
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BROWSENET: GRAPH-BASED ASSOCIATIVE MEMORY
FOR CONTEXTUAL INFORMATION RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Associative memory systems face significant challenges in efficiently retrieving se-
mantically related information from large document collections, particularly when
queries require traversing complex relationships between concepts. Traditional
retrieval-augmented generation (RAG) approaches often struggle to capture intri-
cate associative patterns and relationships embedded within textual data. To address
this limitation, we propose BrowseNet, a novel associative memory framework
that leverages query-specific subgraph exploration within a named-entity based
graph for enhanced information retrieval. Our method transforms unstructured
text into a graph-of-chunks representation, where nodes encode document chunks
with semantic embeddings and edges capture lexical relationships between content
segments. By dynamically traversing the graph-of-chunks based on query charac-
teristics, BrowseNet emulates content-addressable memory systems that enable
efficient pattern matching and associative recall. The framework incorporates
both structural similarity derived from lexical relationships and semantic similarity
based on embedding representations to optimize retrieval performance. We eval-
uate BrowseNet against established RAG baselines and state-of-the-art (SOTA)
pipelines using publicly available datasets that require associative reasoning across
multiple information sources. Experimental results demonstrate that BrowseNet
achieves SOTA performance in exact match score over both the graph-based RAG
approaches and the dense retrieval methods. The two-pronged approach combin-
ing structural graph traversal with semantic embeddings enables more effective
associative memory retrieval, particularly for queries requiring the integration of
disparate but related information.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) such as GPT-5 (OpenAI., 2025b; Achiam et al.,
2023), Gemini (Google., 2025; Reid et al., 2024), and LLaMA (Dubey et al., 2024) has marked a
transformative era in artificial intelligence. These models excel at pattern recognition and coherent
text generation but face inherent limitations in incorporating new information without costly retraining.
This challenge has motivated research into frameworks that allow LLMs to update and associate
knowledge in more flexible, human-like ways. Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020; Gao et al., 2023) represents a key advance in this direction. By separating knowledge storage
from reasoning, RAG systems enable models to access external repositories that can be updated
independently of the model parameters. This modular design improves adaptability and scalability,
yet current RAG pipelines often focus on retrieving documents based on literal similarity, overlooking
richer associative relationships. As a result, they struggle with queries that require reasoning across
multiple contexts or integrating disparate pieces of information.

Associative memory offers a natural solution to this limitation. In human cognition, associations
between concepts enable flexible recall that extends beyond surface similarity, allowing connections
across contexts and domains (Suzuki, 2005; Yao et al., 2023). These bidirectional associations form
semantic networks that facilitate knowledge transfer and generalization, capabilities that remain
challenging for current AI systems. Incorporating such associative mechanisms into retrieval systems
is therefore a crucial step toward more robust memory architectures for LLMs (Wu et al., 2025).
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Multi-hop question answering (MHQA) exemplifies this challenge. Standard RAG approaches typi-
cally retrieve isolated chunks without modeling their interconnections, which limits their effectiveness
for multi-step reasoning. To compensate, existing methods rely on iterative prompting strategies that
require multiple interactions with LLMs (Trivedi et al., 2022a; Wei et al., 2022; Yao et al., 2023;
Wang et al., 2024). While effective, these approaches increase latency and inference costs (Gutiérrez
et al., 2024).

To address these gaps, we propose BrowseNet, a graph–based associative memory framework that
unifies lexical and semantic retrieval approaches. BrowseNet transforms unstructured text into a
lexically connected graph-of-chunks, where edges capture entity co-occurrence and syntactic relations,
and nodes are enriched with semantic embeddings. By framing MHQA as a query-specific graph
traversal problem, BrowseNet constructs query-subgraphs that reflect the structural and semantic
requirements of complex questions (refer to Fig. 1-(a)). This approach enables the system to link
decomposed single-hop queries into coherent reasoning chains, retrieving information more efficiently
and effectively than conventional retrievers.

The contributions of this work are as follows: (1) BrowseNet dynamically adapts traversal paths
through the graph-of-chunks according to the query’s structural and semantic features, (2) The
framework integrates lexical and semantic relationships, allowing more nuanced and context-aware
retrieval than single-modality methods, (3) Retrieval is achieved with a single LLM interaction, guided
by pre-generated decomposed queries, reducing cost and latency, and (4) Empirical evaluation shows
that BrowseNet achieves state-of-the-art performance in multi-hop question answering, outperforming
both dense retrievers and graph-based RAG systems.

2 RELATED WORKS

Retrieval Augmented generation (RAG): RAG was introduced by Lewis et al. (2020) to overcome
the limitations of traditional fine-tuning for LLMs. By enabling dynamic access to external knowledge,
RAG improves factual accuracy and adaptability. Its framework comprises three stages: Indexing,
where documents or document chunks are encoded and stored in a vector database; Retrieval, where
relevant text chunks are fetched; and Generation, where the LLM produces responses using an
augmented prompt Gao et al. (2023). BrowseNet departs from this pipeline at every stage. In
indexing, it constructs a graph-of-chunks that integrates both lexical relationships and semantic
embeddings. In retrieval, instead of isolated chunks, BrowseNet extracts a query-specific subgraph
that preserves reasoning dependencies among information units. Finally, in generation, the augmented
prompt incorporates decomposed sub-queries, enabling the LLM to perform structured reasoning
over the retrieved content.

