

000 001 002 003 004 005 BROWSENET: GRAPH-BASED ASSOCIATIVE MEMORY 006 FOR CONTEXTUAL INFORMATION RETRIEVAL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

ABSTRACT

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1

054 Multi-hop question answering (MHQA) exemplifies this challenge. Standard RAG approaches typi-
 055 cally retrieve isolated chunks without modeling their interconnections, which limits their effectiveness
 056 for multi-step reasoning. To compensate, existing methods rely on iterative prompting strategies that
 057 require multiple interactions with LLMs (Trivedi et al., 2022a; Wei et al., 2022; Yao et al., 2023;
 058 Wang et al., 2024). While effective, these approaches increase latency and inference costs (Gutiérrez
 059 et al., 2024).

060 To address these gaps, we propose BrowseNet, a graph-based associative memory framework that
 061 unifies lexical and semantic retrieval approaches. BrowseNet transforms unstructured text into a
 062 lexically connected graph-of-chunks, where edges capture entity co-occurrence and syntactic relations,
 063 and nodes are enriched with semantic embeddings. By framing MHQA as a query-specific graph
 064 traversal problem, BrowseNet constructs query-subgraphs that reflect the structural and semantic
 065 requirements of complex questions (refer to Fig. 1-(a)). This approach enables the system to link
 066 decomposed single-hop queries into coherent reasoning chains, retrieving information more efficiently
 067 and effectively than conventional retrievers.

068 The contributions of this work are as follows: (1) BrowseNet dynamically adapts traversal paths
 069 through the graph-of-chunks according to the query’s structural and semantic features, (2) The
 070 framework integrates lexical and semantic relationships, allowing more nuanced and context-aware
 071 retrieval than single-modality methods, (3) Retrieval is achieved with a single LLM interaction, guided
 072 by pre-generated decomposed queries, reducing cost and latency, and (4) Empirical evaluation shows
 073 that BrowseNet achieves state-of-the-art performance in multi-hop question answering, outperforming
 074 both dense retrievers and graph-based RAG systems.

075 2 RELATED WORKS

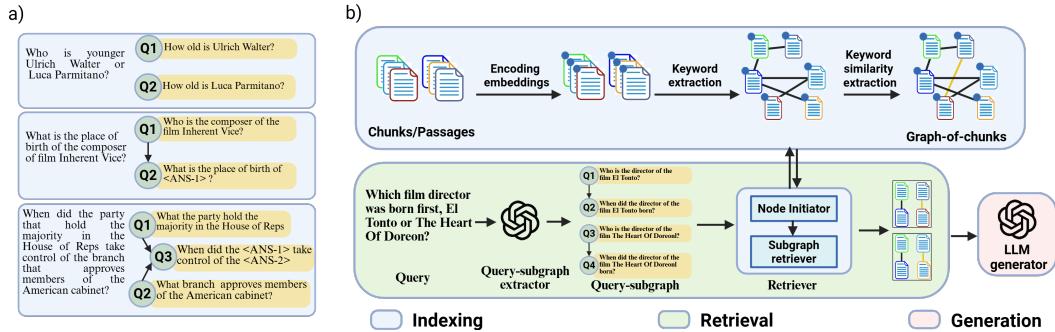
076
 077 **Retrieval Augmented generation (RAG):** RAG was introduced by Lewis et al. (2020) to overcome
 078 the limitations of traditional fine-tuning for LLMs. By enabling dynamic access to external knowledge,
 079 RAG improves factual accuracy and adaptability. Its framework comprises three stages: Indexing,
 080 where documents or document chunks are encoded and stored in a vector database; Retrieval, where
 081 relevant text chunks are fetched; and Generation, where the LLM produces responses using an
 082 augmented prompt Gao et al. (2023). BrowseNet departs from this pipeline at every stage. In
 083 indexing, it constructs a graph-of-chunks that integrates both lexical relationships and semantic
 084 embeddings. In retrieval, instead of isolated chunks, BrowseNet extracts a query-specific subgraph
 085 that preserves reasoning dependencies among information units. Finally, in generation, the augmented
 086 prompt incorporates decomposed sub-queries, enabling the LLM to perform structured reasoning
 087 over the retrieved content.

088 **Graph Informed Retrieval Augmented Generation:** Naive RAG pipelines often fall short
 089 when queries require integrating information across multiple documents. To address this, several
 090 graph-based extensions have been proposed. GraphRAG (Edge et al., 2024) constructs hierarchical
 091 knowledge graphs (KG) to improve reasoning over complex relationships. RAPTOR (Sarthi et al.,
 092 2024) employs recursive clustering and summarization to build tree-structured document represen-
 093 tations that support multi-level retrieval. LightRAG (Guo et al., 2024) enhances text indexing with
 094 graph structures and introduces a dual-level retrieval mechanism for greater efficiency and contextual
 095 accuracy. While these methods improve cross-context reasoning, they rely heavily on LLMs during
 096 indexing to generate or expand the retrieval corpus. This reliance increases costs and introduces noise
 097 from LLM-generated text. In contrast, BrowseNet minimizes such dependence: generative-LLMs are
 098 used only for graph link inference during indexing and for query decomposition during retrieval. Our
 099 best-performing setup requires no LLM involvement in offline indexing, making it both cost-efficient
 100 and less prone to noise.

101 **Brain-Inspired RAG:** HippoRAG (Gutiérrez et al., 2024) and HippoRAG 2 (Gutiérrez et al.,
 102 2025) advance RAG by introducing brain-inspired mechanisms that emulate associative memory
 103 for improved integration of retrieved knowledge. HippoRAG 2 currently achieves state-of-the-art
 104 performance in MHQA. However, these approaches require both named entity recognition (NER) and
 105 relation extraction (RE) for KG construction. In contrast, BrowseNet requires only NER, simplifying
 106 the pipeline while maintaining high retrieval effectiveness.

108 3 METHODOLOGY

110 The overall workflow of the proposed approach, BrowseNet, is illustrated in Fig. 1-(b). It is structured
 111 into three phases: (1) Graph-of-chunks construction, (2) Context retrieval, and (3) Answer generation.
 112



125 Figure 1: a) Decomposition of the multi-hop query: The multi-hop queries are decomposed into
 126 single-hop queries, structurally linked according to answer dependencies. b) Overview of the
 127 BrowseNet workflow: The indexing phase includes chunking, embedding encoding, and keyword
 128 extraction to construct the graph-of-chunks. During retrieval, BrowseNet employs LLMs to extract
 129 the query-subgraph and identifies structurally similar and semantically relevant subgraphs within
 130 the graph-of-chunks. Finally, the generation phase leverages the retrieved subgraphs and queries to
 131 generate answers.

132 3.1 GRAPH-OF-CHUNKS CONSTRUCTION

133 Let $G = (V, E)$ be a graph-of-chunks constructed from a corpus of documents D , where V denotes
 134 a set of nodes corresponding to passages (or chunks) of documents, and E represents the set of
 135 edges between these nodes. Each node $c \in V$ is associated with three key attributes: a unique index
 136 identifying the passage, the passage text along with its title, and a semantic vector capturing its
 137 contextual meaning. The NV-Embed-v2 model (Lee et al., 2024) is employed to encode the entire
 138 corpus into vector embeddings. Let $M(c)$ denote the embedding of the chunk c . Also, ablations
 139 are done on the encoders, GTE-Qwen2 (7B) (Li et al., 2023) and Granite-125M-English (Awasthy
 140 et al., 2025) (refer to Section 6). An edge $e_{ij} \in E$ exists between two nodes ($c_i, c_j \in V$) if they
 141 share a common or synonymous entity, thereby capturing lexical relationships between passages. The
 142 construction of the graph-of-chunks involves two main steps: 1) **Named Entity Recognition (NER):**
 143 Identifying named entities within each passage, and 2) **Entity Linking:** Detecting synonymous or
 144 semantically related entities to establish additional edges.

145 **NER** is performed using GLiNER (a BERT-based model) (Zaraticana et al., 2023), which supports
 146 zero-shot entity extraction based on provided label sets. We observed that results are largely consistent
 147 when using generative models based on GPT-like architectures (e.g., GPT-4o (OpenAI., 2025a) and
 148 Claude-3.7-Sonnet (Anthropic., 2024)) in place of GLiNER. For GLiNER, NER requires pre-
 149 defined labels as input. Given that the benchmark datasets used are general-purpose rather than
 150 domain-specific, we adopt broad category labels such as event, facilities, language, location, money,
 151 nationality, religious, political, organization, person, product, work_of_art, occupation, time, ordi-
 152 nal, and date. For GPT-like models, a one-shot demonstration is used for entity extraction (refer
 153 Appendix A.1 for prompts). All extracted entities are post-processed to retain only alphanumeric
 154 characters and spaces. **Entity linking** is performed using the ColBERTv2 model (Santhanam et al.,
 155 2021) to identify synonymous entities (e.g., TV host and TV presenter). Entities extracted from the
 156 NER step are input into ColBERTv2 to compute pairwise similarity scores. Numerical entities and
 157 dates are excluded from this step as they are less informative for establishing semantic relationships.
 158 Pairs of entities with a cosine similarity score greater than 0.9 are considered synonymous (ablation
 159 studies are done on other thresholds too). This allows passages that contain equivalent entities to be
 160 connected in the graph, enriching the structure. A snippet of the graph-of-chunks with seven nodes
 161 from the 2WikiMultiHopQA corpus is shown in Fig. 2 in Appendix.

162 3.2 CONTEXT RETRIEVAL

163

164 Context retrieval for a given question consists of two essential steps: 1) Query-subgraph extraction,
165 and 2) Graph-of-chunks traversal.

