that the model 

performs exceptionally well, with a high number of 

images correctly predicted across all classes. The number 

of images correctly predicted ranges from 962-1029 out 

of 1050 images for each class. However, it is noteworthy 

that there is a slightly higher number of wrong predictions 

between the” meadow” and” farmland” classes compared 

to the other courses. This observation aligns with our 

understanding that these two classes can exhibit visual 

similarities in the real world, making them more 

challenging to differentiate. 
Figure (10) presents the predictions made by the 

CNN model on a selection of samples from the testing 

set. Ten samples were selected for this particular 

analysis to assess the performance of the model. 

Remarkably, the model excels by correctly predicting all 

the classes or labels assigned to the images. This 

outcome demonstrates the high accuracy and 

effectiveness of the proposed CNN model in accurately 

detecting and classifying scenes or geographical land. 

 

 
 

Fig. 9: Confusion matrix 
 

 
 
Fig. 10: Predictions by the CNN with RMSprop 

Conclusion and Future Work 

This study aimed to develop a deep learning model 

for the classification of geographical land structures with 

three different architectures, namely CNN, ResNet-50, 

and Inception-v3, to identify the most suitable model for 

this task. The experimental results revealed that the CNN 

model trained with RMSProp optimizer and a learning 

rate of 0.0001 reached the highest level of performance 

with the lowest test loss (0.17) and the highest test 

accuracy (95%) among all the tested models. 

Furthermore, an in-depth analysis of the CNN model 

showcased its excellent precision, recall, and F1 scores 

across all classes, indicating its robustness and reliability 

in accurately identifying different land structures. 

Consequently, it may be said that the suggested CNN 

model outperformed ResNet-50 and Inception-v3 for the 

specific task of scene detection. This study demonstrates 

the efficacy of deep learning models in scene 

understanding. It showcases the potential for their 

application in various real-world scenarios related to 

land structure identification and classification. 

In the future, the trained model may be used for real-

world scenarios, including the identification and 

classification of land formations. This might include 

automating processes like environmental monitoring, 

urban planning, and land cover mapping via the use of 

remote sensing platforms or Geographic Information 

Systems (GIS). 
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