Graph Informed Retrieval Augmented Generation: Naive RAG pipelines often fall short
when queries require integrating information across multiple documents. To address this, several
graph-based extensions have been proposed. GraphRAG (Edge et al., 2024) constructs hierarchical
knowledge graphs (KG) to improve reasoning over complex relationships. RAPTOR (Sarthi et al.,
2024) employs recursive clustering and summarization to build tree-structured document represen-
tations that support multi-level retrieval. LightRAG (Guo et al., 2024) enhances text indexing with
graph structures and introduces a dual-level retrieval mechanism for greater efficiency and contextual
accuracy. While these methods improve cross-context reasoning, they rely heavily on LLMs during
indexing to generate or expand the retrieval corpus. This reliance increases costs and introduces noise
from LLM-generated text. In contrast, BrowseNet minimizes such dependence: generative-LLMs are
used only for graph link inference during indexing and for query decomposition during retrieval. Our
best-performing setup requires no LLM involvement in offline indexing, making it both cost-efficient
and less prone to noise.

Brain-Inspired RAG: HippoRAG (Gutiérrez et al., 2024) and HippoRAG 2 (Gutiérrez et al.,
2025) advance RAG by introducing brain-inspired mechanisms that emulate associative memory
for improved integration of retrieved knowledge. HippoRAG 2 currently achieves state-of-the-art
performance in MHQA. However, these approaches require both named entity recognition (NER) and
relation extraction (RE) for KG construction. In contrast, BrowseNet requires only NER, simplifying
the pipeline while maintaining high retrieval effectiveness.
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3 METHODOLOGY

The overall workflow of the proposed approach, BrowseNet, is illustrated in Fig. 1-(b). It is structured
into three phases: (1) Graph-of-chunks construction, (2) Context retrieval, and (3) Answer generation.

Figure 1: a) Decomposition of the multi-hop query: The multi-hop queries are decomposed into
single-hop queries, structurally linked according to answer dependencies. b) Overview of the
BrowseNet workflow: The indexing phase includes chunking, embedding encoding, and keyword
extraction to construct the graph-of-chunks. During retrieval, BrowseNet employs LLMs to extract
the query-subgraph and identifies structurally similar and semantically relevant subgraphs within
the graph-of-chunks. Finally, the generation phase leverages the retrieved subgraphs and queries to
generate answers.

3.1 GRAPH-OF-CHUNKS CONSTRUCTION

Let G = (V ,E) be a graph-of-chunks constructed from a corpus of documents D, where V denotes
a set of nodes corresponding to passages (or chunks) of documents, and E represents the set of
edges between these nodes. Each node c ∈ V is associated with three key attributes: a unique index
identifying the passage, the passage text along with its title, and a semantic vector capturing its
contextual meaning. The NV-Embed-v2 model (Lee et al., 2024) is employed to encode the entire
corpus into vector embeddings. Let M(c) denote the embedding of the chunk c. Also, ablations
are done on the encoders, GTE-Qwen2 (7B) (Li et al., 2023) and Granite-125M-English (Awasthy
et al., 2025) (refer to Section 6). An edge eij ∈ E exists between two nodes (ci, cj ∈ V ) if they
share a common or synonymous entity, thereby capturing lexical relationships between passages. The
construction of the graph-of-chunks involves two main steps: 1) Named Entity Recognition (NER):
Identifying named entities within each passage, and 2) Entity Linking: Detecting synonymous or
semantically related entities to establish additional edges.

NER is performed using GLiNER (a BERT-based model) (Zaratiana et al., 2023), which supports
zero-shot entity extraction based on provided label sets. We observed that results are largely consis-
tent when using generative models based on GPT-like architectures (e.g., GPT-4o (OpenAI., 2025a)
and Claude-3.7-Sonnet (Anthropic., 2024)) in place of GLiNER. For GLiNER, NER requires pre-
defined labels as input. Given that the benchmark datasets used are general-purpose rather than
domain-specific, we adopt broad category labels such as event, facilities, language, location, money,
nationality, religious, political, organization, person, product, work_of_art, occupation, time, ordi-
nal, and date. For GPT-like models, a one-shot demonstration is used for entity extraction (refer
Appendix A.1 for prompts). All extracted entities are post-processed to retain only alphanumeric
characters and spaces. Entity linking is performed using the ColBERTv2 model (Santhanam et al.,
2021) to identify synonymous entities (e.g., TV host and TV presenter). Entities extracted from the
NER step are input into ColBERTv2 to compute pairwise similarity scores. Numerical entities and
dates are excluded from this step as they are less informative for establishing semantic relationships.
Pairs of entities with a cosine similarity score greater than 0.9 are considered synonymous (ablation
studies are done on other thresholds too). This allows passages that contain equivalent entities to be
connected in the graph, enriching the structure. A snippet of the graph-of-chunks with seven nodes
from the 2WikiMultiHopQA corpus is shown in Fig. 2 in Appendix.
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3.2 CONTEXT RETRIEVAL

Context retrieval for a given question consists of two essential steps: 1) Query-subgraph extraction,
and 2) Graph-of-chunks traversal.