166

167 3.2.1 QUERY-SUBGRAPH EXTRACTION

168

169 Each multi-hop query, Q_{orig} can be decomposed into a sequence of single-hop queries, where each
170 single-hop query builds upon the answer to the previous one (Fig. 1). We model this multi-hop
171 query as a directed graph, referred to as the *query-subgraph*, where nodes correspond to individual
172 single-hop queries, and directed edges represent the dependency between them, linking queries
173 through their intermediate answers. This directed subgraph has to be *acyclic* and can have more
174 than one connected component (Example question used in Fig. 1-(b) has two connected component),
175 reflecting the inherent structure of multi-hop question answering. **Circular dependencies would imply**
176 **that a subquestion requires its own answer as a prerequisite, leading to ill-defined and non-terminating**
177 **reasoning. Consistent with this design choice, all gold query decompositions in standard benchmarks**
178 **(HotpotQA, 2WikiMQA, MuSiQue) are acyclic. Restricting decomposition to Directed Acyclic**
179 **Graphs (DAGs) therefore ensures semantic validity, guaranteed termination, and tractable reasoning**
180 **in practical multi-hop QA settings.** We have employed the GPT-4o model (OpenAI., 2025a) to
181 generate the query-subgraph (refer Appendix A.1 for prompts). Furthermore, ablations are done
182 on DeepSeek Reasoner (Guo et al., 2025), GPT-4o-mini (OpenAI., 2025c) and Claude-3.7-Sonnet
183 (Anthropic., 2024).

184

185 3.2.2 GRAPH-OF-CHUNKS TRAVERSAL FOR CONTEXT RETRIEVAL

186

187 Once the query-subgraph is identified, the retrieval process involves traversing the graph to extract
188 subgraphs that provide contextual information for answer generation. Formally, let $Q = (V_q, E_q)$
189 denote the query-subgraph, where V_q represents a set of nodes corresponding to the decomposed
190 single-hop queries, and E_q denotes the set of directed edges capturing dependencies between them.
191 The retrieval begins by identifying the connected components, $Q^{(i)} \in Q$, each of which is processed
192 separately for subgraph extraction. Within each connected component, nodes are sorted in topological
193 order, with initiator nodes (those with no incoming edges) at the beginning and terminal nodes (those
194 with no outgoing edges) at the end. Consider the example query shown in Fig. 1-(b), $Q1$ and $Q3$
195 are the initiator nodes, and $Q2$ and $Q4$ are the terminal nodes. Retrieval is performed for each node
196 in the order of the topological sort to extract its respective subgraph. Two distinct approaches are
197 employed for initiator nodes and non-initiator nodes.

198

199 **Retrieval for Initiator Nodes:** For each initiator node, the top- k candidate chunks (denoted
200 $c_1, \dots, c_k \in V$) with the highest similarity scores are retrieved by treating all nodes (chunks)
201 in the graph-of-chunks as the corpus. The similarity score for a chunk c_i , denoted SS_{c_i} , is computed
202 as the maximum cosine similarity between its embedding ($M(c_i)$), the embeddings of the original
203 multi-hop query ($M(Q_{orig})$) and the corresponding single-hop query ($M(V_q^j)$), using Equation 1:

204

205
$$SS_{c_i} = \max(\cos\angle(M(c_i), M(Q_{orig})), \cos\angle(M(c_i), M(V_q^j))) \quad (1)$$

206

207 This approach is designed to mitigate the effects of noise or errors introduced by incorrect query
208 decomposition. The intuition is that if a single-hop query accurately captures the needed information,
209 the corresponding chunk will exhibit higher similarity to it than to the multi-hop query. Conversely, if
210 the single-hop query is poorly formulated by the LLM, the original multi-hop query may still retrieve
211 the relevant chunk effectively. **Also, note that when a query cannot be decomposed into subqueries,**
212 **the retrieval procedure falls back to the single initiator node case, which is semantic search over the**
213 **entire corpus.**

214

215 **Retrieval for Non-Initiator Nodes:** For a non-initiator node with p predecessor nodes, $P = \{V_q^j : V_q^j$
216 $is a predecessor of $V_q^i\}$ in the query subgraph (retrieval proceeds in topological order), each
217 predecessor has k retrieved chunks. All possible combinations formed by selecting one chunk from
218 each predecessor's retrieved set are considered, resulting in a total of k^p combinations. For each
219 such combination, the candidate chunks for the non-initiator node are defined as the union of the
220 neighbors of the selected predecessor chunks in the graph-of-chunks. This approach is based on
221 the assumption that the graph-of-chunks captures meaningful relationships between the single-hop$

216 queries of the predecessor nodes and the target non-initiator node. By considering neighbors in the
 217 graph, the method leverages structural information to guide multi-hop retrieval.
 218

219 A modified query is created by concatenating a chunk from the combination if the query is seman-
 220 tically more similar to the chunk than to any of the neighbors. Subsequently, a semantic search
 221 is conducted by assigning each chunk in the candidate chunks a similarity score, defined as the
 222 maximum of its cosine similarity with the current single-hop query, the modified query, and the
 223 original multi-hop query. Now, for each combination, the top- k chunks with the highest scores are
 224 selected, resulting in $k^{(p+1)}$ candidate subgraphs. Each subgraph is then scored using a weighted
 225 average of the similarity scores of its chunks, where the weight for each chunk is the inverse of the
 226 index of the subquery in the topological order, as shown in Equation 2
 227

$$weight_{SG} = \sum_i \frac{SS_{c_i}}{i} \quad (2)$$

228 where i refers to the index of the subquery in the topological order. The weighting scheme places
 229 greater emphasis on initial nodes compared to later ones, as incorrect retrieval at initial nodes can
 230 result in entirely erroneous neighbors and, consequently, incorrect subgraph retrieval. The top-
 231 k subgraphs with the highest scores are retained, and the corresponding chunks for the current
 232 node within these subgraphs are selected. **This approach is analogous to beam search applied over**
 233 **subgraphs, where a fixed number of high-scoring candidate subgraphs are maintained (top- k) enabling**
 234 **efficient exploration of multiple reasoning hypotheses while focusing retrieval on the most promising**
 235 **paths.** The example retrieval for a query with two-hops is shown in Appendix Fig. 3

236 Although the theoretical space of possible subgraphs is k^{p+1} , this upper bound is rarely realized in
 237 practice. Realistic query structures are shallow, typically with at most four predecessors ($p \leq 4$),
 238 and even $p = 4$ is already uncommon. With a practical choice of $k = 5$ the full combinatorial space
 239 would contain at most $5^5 = 3125$ candidate subgraphs. However, because only the top- k subgraphs
 240 are retained at each expansion step, the effective search complexity is drastically reduced, making the
 241 approach computationally feasible.

242 **Context Curation:** Once retrieval is performed for every node in the query subgraph following the
 243 topological order, the context is formed by the chunks from the top- k subgraphs retained at the end
 244 of the retrieval process. Here, k is a hyperparameter referred to as $n_subgraphs$ hereafter.

245 The structured algorithm, along with its pseudo-code, for traversing the graph-of-chunks to retrieve
 246 the most relevant subgraphs is presented in Algorithm 1 in the Appendix.

249 3.3 ANSWER GENERATION

250 Once the relevant context is retrieved for a given question, it is provided as input to the LLM. Along
 251 with the retrieved context, we incorporate an instruction prompt. This prompt guides the model in
 252 generating a well-structured response using the generated subqueries that provide the final answer
 253 and includes a detailed explanation of the reasoning process that led to the derived conclusion.
 254 This ensures that the model’s response is both interpretable and transparent, thereby enhancing the
 255 system’s overall reliability in knowledge-intensive tasks, which enables the generation of an answer
 256 along with the reasoning that led to the answer. The prompt used is provided in the Appendix A.1.
 257 To align with the previous methods, the LLM used to generate the answer is gpt-4o-mini. However,
 258 ablations are done for answer generation using gpt-3.5-turbo, gpt-4.1-mini, deepseek-chat-v3, and
 259 gemini-2.0-flash.

261 4 EXPERIMENTAL SETUP

263 4.1 DATASETS

264 We evaluate our approach on three benchmark multi-hop question answering datasets: HotpotQA
 265 (Yang et al., 2018), 2WikiMQA (Ho et al., 2020), and MuSiQue (Trivedi et al., 2022b). For each
 266 dataset, we randomly sample 1,000 questions from the validation split to construct the set of queries
 267 and the associated corpus, as performed previously (Press et al., 2022; Trivedi et al., 2022a; Gutiérrez
 268 et al., 2024). **To better reflect real-world use cases, we have modified the benchmark datasets by**
 269 **including all passages from other questions as candidate distractors.** The number of passages for

270 the benchmarks are 9,221, 6,119 and 11,656 respectively for HotpotQA, 2WikiMQA and Musique.
 271 This effectively enlarges the candidate corpus, simulating a more realistic retrieval setting where
 272 numerous irrelevant documents must be filtered.
 273

274 4.2 BASELINES 275

276 We compare BrowseNet with a range of retriever-based approaches, including: (i) simple retrievers
 277 such as BM25 (Robertson & Walker, 1994), Contriever (Izacard et al., 2021), and GTR (Ni et al.,
 278 2021); (ii) dense retrievers such as NV-Embed-v2 (Lee et al., 2024), GTE-Qwen2 (Li et al., 2023),
 279 Granite-125M-English (Awasthy et al., 2025), and Proposition (Chen et al., 2024); and (iii) Graph-
 280 augmented RAG methods, including RAPTOR (Sarthi et al., 2024), GraphRAG (Edge et al., 2024),
 281 LightRAG (Guo et al., 2024), HippoRAG (Gutiérrez et al., 2024), SiReRAG (Zhang et al., 2024),
 282 and HippoRAG-2 (Gutiérrez et al., 2025).
 283

283 To ensure a fair comparison across all baselines, we employ the same LLM, gpt-4o-mini, for all stages
 284 that rely on a generative-LLM, including indexing, retrieval, and question answering. This applies
 285 to methods such as RAPTOR, HippoRAG, HippoRAG-2, LightRAG, GraphRAG, and SiReRAG.
 286 HippoRAG-2 additionally requires an embedding model, for which we use NV-Embed-v2, the same
 287 embedding model employed in BrowseNet. For BrowseNet, we conduct extensive experiments with
 288 multiple LLMs and report the best performance obtained. Ablation studies further demonstrate that
 289 BrowseNet remains robust across different choices of generative-LLMs.
 290

291 4.3 EVALUATIONS 292

292 BrowseNet is evaluated at three stages: graph-of-chunks construction, context retrieval, and answer
 293 generation.

294 **Graph-of-chunks Evaluation:** The constructed graph-of-chunks is evaluated based on its ability to
 295 capture the edges necessary to answer multi-hop queries. These required edges are derived from the
 296 gold evidence paths provided in the benchmark datasets (refer Appendix A.2). Specifically, MuSiQue
 297 and 2WikiMQA include annotated reasoning paths that link the chunks involved in answering each
 298 question. The quality of the constructed graph-of-chunks is assessed by measuring the fraction of
 299 its edges that correctly represent these gold reasoning paths, thereby reflecting its effectiveness in
 300 supporting multi-hop reasoning.

301 **Query-Subgraph Evaluation:** To evaluate the quality of the generated query-subgraph, we define
 302 a metric called isomorphic accuracy (refer Appendix A.3), which captures the structural similarity
 303 between the generated subgraph and the gold reasoning pathway provided in the 2WikiMQA and
 304 MuSiQue datasets. Two graphs, G_1 and G_2 , are considered isomorphic if there exists a bijective
 305 function f that maps the vertices of G_1 to the vertices of G_2 , such that adjacency is preserved. In
 306 other words, an edge exists between vertices u and v in G_1 if and only if an edge exists between $f(u)$
 307 and $f(v)$ in G_2 . In our setting, G_1 corresponds to the generated query-subgraph, and G_2 is the gold
 308 graph derived from the annotated reasoning path or query decomposition provided in the benchmark
 309 datasets. Isomorphism checking is carried out using NetworkX's `is_isomorphic()` function, which
 310 implements the exact VF2 algorithm (Cordella et al., 2001). While graph isomorphism is hard in
 311 general, the query-subgraphs in our evaluation are very small (maximum four nodes), making exact
 312 isomorphism testing computationally feasible across all benchmarks. The results for isomorphic
 313 accuracy are presented in the Appendix A.3.

314 **Context Retrieval Evaluation:** We evaluate context retrieval performance using the *Recall@k*
 315 metric. For each question, *Recall@k* is defined as: $R@k = \frac{|\text{Top-}k \text{ Retrieved Passages} \cap \text{Gold Passages}|}{|\text{Gold Passages}|}$. Here,
 316 Gold Passages refer to the set of chunks required to answer the given multi-hop query, as specified
 317 in the benchmark datasets. The final Recall@k score is obtained by averaging the recall across all
 318 questions in the evaluation set.

319 **Answer Generation Evaluation:** We evaluate the quality of generated answers using two standard
 320 metrics: Exact Match (EM) and F1 score.

321 **Exact Match (EM):** The Exact Match metric measures whether the generated answer matches the
 322 ground truth answer exactly, word for word. It returns a score of 1.0 for an exact match and 0.0
 323 otherwise. The final EM score reported in the results section is the average of EM scores across all
 324 evaluation questions.

325 **F1 Score:** The F1 score evaluates the overlap between the generated and ground truth answers at the
 326 token level. Both answers are tokenized by splitting on whitespace. Precision is defined as the ratio

324 of overlapping tokens to the total number of tokens in the generated answer, while Recall is the ratio
 325 of overlapping tokens to the total number of tokens in the ground truth answer. The F1 score is then
 326 computed as the harmonic mean of precision and recall: $F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$. The final F1 score
 327 is reported as the average of the overall questions in the evaluation set.
 328

329 5 RESULTS AND DISCUSSIONS

330 5.1 EVALUATION OF GRAPH-OF-CHUNKS

333 The graph-of-chunks constructed for BrowseNet are evaluated based on their ability to retrieve the
 334 relevant edges necessary for answering multi-hop queries. This assesses the effectiveness of the
 335 graph-of-chunks in identifying key relationships and entities in the corpus. Table 1 shows that, in
 336 the 2WikiMQA dataset, the graph-of-chunks achieves an edge accuracy nearing 99.86%, indicating
 337 that nearly all essential subgraphs required for reasoning are successfully captured. In contrast, for
 338 the MuSiQue dataset, the GLiNER model achieves an edge accuracy of 91.03%. Additionally, the
 339 number of entities extracted remains almost consistent across the different NER models used in the
 340 study (refer Table 14 in Appendix). The synonymity threshold in ColBERT, used for graph-of-chunks
 341 construction, has minimal effect on edge accuracy for the 2WikiMQA dataset across all NER models
 342 as shown in Table 11 in the Appendix. However, for the MuSiQue dataset, edge accuracy is sensitive
 343 to the threshold used. The smaller the threshold, the greater the graph’s density (refer Appendix A.4),
 344 which introduces noise edges (false positives). Also, the ablation studies on ColBERT synonymity
 345 threshold (refer to Table 4) show little to no variation in the retrieval. Hence, a larger threshold is
 346 chosen to reduce the latency period. We also evaluate retrieval and latency improvements on using
 347 a graph-of-chunks in the Appendix A.5. Results in Table 8 in Appendix A.5 shows that Recall@5
 348 improves by approximately 5% compared to the baseline (BrowseNet without graph-of-chunks),
 349 while the computation time is reduced by about 1.5 times compared to the baseline. These results
 350 underscore the importance of a well-constructed graph-of-chunks in enhancing both the accuracy and
 351 efficiency of multi-hop question answering systems.

352 Table 1: Graph-of-chunks statistics and performance across different datasets.

353 NER Model	354 Dataset	355 No. of Nodes	356 No. of Entities	357 Graph Density	358 Edge Accuracy
359 GLiNER	HotPotQA	9,221	60,862	0.0641	NA
	2WikiMQA	6,119	44,907	0.0978	99.86
	MuSiQue	11,656	67,332	0.0498	91.03

359 5.2 RETRIEVAL RESULTS

360 The retrieval performance of BrowseNet is assessed against state-of-the-art (SOTA) models and base-
 361 line methods. GraphRAG, **SiReRAG** and LightRAG do not follow the retrieve-and-read paradigm;
 362 hence, their results are not included in this comparison. Retrieval effectiveness, measured by Re-
 363 call@2 (R@2) and Recall@5 (R@5), demonstrates that BrowseNet achieves the highest average
 364 performance across the three benchmark datasets, as shown in Table 2, thereby establishing new
 365 SOTA results, while HippoRAG-2 is the second-best performing pipeline.

366 In the HotpotQA dataset, the NV-Embed-v2 retriever achieves slightly better performance at R@2.
 367 Although HotpotQA requires two-hop reasoning, prior studies (Gutiérrez et al., 2024; Trivedi et al.,
 368 2022b) have identified it as a weaker benchmark for multi-hop retrieval due to the presence of
 369 spurious signals. Nevertheless, BrowseNet outperforms all baselines at R@5 in this dataset. In the
 370 2WikiMQA dataset, the query subgraphs typically contain connected components of maximum length
 371 two, allowing keywords alone to serve as effective linking mechanisms between passages. Here,
 372 BrowseNet surpasses HippoRAG-2 (the previous SOTA) by 2% in both R@2 and R@5. Conversely,
 373 the MuSiQue dataset presents a more challenging setting, with query-subgraph components extending
 374 up to four hops. This necessitates traversing multiple connections to retrieve relevant context.
 375 While NV-Embed-v2 relies solely on semantic similarity, BrowseNet integrates both keyword-based
 376 linking and semantic proximity. This hybrid strategy improves its performance in complex multi-
 377 hop scenarios, enabling it to capture both explicit and implicit relationships between information
 378 sources. As a result, BrowseNet outperforms HippoRAG-2 in recall evaluations. Latency evaluations

(refer Appendix A.6) indicate that BrowseNet exhibits slightly higher latency than HippoRAG-2. Nonetheless, the increase is marginal (0.49 seconds on average) and is justified by the substantial improvements in retrieval recall.

Table 2: BrowseNet pipeline outperforms other baselines in retrieval performance in all three benchmarks tested. The best score is written in **Bold** and the second best is underlined. A detailed statistical analysis of closely competing metrics is provided in Appendix A.11.