3.2.1 QUERY-SUBGRAPH EXTRACTION

Each multi-hop query, Qorig can be decomposed into a sequence of single-hop queries, where each
single-hop query builds upon the answer to the previous one (Fig. 1). We model this multi-hop
query as a directed graph, referred to as the query-subgraph, where nodes correspond to individual
single-hop queries, and directed edges represent the dependency between them, linking queries
through their intermediate answers. This directed subgraph has to be acyclic and can have more
than one connected component (Example question used in Fig. 1-(b) has two connected component),
reflecting the inherent structure of multi-hop question answering. Circular dependencies would imply
that a subquestion requires its own answer as a prerequisite, leading to ill-defined and non-terminating
reasoning. Consistent with this design choice, all gold query decompositions in standard benchmarks
(HotpotQA, 2WikiMQA, MuSiQue) are acyclic. Restricting decomposition to Directed Acyclic
Graphs (DAGs) therefore ensures semantic validity, guaranteed termination, and tractable reasoning
in practical multi-hop QA settings. We have employed the GPT-4o model (OpenAI., 2025a) to
generate the query-subgraph (refer Appendix A.1 for prompts). Furthermore, ablations are done
on DeepSeek Reasoner (Guo et al., 2025), GPT-4o-mini (OpenAI., 2025c) and Claude-3.7-Sonnet
(Anthropic., 2024).

3.2.2 GRAPH-OF-CHUNKS TRAVERSAL FOR CONTEXT RETRIEVAL

Once the query-subgraph is identified, the retrieval process involves traversing the graph to extract
subgraphs that provide contextual information for answer generation. Formally, let Q = (Vq,Eq)
denote the query-subgraph, where Vq represents a set of nodes corresponding to the decomposed
single-hop queries, and Eq denotes the set of directed edges capturing dependencies between them.
The retrieval begins by identifying the connected components, Q(i) ∈ Q, each of which is processed
separately for subgraph extraction. Within each connected component, nodes are sorted in topological
order, with initiator nodes (those with no incoming edges) at the beginning and terminal nodes (those
with no outgoing edges) at the end. Consider the example query shown in Fig. 1-(b), Q1 and Q3
are the initiator nodes, and Q2 and Q4 are the terminal nodes. Retrieval is performed for each node
in the order of the topological sort to extract its respective subgraph. Two distinct approaches are
employed for initiator nodes and non-initiator nodes.

Retrieval for Initiator Nodes: For each initiator node, the top-k candidate chunks (denoted
c1, . . . , ck ∈ V ) with the highest similarity scores are retrieved by treating all nodes (chunks)
in the graph-of-chunks as the corpus. The similarity score for a chunk ci, denoted SSci , is computed
as the maximum cosine similarity between its embedding (M(ci)), the embeddings of the original
multi-hop query (M(Qorig)) and the corresponding single-hop query (M(V j

q )), using Equation 1:

SSci = max(cos∠(M(ci),M(Qorig)), cos∠(M(ci),M(V j
q ))) (1)

This approach is designed to mitigate the effects of noise or errors introduced by incorrect query
decomposition. The intuition is that if a single-hop query accurately captures the needed information,
the corresponding chunk will exhibit higher similarity to it than to the multi-hop query. Conversely, if
the single-hop query is poorly formulated by the LLM, the original multi-hop query may still retrieve
the relevant chunk effectively. Also, note that when a query cannot be decomposed into subqueries,
the retrieval procedure falls back to the single initiator node case, which is semantic search over the
entire corpus.

Retrieval for Non-Initiator Nodes: For a non-initiator node with p predecessor nodes, P = {V j
q :

V j
q is a predecessor of V i

q } in the query subgraph (retrieval proceeds in topological order), each
predecessor has k retrieved chunks. All possible combinations formed by selecting one chunk from
each predecessor’s retrieved set are considered, resulting in a total of kp combinations. For each
such combination, the candidate chunks for the non-initiator node are defined as the union of the
neighbors of the selected predecessor chunks in the graph-of-chunks. This approach is based on
the assumption that the graph-of-chunks captures meaningful relationships between the single-hop
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queries of the predecessor nodes and the target non-initiator node. By considering neighbors in the
graph, the method leverages structural information to guide multi-hop retrieval.

A modified query is created by concatenating a chunk from the combination if the query is seman-
tically more similar to the chunk than to any of the neighbors. Subsequently, a semantic search
is conducted by assigning each chunk in the candidate chunks a similarity score, defined as the
maximum of its cosine similarity with the current single-hop query, the modified query, and the
original multi-hop query. Now, for each combination, the top-k chunks with the highest scores are
selected, resulting in k(p+1) candidate subgraphs. Each subgraph is then scored using a weighted
average of the similarity scores of its chunks, where the weight for each chunk is the inverse of the
index of the subquery in the topological order, as shown in Equation 2

weightSG =
∑
i

SSci

i (2)

where i refers to the index of the subquery in the topological order. The weighting scheme places
greater emphasis on initial nodes compared to later ones, as incorrect retrieval at initial nodes can
result in entirely erroneous neighbors and, consequently, incorrect subgraph retrieval. The top-
k subgraphs with the highest scores are retained, and the corresponding chunks for the current
node within these subgraphs are selected. This approach is analogous to beam search applied over
subgraphs, where a fixed number of high-scoring candidate subgraphs are maintained (top-k) enabling
efficient exploration of multiple reasoning hypotheses while focusing retrieval on the most promising
paths. The example retrieval for a query with two-hops is shown in Appendix Fig. 3

Although the theoretical space of possible subgraphs is kp+1, this upper bound is rarely realized in
practice. Realistic query structures are shallow, typically with at most four predecessors (p ≤ 4),
and even p = 4 is already uncommon. With a practical choice of k = 5 the full combinatorial space
would contain at most 55 = 3125 candidate subgraphs. However, because only the top-k subgraphs
are retained at each expansion step, the effective search complexity is drastically reduced, making the
approach computationally feasible.

Context Curation: Once retrieval is performed for every node in the query subgraph following the
topological order, the context is formed by the chunks from the top-k subgraphs retained at the end
of the retrieval process. Here, k is a hyperparameter referred to as n_subgraphs hereafter.

The structured algorithm, along with its pseudo-code, for traversing the graph-of-chunks to retrieve
the most relevant subgraphs is presented in Algorithm 1 in the Appendix.

3.3 ANSWER GENERATION

Once the relevant context is retrieved for a given question, it is provided as input to the LLM. Along
with the retrieved context, we incorporate an instruction prompt. This prompt guides the model in
generating a well-structured response using the generated subqueries that provide the final answer
and includes a detailed explanation of the reasoning process that led to the derived conclusion.
This ensures that the model’s response is both interpretable and transparent, thereby enhancing the
system’s overall reliability in knowledge-intensive tasks, which enables the generation of an answer
along with the reasoning that led to the answer. The prompt used is provided in the Appendix A.1.
To align with the previous methods, the LLM used to generate the answer is gpt-4o-mini. However,
ablations are done for answer generation using gpt-3.5-turbo, gpt-4.1-mini, deepseek-chat-v3, and
gemini-2.0-flash.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate our approach on three benchmark multi-hop question answering datasets: HotpotQA
(Yang et al., 2018), 2WikiMQA (Ho et al., 2020), and MuSiQue (Trivedi et al., 2022b). For each
dataset, we randomly sample 1,000 questions from the validation split to construct the set of queries
and the associated corpus, as performed previously (Press et al., 2022; Trivedi et al., 2022a; Gutiérrez
et al., 2024). To better reflect real-world use cases, we have modified the benchmark datasets by
including all passages from other questions as candidate distractors. The number of passages for
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the benchmarks are 9,221, 6,119 and 11,656 respectively for HotpotQA, 2WikiMQA and Musique.
This effectively enlarges the candidate corpus, simulating a more realistic retrieval setting where
numerous irrelevant documents must be filtered.

4.2 BASELINES

We compare BrowseNet with a range of retriever-based approaches, including: (i) simple retrievers
such as BM25 (Robertson & Walker, 1994), Contriever (Izacard et al., 2021), and GTR (Ni et al.,
2021); (ii) dense retrievers such as NV-Embed-v2 (Lee et al., 2024), GTE-Qwen2 (Li et al., 2023),
Granite-125M-English (Awasthy et al., 2025), and Proposition (Chen et al., 2024); and (iii) Graph-
augmented RAG methods, including RAPTOR (Sarthi et al., 2024), GraphRAG (Edge et al., 2024),
LightRAG (Guo et al., 2024), HippoRAG (Gutiérrez et al., 2024), SiReRAG (Zhang et al., 2024),
and HippoRAG-2 (Gutiérrez et al., 2025).

To ensure a fair comparison across all baselines, we employ the same LLM, gpt-4o-mini, for all stages
that rely on a generative-LLM, including indexing, retrieval, and question answering. This applies
to methods such as RAPTOR, HippoRAG, HippoRAG-2, LightRAG, GraphRAG, and SiReRAG.
HippoRAG-2 additionally requires an embedding model, for which we use NV-Embed-v2, the same
embedding model employed in BrowseNet. For BrowseNet, we conduct extensive experiments with
multiple LLMs and report the best performance obtained. Ablation studies further demonstrate that
BrowseNet remains robust across different choices of generative-LLMs.