Retriever	HotpotQA		2WikiMQA		MuSiQue		Average	
	R@2	R@5	R@2	R@5	R@2	R@5	R@2	R@5
Simple baselines								
BM25	55.40	72.20	51.80	61.90	32.20	41.20	46.50	58.43
Contriever	57.20	75.50	46.60	57.50	34.80	46.60	46.20	59.87
GTR	59.40	73.30	60.20	67.90	37.40	49.10	52.33	63.43
Dense retrievers								
NV-Embed-v2 (7B)	83.95	95.65	69.05	76.72	53.30	69.85	68.77	80.74
GTE-Qwen2 (7B)	72.70	87.50	65.22	73.25	48.78	63.45	62.23	74.73
Granite-125M-English	70.40	85.30	64.12	70.62	44.54	59.37	59.69	71.76
Proposition	58.70	71.10	56.40	63.10	37.60	49.30	50.90	61.17
KG-augmented RAGs								
RAPTOR	58.10	71.20	46.30	53.80	35.70	45.30	46.70	56.77
HippoRAG	60.05	78.10	70.40	87.87	41.86	53.57	57.44	73.11
HippoRAG-2	81.80	<u>96.20</u>	<u>74.60</u>	<u>90.20</u>	<u>53.50</u>	74.20	<u>69.97</u>	<u>86.87</u>
BrowseNet	<u>83.85</u>	96.40	76.77	93.30	55.12	<u>73.91</u>	71.91	87.87

Table 3: BrowseNet pipeline outperforms other baselines in answer generation in all three benchmarks tested. The best score is written in **Bold** and the second best is underlined. BrowseNet’s performance over the second best method is statistically significant based on a paired bootstrap test ($p < 0.05$).

Retriever	HotpotQA		2WikiMQA		MuSiQue		Average	
	EM	F1	EM	F1	EM	F1	EM	F1
NV-Embed-v2 (7B)								
NV-Embed-v2 (7B)	<u>59.80</u>	75.52	52.50	62.57	<u>36.90</u>	49.80	49.73	62.63
LightRAG	9.90	20.20	2.50	12.10	2.00	9.30	4.8	13.87
GraphRAG	51.40	67.60	45.70	61.00	27.00	42.00	41.37	56.87
SiReRAG	48.30	63.17	41.30	48.05	26.00	39.59	38.53	50.27
HippoRAG-2	59.30	<u>76.90</u>	<u>60.50</u>	<u>69.70</u>	35.00	49.30	<u>51.60</u>	<u>65.30</u>
BrowseNet	62.20	77.69	63.90	74.50	41.60	54.08	55.90	68.76

5.3 QUESTION ANSWERING RESULTS

In the QA evaluation, BrowseNet demonstrates superior performance over all other methods across all benchmarks, achieving higher exact match and F1 scores as reported in Table 3. The performance gains can be attributed to the inclusion of sub-queries in the prompt alongside the original question, enabling the language model to perform intermediate reasoning steps that reduce ambiguity and enhance contextual understanding. Furthermore, the overall LLM cost of HippoRAG-2 is $33\times$ higher than that of the BrowseNet pipeline, from indexing through to question-answering (refer Appendix A.7).

5.4 ABLATIONS STUDIES

We performed ablations at three stages of answer generation: Graph-of-chunks construction, retrieval, and answer generation to understand the contribution and importance of different components in BrowseNet. Results for retrieval ablations are shown in Table 4, with the others in

432 Appendix A.8. BrowseNet shows stable performance across synonymity thresholds and keyword
 433 generation models. Increasing the number of subgraphs ($n_{subgraphs}$) improves context retrieval
 434 but increases latency, making larger values preferable when context size is not limiting and latency is
 435 less critical. Retrieval effectiveness was consistent across query decomposition models (DeepSeek
 436 Reasoner and gpt-4o-mini), indicating robustness to this choice. On the other hand, a significant drop
 437 in performance was observed when BrowseNet was evaluated with a different encoder, underscoring
 438 the critical role of encoder choice in the overall effectiveness of the system.

439
440 Table 4: Ablation studies on retrieval performance of BrowseNet.
441

	Alternatives	HotpotQA		2WikiMQA		MuSiQue		Average	
		R@2	R@5	R@2	R@5	R@2	R@5	R@2	R@5
BrowseNet		83.85	96.40	76.77	93.30	55.12	73.91	71.91	87.87
Synonymity threshold	0.8	83.60	96.30	76.77	93.00	55.01	73.82	71.79	87.71
	0.7	83.60	96.20	76.77	92.97	55.19	73.99	71.85	87.72
Keyword generation	Claude-3.7-Sonnet	83.80	96.40	76.77	93.10	55.16	74.21	71.91	87.80
	GPT-4o	83.45	96.05	76.50	92.75	55.21	74.04	71.72	87.61
n_subgraphs	10	83.65	96.20	76.77	93.00	55.26	73.92	71.89	87.71
	15	83.55	96.00	76.77	92.95	55.24	73.94	71.85	87.63
Subquery decomposer	DeepSeek Reasoner	83.85	95.80	76.60	93.05	56.04	74.33	72.16	87.73
	GPT-4o-mini	82.85	95.40	76.05	92.60	56.77	74.41	71.89	87.47
	Claude-3.7-Sonnet	80.90	94.05	75.85	92.12	53.86	72.95	70.20	86.37
Encoder model	GTE-Qwen2 (7B)	75.40	89.80	73.25	91.10	48.69	64.81	65.78	81.90
	Granite-125M-Eng.	73.95	88.85	73.47	89.95	49.69	65.38	65.70	81.39

458
459 5.5 ROBUST RETRIEVAL GAINS ACROSS ENCODERS
460

461 To check if the performance gains of BrowseNet over the NaiveRAG are robust across all the
 462 encoders, we performed the robustness analysis on recall improvements. Table 5 illustrates that
 463 BrowseNet consistently outperforms NaiveRAG across all tested encoder models in terms of retrieval
 464 performance. This consistent improvement underscores that the strength of BrowseNet lies not in
 465 reliance on a particular encoder, but in the robustness of its retrieval methodology. The substantial
 466 gains observed up to 9.63 points in average Recall@5 demonstrate the effectiveness of BrowseNet’s
 467 structured query decomposition and graph-based context selection, regardless of the underlying
 468 encoder used.

469
470 Table 5: Retrieval performance comparison of NaiveRAG and BrowseNet with different encoders
471 using Recall@5. The last column shows the gain in average Recall@5 for BrowseNet over NaiveRAG.
472

Method	Encoder	HotpotQA	2WikiMQA	MuSiQue	Average	Gain
NaiveRAG	NV-Embed-v2(7B)	95.65	76.72	69.85	80.74	–
BrowseNet	NV-Embed-v2(7B)	96.40	93.30	73.91	87.87	+7.13
NaiveRAG	GTE-Qwen2(7B)	87.50	73.25	63.45	74.73	–
BrowseNet	GTE-Qwen2(7B)	89.80	91.10	64.81	81.90	+7.17
NaiveRAG	Granite-125M-English	85.30	70.62	59.37	71.76	–
BrowseNet	Granite-125M-English	88.85	89.95	65.38	81.39	+9.63

481
482 5.6 ERROR ANALYSIS
483

484 The downstream performance of our question-answering pipeline, specifically answer generation,
 485 relies on the effectiveness of the entire workflow. To analyze the source of errors, we sampled

100 questions where BrowseNet failed from the MuSiQue dataset and classified the errors into four categories: *graph-of-chunks construction*, *query-subgraph extraction*, *retrieval*, and *answer generation*. Table 6 presents the number of questions corresponding to each category. Note that a single question can be associated with multiple sources of error. The analysis reveals that nearly half of the errors originate from the semantic retrieval stage, followed by query decomposition, with smaller contributions from Graph-of-chunks construction and final answer generation. Detailed examples and case studies are provided in the Appendices A.9–A.10.

Table 6: Error source for 100 sampled questions from the MuSiQue dataset where BrowseNet produced an F1 score of zero. ME: Manual Evaluation, II: Isomorphic inaccuracy

Stage	Graph construction	Query-subgraph extraction (ME)	Query-subgraph extraction (II)	Semantic retrieval	Answer generation
Error %	9	33	35	49	9

6 CONCLUSIONS

We presented BrowseNet, a graph-based associative memory framework for multi-hop question answering. Unlike standard RAG pipelines that retrieve isolated text chunks, BrowseNet formulates retrieval as query-specific subgraph exploration. By combining lexical relationships with semantic embeddings, it constructs reasoning pathways that mirror the structural and semantic requirements of complex queries. Our experiments demonstrate that BrowseNet outperforms both dense retrieval and graph-enhanced RAG baselines, achieving state-of-the-art results on multi-hop question answering tasks. The framework reduces reliance on repeated LLM interactions by leveraging pre-generated sub-queries, making retrieval both more efficient and cost-effective. Future work will focus on expanding the range of semantic relationships encoded in the graph and extending the approach to more diverse and heterogeneous information sources, further strengthening BrowseNet as a scalable associative memory system for LLMs.

REPRODUCIBILITY STATEMENT

All code and datasets required to reproduce our results are included in the supplementary material. A detailed README.md file is provided, outlining step-by-step instructions to replicate every experiment and result presented in the paper. We have made every effort to ensure reproducibility by independently verifying that all reported results can be faithfully reproduced using the provided resources. The benchmark dataset used in our analysis is also included in the supplementary material. Since the evaluation involves randomly sampled questions from the validation split, we have uploaded the entire corpus along with the corresponding questions to enable exact replication. Details of the computational environment and resource requirements are provided in Appendix A.12.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

Anthropic. Claude-3-family, 2024. URL <https://www.anthropic.com/news/clause-3-family>.

Parul Awasthy, Aashka Trivedi, Yulong Li, Mihaela Bornea, David Cox, Abraham Daniels, Martin Franz, Gabe Goodhart, Bhavani Iyer, Vishwajeet Kumar, et al. Granite embedding models. *arXiv preprint arXiv:2502.20204*, 2025.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang, and Dong Yu. Dense x retrieval: What retrieval granularity should we use? In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 15159–15177, 2024.

540 Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved algorithm
 541 for matching large graphs. In *3rd IAPR-TC15 workshop on graph-based representations in pattern*
 542 *recognition*, pp. 149–159, 2001.