4.3 EVALUATIONS

BrowseNet is evaluated at three stages: graph-of-chunks construction, context retrieval, and answer
generation.
Graph-of-chunks Evaluation: The constructed graph-of-chunks is evaluated based on its ability to
capture the edges necessary to answer multi-hop queries. These required edges are derived from the
gold evidence paths provided in the benchmark datasets (refer Appendix A.2). Specifically, MuSiQue
and 2WikiMQA include annotated reasoning paths that link the chunks involved in answering each
question. The quality of the constructed graph-of-chunks is assessed by measuring the fraction of
its edges that correctly represent these gold reasoning paths, thereby reflecting its effectiveness in
supporting multi-hop reasoning.
Query-Subgraph Evaluation: To evaluate the quality of the generated query-subgraph, we define
a metric called isomorphic accuracy (refer Appendix A.3), which captures the structural similarity
between the generated subgraph and the gold reasoning pathway provided in the 2WikiMQA and
MuSiQue datasets. Two graphs, G1 and G2, are considered isomorphic if there exists a bijective
function f that maps the vertices of G1 to the vertices of G2, such that adjacency is preserved. In
other words, an edge exists between vertices u and v in G1 if and only if an edge exists between f(u)
and f(v) in G2. In our setting, G1 corresponds to the generated query-subgraph, and G2 is the gold
graph derived from the annotated reasoning path or query decomposition provided in the benchmark
datasets. Isomorphism checking is carried out using NetworkX’s is_isomorphic() function, which
implements the exact VF2 algorithm (Cordella et al., 2001). While graph isomorphism is hard in
general, the query-subgraphs in our evaluation are very small (maximum four nodes), making exact
isomorphism testing computationally feasible across all benchmarks. The results for isomorphic
accuracy are presented in the Appendix A.3.
Context Retrieval Evaluation: We evaluate context retrieval performance using the Recall@k
metric. For each question, Recall@k is defined as: R@k = |Top-k Retrieved Passages ∩ Gold Passages|

|Gold Passages| . Here,
Gold Passages refer to the set of chunks required to answer the given multi-hop query, as specified
in the benchmark datasets. The final Recall@k score is obtained by averaging the recall across all
questions in the evaluation set.
Answer Generation Evaluation: We evaluate the quality of generated answers using two standard
metrics: Exact Match (EM) and F1 score.
Exact Match (EM): The Exact Match metric measures whether the generated answer matches the
ground truth answer exactly, word for word. It returns a score of 1.0 for an exact match and 0.0
otherwise. The final EM score reported in the results section is the average of EM scores across all
evaluation questions.
F1 Score: The F1 score evaluates the overlap between the generated and ground truth answers at the
token level. Both answers are tokenized by splitting on whitespace. Precision is defined as the ratio
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of overlapping tokens to the total number of tokens in the generated answer, while Recall is the ratio
of overlapping tokens to the total number of tokens in the ground truth answer. The F1 score is then
computed as the harmonic mean of precision and recall: F1 = 2× Precision×Recall

Precision+Recall . The final F1 score
is reported as the average of the overall questions in the evaluation set.

5 RESULTS AND DISCUSSIONS

5.1 EVALUATION OF GRAPH-OF-CHUNKS

The graph-of-chunks constructed for BrowseNet are evaluated based on their ability to retrieve the
relevant edges necessary for answering multi-hop queries. This assesses the effectiveness of the
graph-of-chunks in identifying key relationships and entities in the corpus. Table 1 shows that, in
the 2WikiMQA dataset, the graph-of-chunks achieves an edge accuracy nearing 99.86%, indicating
that nearly all essential subgraphs required for reasoning are successfully captured. In contrast, for
the MuSiQue dataset, the GLiNER model achieves an edge accuracy of 91.03%. Additionally, the
number of entities extracted remains almost consistent across the different NER models used in the
study (refer Table 14 in Appendix). The synonymity threshold in ColBERT, used for graph-of-chunks
construction, has minimal effect on edge accuracy for the 2WikiMQA dataset across all NER models
as shown in Table 11 in the Appendix. However, for the MuSiQue dataset, edge accuracy is sensitive
to the threshold used. The smaller the threshold, the greater the graph’s density (refer Appendix A.4),
which introduces noise edges (false positives). Also, the ablation studies on ColBERT synonymity
threshold (refer to Table 4) show little to no variation in the retrieval. Hence, a larger threshold is
chosen to reduce the latency period. We also evaluate retrieval and latency improvements on using
a graph-of-chunks in the Appendix A.5. Results in Table 8 in Appendix A.5 shows that Recall@5
improves by approximately 5% compared to the baseline (BrowseNet without graph-of-chunks),
while the computation time is reduced by about 1.5 times compared to the baseline. These results
underscore the importance of a well-constructed graph-of-chunks in enhancing both the accuracy and
efficiency of multi-hop question answering systems.

Table 1: Graph-of-chunks statistics and performance across different datasets.
NER Model Dataset No. of Nodes No. of Entities Graph Density Edge Accuracy

GLiNER
HotPotQA 9,221 60,862 0.0641 NA

2WikiMQA 6,119 44,907 0.0978 99.86
MuSiQue 11,656 67,332 0.0498 91.03

5.2 RETRIEVAL RESULTS

The retrieval performance of BrowseNet is assessed against state-of-the-art (SOTA) models and base-
line methods. GraphRAG, SiReRAG and LightRAG do not follow the retrieve-and-read paradigm;
hence, their results are not included in this comparison. Retrieval effectiveness, measured by Re-
call@2 (R@2) and Recall@5 (R@5), demonstrates that BrowseNet achieves the highest average
performance across the three benchmark datasets, as shown in Table 2, thereby establishing new
SOTA results, while HippoRAG-2 is the second-best performing pipeline.

In the HotpotQA dataset, the NV-Embed-v2 retriever achieves slightly better performance at R@2.
Although HotpotQA requires two-hop reasoning, prior studies (Gutiérrez et al., 2024; Trivedi et al.,
2022b) have identified it as a weaker benchmark for multi-hop retrieval due to the presence of
spurious signals. Nevertheless, BrowseNet outperforms all baselines at R@5 in this dataset. In the
2WikiMQA dataset, the query subgraphs typically contain connected components of maximum length
two, allowing keywords alone to serve as effective linking mechanisms between passages. Here,
BrowseNet surpasses HippoRAG-2 (the previous SOTA) by 2% in both R@2 and R@5. Conversely,
the MuSiQue dataset presents a more challenging setting, with query-subgraph components extending
up to four hops. This necessitates traversing multiple connections to retrieve relevant context.
While NV-Embed-v2 relies solely on semantic similarity, BrowseNet integrates both keyword-based
linking and semantic proximity. This hybrid strategy improves its performance in complex multi-
hop scenarios, enabling it to capture both explicit and implicit relationships between information
sources. As a result, BrowseNet outperforms HippoRAG-2 in recall evaluations. Latency evaluations
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(refer Appendix A.6) indicate that BrowseNet exhibits slightly higher latency than HippoRAG-2.
Nonetheless, the increase is marginal (0.49 seconds on average) and is justified by the substantial
improvements in retrieval recall.

Table 2: BrowseNet pipeline outperforms other baselines in retrieval performance in all three
benchmarks tested. The best score is written in Bold and the second best is underlined. A detailed
statistical analysis of closely competing metrics is provided in Appendix A.11.

Retriever HotpotQA 2WikiMQA MuSiQue Average
R@2 R@5 R@2 R@5 R@2 R@5 R@2 R@5

Simple baselines
BM25 55.40 72.20 51.80 61.90 32.20 41.20 46.50 58.43
Contriever 57.20 75.50 46.60 57.50 34.80 46.60 46.20 59.87
GTR 59.40 73.30 60.20 67.90 37.40 49.10 52.33 63.43

Dense retrievers
NV-Embed-v2 (7B) 83.95 95.65 69.05 76.72 53.30 69.85 68.77 80.74
GTE-Qwen2 (7B) 72.70 87.50 65.22 73.25 48.78 63.45 62.23 74.73
Granite-125M-English 70.40 85.30 64.12 70.62 44.54 59.37 59.69 71.76
Proposition 58.70 71.10 56.40 63.10 37.60 49.30 50.90 61.17

KG-augmented RAGs
RAPTOR 58.10 71.20 46.30 53.80 35.70 45.30 46.70 56.77
HippoRAG 60.05 78.10 70.40 87.87 41.86 53.57 57.44 73.11
HippoRAG-2 81.80 96.20 74.60 90.20 53.50 74.20 69.97 86.87

BrowseNet 83.85 96.40 76.77 93.30 55.12 73.91 71.91 87.87

Table 3: BrowseNet pipeline outperforms other baselines in answer generation in all three benchmarks
tested. The best score is written in Bold and the second best is underlined. BrowseNet’s performance
over the second best method is statistically significant based on a paired bootstrap test (p < 0.05).

Retriever HotpotQA 2WikiMQA MuSiQue Average
EM F1 EM F1 EM F1 EM F1

NV-Embed-v2 (7B) 59.80 75.52 52.50 62.57 36.90 49.80 49.73 62.63
LightRAG 9.90 20.20 2.50 12.10 2.00 9.30 4.8 13.87
GraphRAG 51.40 67.60 45.70 61.00 27.00 42.00 41.37 56.87
SiReRAG 48.30 63.17 41.30 48.05 26.00 39.59 38.53 50.27
HippoRAG-2 59.30 76.90 60.50 69.70 35.00 49.30 51.60 65.30

BrowseNet 62.20 77.69 63.90 74.50 41.60 54.08 55.90 68.76

5.3 QUESTION ANSWERING RESULTS

In the QA evaluation, BrowseNet demonstrates superior performance over all other methods across
all benchmarks, achieving higher exact match and F1 scores as reported in Table 3. The performance
gains can be attributed to the inclusion of sub-queries in the prompt alongside the original question,
enabling the language model to perform intermediate reasoning steps that reduce ambiguity and
enhance contextual understanding. Furthermore, the overall LLM cost of HippoRAG-2 is 33×
higher than that of the BrowseNet pipeline, from indexing through to question-answering (refer
Appendix A.7).