543

544 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 545 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 546 *arXiv preprint arXiv:2407.21783*, 2024.

547 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 548 and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
 549 *arXiv preprint arXiv:2404.16130*, 2024.

550

551 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
 552 Haofen Wang. Retrieval-augmented generation for large language models: A survey. *arXiv*
 553 *preprint arXiv:2312.10997*, 2023.

554 Google. Gemini 2.5: Our most intelligent ai model, 2025. URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>.

555

556 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 557 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 558 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

559

560 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 561 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.

562

563 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
 564 ologically inspired long-term memory for large language models. In *The Thirty-eighth Annual*
 565 *Conference on Neural Information Processing Systems*, 2024.

566

567 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
 568 Non-parametric continual learning for large language models. *arXiv preprint arXiv:2502.14802*,
 2025.

569

570 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 571 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th International*
 572 *Conference on Computational Linguistics*, pp. 6609–6625, 2020.

573

574 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 575 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
 576 *Transactions on Machine Learning Research*, 2021.

577

578 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
 579 and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
 580 *arXiv preprint arXiv:2405.17428*, 2024.

581

582 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 583 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 584 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 585 9459–9474, 2020.

586

587 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 588 general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*,
 589 2023.

590

591 Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
 592 Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
 593 *arXiv preprint arXiv:2112.07899*, 2021.

594

595 OpenAI. Gpt-4o, 2025a. URL <https://platform.openai.com/docs/models/gpt-4o>.

596

597 OpenAI. Gpt-5, 2025b. URL <https://platform.openai.com/docs/models/gpt-5>.

598

599 OpenAI. Gpt-o4-mini, 2025c. URL <https://platform.openai.com/docs/models/o4-mini>.

594 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 595 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 596 2022.

597 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
 598 Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittweiser, et al. Gemini
 599 1.5: Unlocking multimodal understanding across millions of tokens of context. *arXiv preprint*
 600 *arXiv:2403.05530*, 2024.

601 602 Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson
 603 model for probabilistic weighted retrieval. In *SIGIR'94: Proceedings of the Seventeenth Annual
 604 International ACM-SIGIR Conference on Research and Development in Information Retrieval,
 605 organised by Dublin City University*, pp. 232–241. Springer, 1994.

606 607 Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2:
 608 Effective and efficient retrieval via lightweight late interaction. *arXiv preprint arXiv:2112.01488*,
 609 2021.

610 611 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
 612 Raptor: Recursive abstractive processing for tree-organized retrieval. *arXiv preprint*
arXiv:2401.18059, 2024.

613 614 Wendy A Suzuki. Associative learning and the hippocampus. *Psychological Science Agenda*, 2005.

615 616 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 617 with chain-of-thought reasoning for knowledge-intensive multi-step questions. *arXiv preprint*
arXiv:2212.10509, 2022a.

618 619 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 620 questions via single-hop question composition. *Transactions of the Association for Computational
 621 Linguistics*, 10:539–554, 2022b.

622 623 Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
 624 prompting for multi-document question answering. In *Proceedings of the AAAI Conference on
 Artificial Intelligence*, volume 38, pp. 19206–19214, 2024.

625 626 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 627 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 628 neural information processing systems*, 35:24824–24837, 2022.

629 630 Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Hufeng Guo, Ruiming
 631 Tang, and Yong Liu. From human memory to AI memory: A survey on memory mechanisms in
 the era of llms. *arXiv preprint arXiv:2504.15965*, 2025.

632 633 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 634 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 answering. *arXiv preprint arXiv:1809.09600*, 2018.

635 636 Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
 637 in language models. *arXiv preprint arXiv:2305.16582*, 2023.

638 639 Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. Gliner: Generalist model for
 640 named entity recognition using bidirectional transformer. *arXiv preprint arXiv:2311.08526*, 2023.

641 642 Nan Zhang, Prafulla Kumar Choube, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
 643 Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. Sirerag: Indexing similar and related
 644 information for multihop reasoning. *arXiv preprint arXiv:2412.06206*, 2024.

645
 646
 647

648 A APPENDIX
649650 A.1 LLM PROMPTS USED IN THE STUDY
651652 The LLM prompt used for NER using GPT-like models is shown in Fig. 4. Prompts used for query-
653 subgraph extraction are shown in Figs. 5, 6, 7. Prompt used for answer generation after the context
654 retrieval is shown in Fig. 8.655 A.2 GRAPH-OF-CHUNKS EVALUATION BASED ON PRESENCE OF EDGES
656658 For each multi-hop question in MuSiQue dataset and 2WikiMQA, the evidence to track the reasoning
659 path across chunks is investigated and the exact approach to track the reasoning path is discussed in
660 this section.661 A.2.1 MUSIQUE DATASET:
662663 In the MuSiQue dataset, for each of the questions, question decomposition is provided, and hence,
664 the reasoning path can be traced to get the edges between the chunks. For example, for the question,
665 "When was the person who Messi's goals in Copa del Rey compared to getting signed by Barcelona?"
666 The question decomposition is provided as667 Q1 To whom was Messi's goal in the first leg of the Copa del Rey compared? [Chunk ID: 1]
668 Q2 When was <ANS-1> signed by Barcelona? [Chunk ID: 2]671 Using the details of Chunk IDs for the respective chunks, it can be inferred that Chunk IDs 1 and
672 2 should have an edge between them. In a similar fashion ground truth chunk edges (True edges)
673 are inferred for each of the questions in the MuSiQue dataset. The edge accuracy of a question is
674 calculated as shown follows

675
$$\text{Edge accuracy} = \frac{|\text{True edges} \cap \text{Edges in the graph-of-chunks}|}{|\text{True edges}|} \quad (3)$$

676

677 For the column 'Edge Accuracy' shown in Table 1, the average of all the edge accuracies across the
678 questions is shown.680 A.2.2 2WIKIMQA DATASET:
681682 In the 2WikiMQA dataset, all questions are categorized into four classes: comparison, inference,
683 composition, and bridge comparison. Comparison, inference, and composition questions involve
684 two-hop reasoning. Inference and composition questions require a connecting edge between them,
685 whereas comparison questions do not establish any edge between the two retrieved chunks. In contrast
686 to them, bridge comparison questions involve four-hop reasoning with two connecting edges. Given
687 the predefined question types, the true edges in this dataset can be inferred. The edge accuracy is
688 computed using the formula provided in Equation 3.689 A.3 ISOMORPHIC ACCURACY
690691 Isomorphic accuracy calculated for the query-subgraphs is discussed in this section. Consider the
692 following multi-hop query from the MuSiQue dataset:
693694 *"What month did the Tripartite discussions begin between Britain, France, and
695 the country where, despite being headquartered in the nation called the nobilities
696 commonwealth, the top-ranking Warsaw Pact operatives originated?"*697 The gold query decomposition is:
698699

- **Q1:** What was the nobilities commonwealth?
- **Q2:** Despite being headquartered in #1, the top-ranking operatives of the Warsaw Pact were
700 from which country?

702 • **Q3:** What month did the Tripartite discussions begin between Britain, #2, and France?

703

704 This decomposition can be represented as a graph: **Q1** → **Q2** → **Q3**.

705

706 In contrast, the query decomposition generated by GPT-4o is:

707

- 708 • **Q1:** What is the nation called the nobility’s commonwealth?
- 709 • **Q2:** <Q1> Where are the top-ranking Warsaw Pact operatives headquartered?
- 710 • **Q3:** <Q2> In which country did the top-ranking Warsaw Pact operatives originate?
- 711 • **Q4:** <Q3> What month did the Tripartite discussions begin between Britain, France, and the country where the top-ranking Warsaw Pact operatives originated?

712

713 This decomposition forms a graph: **Q1** → **Q2** → **Q3** → **Q4**.

714

715 Since the generated and gold decompositions differ in structure, they are not isomorphic, resulting in
716 an isomorphic accuracy score of **0**.

717

718 A similar evaluation procedure is applied to the 2WikiMQA dataset. The average isomorphic accuracy
719 across models is summarized in Table 7.

720

721 Table 7: Isomorphic accuracy of generated query decompositions.

722 LLM Model	723 2WikiMQA	724 MuSiQue
GPT-4o	0.973	0.685
Claude-3.7-Sonnet	0.967	0.487

725 The results indicate that isomorphic accuracy is consistently higher on the 2WikiMQA dataset than
726 on MuSiQue for both models. GPT-4o performs slightly better than Claude-3.7 Sonnet across both
727 datasets, achieving 0.973 on 2WikiMQA and 0.685 on MuSiQue, compared to 0.967 and 0.487,
728 respectively.

729

730 A.4 GRAPH DENSITY CALCULATION

731

732 The density of an undirected graph is a measure of how many edges are in the graph compared to the
733 maximum possible number of edges. Let $G = (\mathbf{V}, \mathbf{E})$ be a graph. The density GD of the graph is
734 given by:

735

$$736 GD = \frac{2|\mathbf{E}|}{|\mathbf{V}|(|\mathbf{V}| - 1)}$$

737

738 where $|\cdot|$ indicates the cardinality of the given set.

739

740 A.5 IMPORTANCE OF GRAPH-OF-CHUNKS

741

742 The graph-of-chunks plays a vital role in BrowseNet, not only in capturing dependencies but also
743 in enhancing latency. In BrowseNet, it is used for the dynamic modification of the corpus, which
744 constitutes the foundation of the proposed approach. This dynamic refinement significantly improves
745 both retrieval effectiveness and latency. Table 8 shows the improvement in retrieval performance
746 when the graph-of-chunks is utilized, compared to a baseline that considers all nodes as the corpus
747 at every retrieval step using the subquery. The results in the table are reported on a sample of 100
748 questions from the MuSiQue dataset.