5.4 ABLATIONS STUDIES

We performed ablations at three stages of answer generation: Graph-of-chunks construction, re-
trieval, and answer generation to understand the contribution and importance of different com-
ponents in BrowseNet. Results for retrieval ablations are shown in Table 4, with the others in
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Appendix A.8.BrowseNet shows stable performance across synonymity thresholds and keyword
generation models. Increasing the number of subgraphs (n_subgraphs) improves context retrieval
but increases latency, making larger values preferable when context size is not limiting and latency is
less critical. Retrieval effectiveness was consistent across query decomposition models (DeepSeek
Reasoner and gpt-4o-mini), indicating robustness to this choice. On the other hand, a significant drop
in performance was observed when BrowseNet was evaluated with a different encoder, underscoring
the critical role of encoder choice in the overall effectiveness of the system.

Table 4: Ablation studies on retrieval performance of BrowseNet.
HotpotQA 2WikiMQA MuSiQue Average

Alternatives R@2 R@5 R@2 R@5 R@2 R@5 R@2 R@5

BrowseNet 83.85 96.40 76.77 93.30 55.12 73.91 71.91 87.87

Synonymity
threshold

0.8 83.60 96.30 76.77 93.00 55.01 73.82 71.79 87.71
0.7 83.60 96.20 76.77 92.97 55.19 73.99 71.85 87.72

Keyword
generation

Claude-3.7-Sonnet 83.80 96.40 76.77 93.10 55.16 74.21 71.91 87.80
GPT-4o 83.45 96.05 76.50 92.75 55.21 74.04 71.72 87.61

n_subgraphs 10 83.65 96.20 76.77 93.00 55.26 73.92 71.89 87.71
15 83.55 96.00 76.77 92.95 55.24 73.94 71.85 87.63

Subquery
decomposer

DeepSeek Reasoner 83.85 95.80 76.60 93.05 56.04 74.33 72.16 87.73
GPT-4o-mini 82.85 95.40 76.05 92.60 56.77 74.41 71.89 87.47
Claude-3.7-Sonnet 80.90 94.05 75.85 92.12 53.86 72.95 70.20 86.37

Encoder
model

GTE-Qwen2 (7B) 75.40 89.80 73.25 91.10 48.69 64.81 65.78 81.90
Granite-125M-Eng. 73.95 88.85 73.47 89.95 49.69 65.38 65.70 81.39

5.5 ROBUST RETRIEVAL GAINS ACROSS ENCODERS

To check if the performance gains of BrowseNet over the NaiveRAG are robust across all the
encoders, we performed the robustness analysis on recall improvements. Table 5 illustrates that
BrowseNet consistently outperforms NaiveRAG across all tested encoder models in terms of retrieval
performance. This consistent improvement underscores that the strength of BrowseNet lies not in
reliance on a particular encoder, but in the robustness of its retrieval methodology. The substantial
gains observed up to 9.63 points in average Recall@5 demonstrate the effectiveness of BrowseNet’s
structured query decomposition and graph-based context selection, regardless of the underlying
encoder used.

Table 5: Retrieval performance comparison of NaiveRAG and BrowseNet with different encoders
using Recall@5. The last column shows the gain in average Recall@5 for BrowseNet over NaiveRAG.

Method Encoder HotpotQA 2WikiMQA MuSiQue Average Gain
NaiveRAG NV-Embed-v2(7B) 95.65 76.72 69.85 80.74 –
BrowseNet NV-Embed-v2(7B) 96.40 93.30 73.91 87.87 +7.13
NaiveRAG GTE-Qwen2(7B) 87.50 73.25 63.45 74.73 –
BrowseNet GTE-Qwen2(7B) 89.80 91.10 64.81 81.90 +7.17
NaiveRAG Granite-125M-English 85.30 70.62 59.37 71.76 –
BrowseNet Granite-125M-English 88.85 89.95 65.38 81.39 +9.63

5.6 ERROR ANALYSIS

The downstream performance of our question-answering pipeline, specifically answer generation,
relies on the effectiveness of the entire workflow. To analyze the source of errors, we sampled
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100 questions where BrowseNet failed from the MuSiQue dataset and classified the errors into
four categories: graph-of-chunks construction, query-subgraph extraction, retrieval, and answer
generation. Table 6 presents the number of questions corresponding to each category. Note that a
single question can be associated with multiple sources of error. The analysis reveals that nearly
half of the errors originate from the semantic retrieval stage, followed by query decomposition, with
smaller contributions from Graph-of-chunks construction and final answer generation. Detailed
examples and case studies are provided in the Appendices A.9–A.10.