749

750 Table 8: Impact of using Graph-of-chunks on retrieval performance and latency for 100 questions
751 from the MuSiQue dataset.

752 Setting	753 Time Taken (sec)	754 Recall@5
Without graph-of-chunks	177	70.75
With graph-of-chunks	115	75.08

756 A.6 LATENCY ANALYSIS
757

758 To evaluate latency, we sampled 50 questions from the MuSiQue dataset. Table 9 presents a
759 comparison between BrowseNet and HippoRAG-2 based on the Average Time Per Query (ATPQ)
760 metric, which measures the average time in seconds taken to process each query up to the retrieval
761 stage. As shown in Table 9, BrowseNet incurs a slightly higher latency compared to HippoRAG-
762 2. However, the additional latency is marginal (0.49 seconds on average) and is justified by the
763 significant gains in retrieval accuracy and overall QA performance, as demonstrated in previous
764 sections.

765
766 Table 9: Latency comparison between BrowseNet and HippoRAG-2 based on the Average Time Per
767 Query (ATPQ) for 50 sampled questions from the MuSiQue dataset.

Method	ATPQ (seconds)
BrowseNet	2.70
HippoRAG-2	2.21

773 For BrowseNet, query decomposition accounts for 1.50 seconds of the total latency, primarily due to
774 the overhead of API-based LLM calls. This component could be significantly improved by deploying
775 the language model locally, which would reduce network latency. In contrast, the retrieval stage is
776 relatively efficient, taking only 1.19 seconds on average.

777 A.7 COST ANALYSIS
778

780 We provide a quantitative comparison of LLM-related costs between BrowseNet and the state-of-the-
781 art retrieval baseline, HippoRAG-2, using the HotpotQA benchmark dataset in Table 10. The analysis
782 considers the full pipeline cost, from indexing to retrieval, using gpt-4o-mini in both systems. The
783 pricing model follows OpenAI’s current API rates (As of 24th September 2025): \$0.15 per 1M input
784 tokens and \$0.6 per 1M output tokens.

785
786 Table 10: Token-level comparison between HippoRAG-2 and BrowseNet on HotpotQA.
787

	HippoRAG-2	BrowseNet
Input tokens	5,880,618	249,503
Output tokens	2,110,007	44,641
Total tokens	7,990,625	294,144

793 The corresponding LLM costs can be estimated as follows:
794

$$795 \text{Cost} = \frac{\text{Input tokens}}{10^6} \times 0.15 + \frac{\text{Output tokens}}{10^6} \times 0.6$$

796 Using this formula:
797

- HippoRAG-2: $\approx \$2.15$
- BrowseNet: $\approx \$0.064$

803 Thus, BrowseNet achieves roughly 33 \times higher cost efficiency while maintaining state-of-the-art
804 retrieval.

805 A.8 ABLATIONS
806

808 We performed ablation studies on the graph-of-chunks construction by varying the NER model
809 for keyword extraction and the ColBERT synonymity threshold for connecting nodes. As shown
in Table 11, edge accuracy on the 2WikiMQA dataset remains near 100% across all thresholds,

810 indicating robustness to synonymity settings. In contrast, for the MuSiQue dataset, higher edge
 811 accuracy is observed at lower synonymity thresholds across all NER models.
 812

813 We also conducted ablations on answer generation using different LLMs (Table 12). The results
 814 indicate a substantial variation in performance, with average exact match scores differing by ap-
 815 proximately 10% between models, highlighting the influence of the LLM choice on final retrieval
 816 quality.
 817

818 Table 11: Graph-of-chunks performance with varying ColBERT synonymity threshold. Here, GD
 819 refers to Graph density, and EA refers to Edge accuracy.
 820

821 NER Model	Synonymity Threshold	HotpotQA		2WikiMQA		MuSiQue	
		822 GD	EA	823 GD	EA	824 GD	EA
825 GLiNER	0.9	0.0641	NA	0.0978	99.86	0.0498	91.03
	0.8	0.2309	NA	0.2653	99.86	0.1732	95.18
	0.7	0.3781	NA	0.4018	100	0.3155	97.43
826 GPT-4o	0.9	0.0844	NA	0.0663	98.74	0.0371	97.83
	0.8	0.2533	NA	0.2163	98.94	0.1652	97.94
	0.7	0.3976	NA	0.3282	99.20	0.2934	98.71
829 Claude-3.7-Sonnet	0.9	0.0893	NA	0.0673	99.74	0.0550	94.33
	0.8	0.2667	NA	0.2325	99.87	0.1848	98.26
	0.7	0.4086	NA	0.3399	100	0.3143	98.54

834 Table 12: Performance comparison of different LLMs for answer generation on HotpotQA,
 835 2WikiMQA, and MuSiQue. The best score is written in **Bold** and the second best is underlined.
 836

837 LLM	HotpotQA		2WikiMQA		MuSiQue		Average	
	838 EM	F1	EM	F1	EM	F1	EM	F1
839 gpt-4o-mini	62.20	77.69	63.90	<u>74.50</u>	41.60	54.08	55.90	68.76
840 gpt-3.5-turbo	58.80	73.81	47.70	<u>59.57</u>	37.40	49.77	47.97	61.05
841 gpt-4.1-mini	<u>63.20</u>	79.21	<u>64.50</u>	74.43	<u>42.70</u>	<u>55.07</u>	<u>56.80</u>	<u>69.57</u>
842 deepseek-chat-v3	62.20	<u>78.91</u>	66.10	75.86	43.50	56.25	57.27	70.34
843 gemini-2.0-flash	63.40	78.00	62.10	70.30	38.10	47.37	54.53	65.22

844 A.9 CASE STUDY

845 Using example questions, we demonstrate how BrowseNet improves retrieval performance compared
 846 to the NaiveRAG approach. Table 13 presents a comparison of the articles retrieved by each method.
 847 As we can see for NaiveRAG, the retrieved corpus is related to the keywords present in the query
 848 rather than the underlying reasoning path required to answer the multi-hop question, which often
 849 leads to the inclusion of spurious or contextually irrelevant passages.
 850

851 For a detailed understanding of the BrowseNet approach, consider the question, ‘What is the Till dom
 852 ensamma performer’s birth date?’. The query decomposition produces the subqueries:
 853

- 854 • Q1) Who is the performer of “Till dom ensamma”?
- 855 • Q2) <Q1> What is the birth date of the performer of “Till dom ensamma”?

856 The subgraph to be retrieved from the graph-of-chunks has the structure, **Q1** → **Q2**. Retrieval begins
 857 with the initiator node Q1, treating all nodes in the graph-of-chunks as the initial corpus. Using
 858 semantic similarity search, the top 5 most similar nodes (passages) are retrieved. Among them, the
 859 passage containing “Till dom ensamm” is found to be most similar to Q1.
 860

861 Next, for the query node Q2, the candidate contexts is restricted to the neighbors of the previously
 862 retrieved passage “Till dom ensamma”. Then Q2 is used to search the new corpus, from which the
 863 passage “Mauro Scocco” is identified as most relevant and subsequently retrieved.
 864

Question	Top-5 Retrieved Documents	
	NaiveRAG	BrowseNet
What is the Till dom ensamma performer's birth date?	<ol style="list-style-type: none"> 1. <u>Till dom ensamma</u> 2. Langa Natter 3. Nar hela varlden ser pa 4. Roxy Recordings 5. Du far gora som du vill 	<ol style="list-style-type: none"> 1. <u>Till dom ensamma</u> 2. <u>Mauro Scocco</u> 3. Hits (Mauro Scocco album) 4. Langa natter 5. Nar hela varlden ser pa
How many episodes are in season 5 of the series with "The Bag or the Bat"?	<ol style="list-style-type: none"> 1. <u>The Bag or the Bat</u> 2. List of Orange Is the New Black episodes 3. Cheatty Cheatty Bang Bang 4. Samurai Jack (season 5) 5. Arrested Development (season 5) 	<ol style="list-style-type: none"> 1. <u>The Bag or the Bat</u> 2. <u>List of Ray Donovan episodes</u> 3. List of Orange Is the New Black episodes 4. Cheatty Cheatty Bang Bang 5. Samurai Jack (season 5)

Table 14: Number of entities extracted using distinct NER models.

NER Model	No. of Entities		
	HotPotQA	2WikiMQA	MuSiQue
GLiNER	60,862	44,907	67,332
GPT-4o	61,959	41,219	66,795
Claude-3.7	62,671	41,921	67,216

A.10 ERROR ANALYSIS: DETAILS

- **Graph-of-chunks construction:** These errors arise because of missing edges in the constructed graph. Our analysis reveals that 9% of relevant edges are missing from the graph.
- **Query-subgraph extraction:** This stage is evaluated through two approaches: manual analysis to determine whether each question is correctly decomposed, and isomorphic accuracy, as defined in Section 4.3. Human evaluation shows that 33% of the questions are either incorrectly decomposed or contain redundant sub-queries (i.e., multiple sub-queries retrieving the same information). Isomorphic accuracy reveals that 35% of the questions result in query-subgraphs that are not isomorphic to the ground-truth structure, indicating errors or redundancies in the decomposition process.

Here, we present an example where query-graph generation failed to produce accurate outputs.

Query: Are both businesses, Google and Banco De Ponce, located in the same country?
The generated single-hop queries with dependencies are:

- **Q1:** In which country is Google located?
- **Q2:** In which country is Banco De Ponce located?
- **Q3:** <ANS-1> <ANS-2> Are both Google and Banco De Ponce located in the same country?

In this case, only the first two questions are necessary to traverse the graph. The third question is redundant because the answer to the third question cannot be inferred from any of the chunks in the graph-of-chunks.

- **Semantic retrieval:** In terms of overall recall (Recall@5) distribution across all evaluated questions, 1% of the questions resulted in zero recall, while 48% exhibited a recall of less than 1. To understand the influence of query-subgraph extraction on retrieval effectiveness, we analyze recall performance based on both human evaluation and isomorphic accuracy.

918 According to human evaluation, among the 33 incorrectly decomposed questions, only 11
 919 (33.33%) achieved full recall. In contrast, for the 67 correctly decomposed questions, 40
 920 (59.70%) achieved full recall. This highlights the critical role of accurate query decomposi-
 921 tion in successful retrieval. A similar trend is observed using isomorphic accuracy. Out of
 922 the 35 incorrectly decomposed questions (based on non-isomorphic subgraphs), 12 (34.28%)
 923 achieved full recall. Among the 65 correctly decomposed questions, 40 (60.00%) achieved
 924 full recall. These results further reinforce that effective query decomposition significantly
 925 improves retrieval performance.

926 • **Answer Generation:** For questions where the retrieval stage achieved full recall, the final
 927 answer generation step still produced incorrect answers in 9% of the cases. This indicates
 928 that even when all relevant information is successfully retrieved, the model may still fail
 929 to generate the correct answer. Such failures can be attributed to challenges in reasoning,
 930 interpreting the evidence, or inherent limitations of the generative model itself.

931 Importantly, despite errors in decomposition, BrowseNet’s adaptive retrieval strategy was still able to
 932 achieve full recall in approximately one-third of the incorrectly decomposed cases. This demonstrates
 933 the robustness of the system in handling imperfect inputs. The utilization of a multi-query approach,
 934 as discussed in Section 3.2.2, plays a key role in alleviating the impact of decomposition errors and
 935 enhancing retrieval robustness.

938 A.11 STATISTICAL SIGNIFICANCE

940 Confidence intervals for retrieval results are presented in Table 15, computed using a paired bootstrap
 941 test with 10,000 resamples and $\alpha = 0.05$, yielding 95% confidence intervals. We also performed
 942 significance analysis across all retrieval comparisons. Most of the BrowseNet retrieval results are
 943 statistically significant ($p < 0.05$), except in three cases: HotpotQA-Recall@2 vs. NV-Embed-
 944 v2, HotpotQA-Recall@5 vs. HippoRAG-2, and MuSiQue-Recall@5 vs. HippoRAG-2, where
 945 the improvements are not statistically significant. However, even when retrieval differences are
 946 small, BrowseNet still achieves stronger overall question-answering performance because the query-
 947 subgraph guides the LLM more effectively toward the correct final answer.

949 Table 15: Confidence Intervals (CIs) of recall metric for context retrieval on HotpotQA, 2WikiMQA,
 950 and MuSiQue. The best score is written in **Bold** and the second best is underlined. The confidence
 951 intervals are represented in the superscript (upper bound) and subscript (lower bound) of the mean
 952 value.

953 Retriever	954 HotpotQA		955 2WikiMQA		956 MuSiQue	
	957 R@2	958 R@5	959 R@2	R@5	R@2	R@5
960 NV-Embed-v2 (7B)	83.95 ^{+1.60} _{-1.60}	<u>95.64</u> ^{+0.86} _{-0.89}	69.05 ^{+1.57} _{-1.53}	<u>76.72</u> ^{+1.51} _{-1.47}	53.31 ^{+1.67} _{-1.65}	69.86 ^{+1.70} _{-1.71}
961 HippoRAG-2	81.79 ^{+1.61} _{-1.69}	<u>96.20</u> ^{+0.85} _{-0.90}	<u>75.45</u> ^{+1.62} _{-1.68}	<u>90.62</u> ^{+1.11} _{-1.09}	<u>53.63</u> ^{+1.82} _{-1.81}	<u>73.70</u> ^{+1.69} _{-1.68}
962 BrowseNet	<u>83.83</u> ^{+1.52} _{-1.58}	96.40 ^{+0.80} _{-0.85}	76.77 ^{+1.66} _{-1.64}	93.29 ^{+0.91} _{-0.91}	55.12 ^{+1.76} _{-1.68}	73.92 ^{+1.69} _{-1.67}

963 A.12 COMPUTATIONAL RESOURCES USED:

964 To get the embeddings from the encoder, NV-Embed-v2, we have used NVIDIA A100 GPU and
 965 512GB RAM.

966 A.13 LARGE LANGUAGE MODEL (LLM) USAGE:

967 During the preparation of this work, the author(s) used Large Language Model application to improve
 968 the paper’s organizational flow and eliminate errors by providing the draft. After using this tool or
 969 service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the
 970 content of the published article.

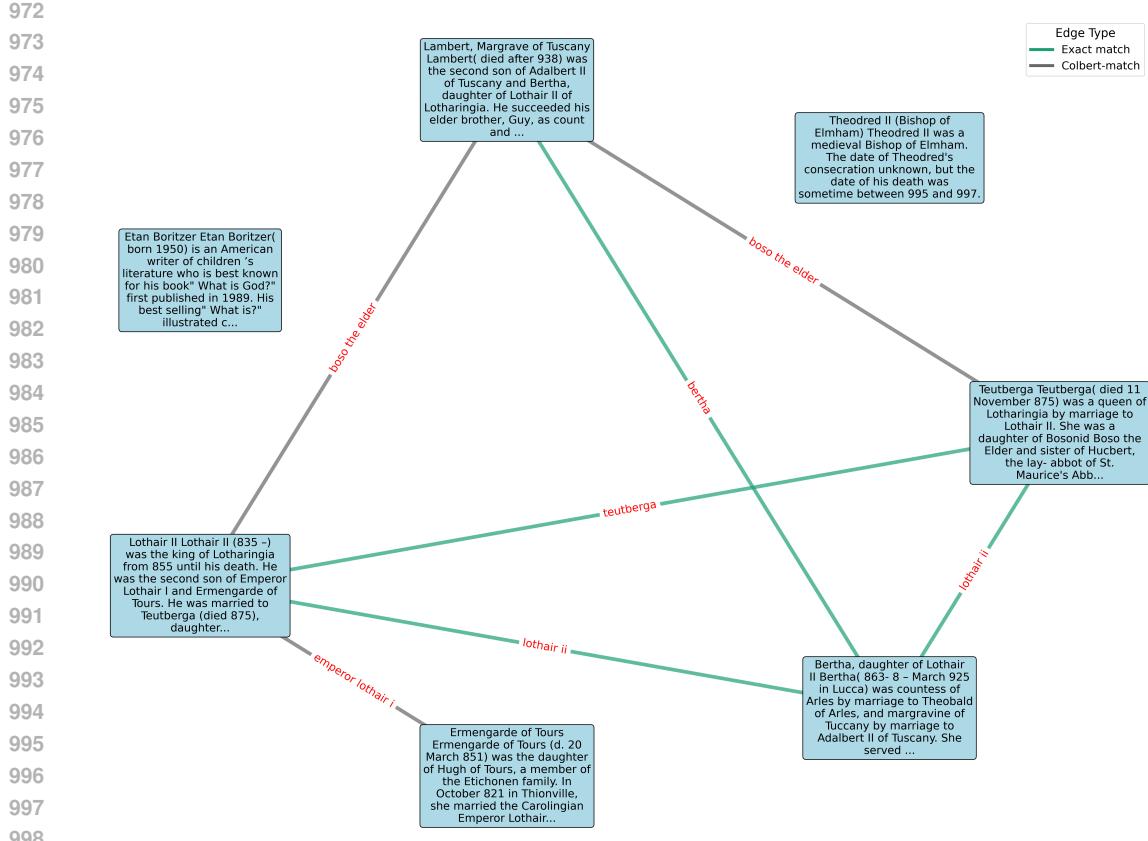
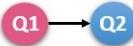


Figure 2: A small snippet (seven nodes) of graph-of-chunks obtained from the 2WikiMultiHopQA. The color of the edge denotes whether the keyword obtained is from an exact match or derived from the Colbert similarity mapping.

Query Subgraph:



Retrieval Strategy for $n_subgraphs = 2$:

$$\begin{aligned} \text{cos}\angle &= 0.80 & \text{score: } & \frac{0.80}{1} + \frac{0.80}{2} = 1 \cdot 20 \\ \text{cos}\angle &= 0.70 & \text{score: } & \frac{0.80}{1} + \frac{0.70}{2} = 1 \cdot 15 \\ \text{cos}\angle &= 0.75 & \text{score: } & \frac{0.75}{1} + \frac{0.80}{2} = 1 \cdot 15 \\ \text{cos}\angle &= 0.90 & \text{score: } & \frac{0.75}{1} + \frac{0.90}{2} = 1 \cdot 20 \end{aligned}$$

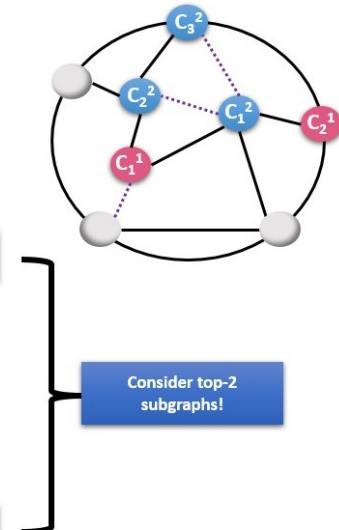


Figure 3: Traversal over the graph-of-chunks is analogous to the beam search where the top-K candidates are retained at every iteration. Here $\text{cos}\angle$ refers to the maximum of cosine similarity obtained from Equation 1, c_i^k refers to the candidate chunks to be retrieved from the graph-of-chunks.

1026

1027

1028

Prompt:

Your task is to extract named entities from the given paragraph. Respond with a JSON list of entities.

1029

1030

One-shot demonstration:**Input:**

1032

1033

Radio City is India's first private FM radio station and was started on 3 July 2001. It plays Hindi, English and regional songs. Radio City recently forayed into New Media in May 2008 with the launch of a music portal - PlanetRadiocity.com that offers music related news, videos, songs, and other music-related features.

1034

Output:

1035

```
{"named_entities": ["Radio City", "India", "3 July 2001", "Hindi", "English", "May 2008", "PlanetRadiocity.com"]}
```

1036

1037

Figure 4: LLM prompt used for named entities extraction. This prompt is adapted from the HippoRAG (Gutiérrez et al., 2024)

1040

1041

Prompt:

1042

1043

You are a helpful assistant designed to split a multi-hop query into a set of single-hop queries. These smaller queries will be used later to retrieve relevant information from a corpus in an automated manner. Each query (Q1, Q2, etc.) should progressively build upon the answer to the previous ones except for the comparison kind of questions. The follow-up questions should have an indicator of the previous question they are building upon (like <Q1>). Few-shot examples are provided below for reference and follow the similar format.

1044

1045

Few-shot demonstration:

1046

INPUT: 'Who married the publisher of abolitionist newspaper The North Star?'

1047

OUTPUT: Q1) Who is the publisher of abolitionist newspaper The North Star? Q2) <Q1> Who married the publisher of abolitionist newspaper The North Star?

1048

1049

INPUT: 'In what state is the district where the man who wanted to reform the religion practiced by Innocenzo Ferrieri preached a sermon on Marian devotion?'

1050

OUTPUT: Q1) What is the religion of Innocenzo Ferrieri? Q2) <Q1> Who wanted to reform the religion practiced by Innocenzo Ferrieri?

1051

Q3) <Q2> What is the district where the man who wanted to reform the religion practiced by Innocenzo Ferrieri preached a sermon on Marian devotion? Q4) <Q3> In what state is the district where the man who wanted to reform the religion practiced by Innocenzo Ferrieri preached a sermon on Marian devotion?

1052

1053

INPUT: 'The Beach was filmed in what location of the country that contains the birth city of Siddhi Savetsila?'

1054

OUTPUT: Q1) What is the birth city of Siddhi Savetsila? Q2) <Q1> In which country is the birth city of Siddhi Savetsila located? Q3) <Q2> The Beach was filmed in what location of the country that contains the birth city of Siddhi Savetsila?"

1055

1056

Figure 5: LLM prompt used for query-subgraph extraction in the Musique dataset. Few shot example questions are taken from Musique dataset

1058

1059

Prompt:

1060

1061

You are a helpful assistant designed to split a multi-hop query into a set of single-hop queries. These smaller queries will be used later to retrieve relevant information from a corpus in an automated manner. Each query (Q1, Q2, etc.) should progressively build upon the answer to the previous ones except for the comparison kind of questions. The follow-up questions should have an indicator of the previous question they are building upon (like <Q1>). Few-shot examples are provided below for reference and follow the similar format.

1062

1063

Few-shot demonstration:

1064

INPUT: 'Which film was released first, Aas Ka Panchhi or Phoolwari?'

1065

OUTPUT: Q1) When was the film Aas Ka Panchhi released?

1066

Q2) When was the film Phoolwari released?

1067

INPUT: 'Which film has the director who died first, The Goose Woman or You Can No Longer Remain Silent?'

1068

OUTPUT: Q1) Who is the director of The film Goose Woman?

1069

Q2) Who is the director of the film You Can No Longer Remain Silent?

1070

Q3) <Q1> When did the director of The film Goose Woman die?

1071

Q4) <Q2> When did the director of the film You Can No Longer Remain Silent die?

1072

1073

INPUT: 'Who lived longer, Ludwig Elsbett or Pamela Ann Rymer?'

1074

OUTPUT: Q1) How long did Ludwig Elsbett live?

1075

Q2) How long did Pamela Ann Rymer live?

1076

1077

INPUT: 'What is the place of birth of the director of film Gaby: A True Story?'

1078

OUTPUT: Q1) Who is the director of film Gaby: A True Story?

1079

Q2) <Q1> What is the place of birth of the director of film Gaby: A True Story?

INPUT: 'Who is the father-in-law of Sisowath Kossamak?'

1076

OUTPUT: Q1) Who husband/wife of Sisowath Kossamak?

1077

Q2) <Q1> Who is the father-in-law of Sisowath Kossamak?

Figure 6: LLM prompt used for query-subgraph extraction in the 2WikiMQA dataset. Few shot example questions are taken from 2WikiMQA dataset

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087

Prompt:
 You are a helpful assistant designed to split a multi-hop query into a set of single-hop queries. These smaller queries will be used later to retrieve relevant information from a corpus in an automated manner. Each query (Q1, Q2, etc.) should progressively build upon the answer to the previous ones except for the comparison kind of questions. The follow-up questions should have an indicator of the previous question they are building upon (like <Q1>). Few-shot examples are provided below for reference and follow the similar format.

Few-shot demonstration:

1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116

INPUT: 'What was the other name for the war between the Cherokee people and white settlers in 1793?'
OUTPUT: Q1) What was the war between the Cherokee people and white settlers in 1793 called? Q2) <Q1> What was the other name for the war between the Cherokee people and white settlers in 1793?

INPUT: 'Which university has more campuses, Dalhousie University or California State Polytechnic University, Pomona?'
OUTPUT: Q1) How many campuses does Dalhousie University have? Q2) How many campuses does California State Polytechnic University, Pomona have?

Figure 7: LLM prompt used for query-subgraph extraction in the HotpotQA dataset. Few shot example questions are taken from HotpotQA dataset

1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Prompt:
 As an advanced reading comprehension assistant, your task is to analyze the retrieved context wikipedia passages to answer the Question meticulously. To arrive at the final answer, use the subqueries provided to you in the given order. If you cannot answer a subquery, then try to answer the question to the best of your ability, based on the information available in the retrieved context. Start your response with "Thought: " where you systematically explain your reasoning process, breaking down the steps leading to the answer. Conclude with "Answer: " followed by a concise, definitive response limited to just the essential words, no extra sentences or explanations. In case of multiple possible answers, provide answers with (or) in between, such as "American (or) America (or) United States of America".

NOTE:
 1. I hope your answer matches the answer exactly, so ENSURE that the answer following "Answer:" is concise, such as 14 May, 1832 or yes. THE SHORTER, THE BETTER!
 2. If the answer is a date, please provide the full date as much as possible, such as 18 May, 1932.
 3. If the answer is a place, please provide the full name of the place as much as possible, such as "Oxford, England" instead of "Oxford".

Figure 8: LLM prompt used for answer generation after relevant context retrieval

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143

Algorithm 1 Graph Traversal and Context Retrieval for Query-Subgraph

1: **Input:** Original Query Q_{orig} , Query-subgraph $Q = (V_q, E_q)$ with connected components
 $\{Q^{(1)}, Q^{(2)}, \dots\}$, Graph-of-chunks $G = (V, E)$, number of subgraphs k , Encoder M
 2: **Output:** Top- k scored subgraphs per connected component as retrieved context
 3: **for** each connected component $Q^{(i)}$ in Q **do**
 4: $\{V_q^1, V_q^2, \dots\} \leftarrow Topological_sort(Q^{(i)})$
 5: **for** each subquery $V_q^i = \{V_q^1, V_q^2, \dots\}$ **do**
 6: **if** V_q^i has no predecessors **then**
 7: Retrieve top- k chunks $c_1, c_2, \dots, c_k \in V$ based on Equation 1
 8: **else**
 9: Let $P = \{V_q^j : V_q^j$ is a predecessor of $V_q^i\}$
 10: Generate all combinations \mathcal{C} by selecting one candidate from each predecessor in P
 11: **for** each combination $\mathcal{C}_k \in \mathcal{C}$ **do**
 12: CandidateChunks = $\bigcup_{c_j \in \mathcal{C}_k} Neighbours(c_j) \cup (\mathcal{C} \setminus \mathcal{C}_k)$
 13: Set $V_q^{i'} = V_q^i$
 14: **for** each $c_j \in \mathcal{C}_k$ **do**
 15: **if** $\cos\angle(V_q^i, c_j) > \max(\{\cos\angle(V_q^i, cnk) : cnk \in \bigcup_{c_j \in \mathcal{C}_k} Neighbours(c_j)\})$
 16: $V_q^{i'} \leftarrow \text{concat}(c_j, V_q^{i'})$
 17: **end if**
 18: **end for**
 19: **for** each $v \in \text{CandidateChunks}$ **do**
 20: Compute $SS_v = \max(\cos\angle(V_q^i, v), \cos\angle(V_q^{i'}, v), \cos\angle(Q_{orig}, v))$
 21: **end for**
 22: Select top- k chunks K_i from \mathcal{S}_c based on SS_v
 23: **for** each $c_m \in \mathcal{C}_k$ **do**
 24: **for** each $c_n \in K_i$ **do**
 25: Form edge $c_m \rightarrow c_n$ in the subgraph
 26: **end for**
 27: **end for**
 28: **end for**
 29: **end if**
 30: Score each subgraph G based on Equation 2.
 31: Retain top- k scoring subgraphs
 32: **end for**
 33: Accumulate rank- r subgraphs from each component for $r = 1$ to k
 34: **end for**

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187