Table 6: Error source for 100 sampled questions from the MuSiQue dataset where BrowseNet
produced an F1 score of zero. ME: Manual Evaluation, II: Isomorphic inaccuracy

Stage Graph
construc-
tion

Query-subgraph
extraction (ME)

Query-subgraph
extraction (II)

Semantic
retrieval

Answer
generation

Error % 9 33 35 49 9

6 CONCLUSIONS

We presented BrowseNet, a graph–based associative memory framework for multi-hop question
answering. Unlike standard RAG pipelines that retrieve isolated text chunks, BrowseNet formulates
retrieval as query-specific subgraph exploration. By combining lexical relationships with semantic
embeddings, it constructs reasoning pathways that mirror the structural and semantic requirements of
complex queries. Our experiments demonstrate that BrowseNet outperforms both dense retrieval and
graph-enhanced RAG baselines, achieving state-of-the-art results on multi-hop question answering
tasks. The framework reduces reliance on repeated LLM interactions by leveraging pre-generated
sub-queries, making retrieval both more efficient and cost-effective. Future work will focus on
expanding the range of semantic relationships encoded in the graph and extending the approach to
more diverse and heterogeneous information sources, further strengthening BrowseNet as a scalable
associative memory system for LLMs.

REPRODUCIBILITY STATEMENT

All code and datasets required to reproduce our results are included in the supplementary material.
A detailed README.md file is provided, outlining step-by-step instructions to replicate every
experiment and result presented in the paper. We have made every effort to ensure reproducibility
by independently verifying that all reported results can be faithfully reproduced using the provided
resources. The benchmark dataset used in our analysis is also included in the supplementary material.
Since the evaluation involves randomly sampled questions from the validation split, we have uploaded
the entire corpus along with the corresponding questions to enable exact replication. Details of the
computational environment and resource requirements are provided in Appendix A.12.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude-3-family, 2024. URL https://www.anthropic.com/news/claude-3-family.

Parul Awasthy, Aashka Trivedi, Yulong Li, Mihaela Bornea, David Cox, Abraham Daniels, Martin
Franz, Gabe Goodhart, Bhavani Iyer, Vishwajeet Kumar, et al. Granite embedding models. arXiv
preprint arXiv:2502.20204, 2025.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. Dense x retrieval: What retrieval granularity should we use? In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 15159–15177, 2024.

10

https://www.anthropic.com/news/claude-3-family


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved algorithm
for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition, pp. 149–159, 2001.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Google. Gemini 2.5: Our most intelligent ai model, 2025. URL https://blog.google/
technology/google-deepmind/gemini-model-thinking-updates-march-2025/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobi-
ologically inspired long-term memory for large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
Non-parametric continual learning for large language models. arXiv preprint arXiv:2502.14802,
2025.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th International
Conference on Computational Linguistics, pp. 6609–6625, 2020.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
Transactions on Machine Learning Research, 2021.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
arXiv preprint arXiv:2112.07899, 2021.

OpenAI. Gpt-4o, 2025a. URL https://platform.openai.com/docs/models/gpt-4o.

OpenAI. Gpt-5, 2025b. URL https://platform.openai.com/docs/models/gpt-5.

OpenAI. Gpt-o4-mini, 2025c. URL https://platform.openai.com/docs/models/o4-mini.

11

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/o4-mini


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SIGIR’94: Proceedings of the Seventeenth Annual
International ACM-SIGIR Conference on Research and Development in Information Retrieval,
organised by Dublin City University, pp. 232–241. Springer, 1994.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Colbertv2:
Effective and efficient retrieval via lightweight late interaction. arXiv preprint arXiv:2112.01488,
2021.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. Raptor: Recursive abstractive processing for tree-organized retrieval. arXiv preprint
arXiv:2401.18059, 2024.

Wendy A Suzuki. Associative learning and the hippocampus. Psychological Science Agenda, 2005.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv preprint
arXiv:2212.10509, 2022a.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022b.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 19206–19214, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
Tang, and Yong Liu. From human memory to AI memory: A survey on memory mechanisms in
the era of llms. arXiv preprint arXiv:2504.15965, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning
in language models. arXiv preprint arXiv:2305.16582, 2023.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. Gliner: Generalist model for
named entity recognition using bidirectional transformer. arXiv preprint arXiv:2311.08526, 2023.

Nan Zhang, Prafulla Kumar Choubey, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. Sirerag: Indexing similar and related
information for multihop reasoning. arXiv preprint arXiv:2412.06206, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM PROMPTS USED IN THE STUDY

The LLM prompt used for NER using GPT-like models is shown in Fig. 4. Prompts used for query-
subgraph extraction are shown in Figs. 5, 6, 7. Prompt used for answer generation after the context
retrieval is shown in Fig. 8.

A.2 GRAPH-OF-CHUNKS EVALUATION BASED ON PRESENCE OF EDGES

For each multi-hop question in MuSiQue dataset and 2WikiMQA, the evidence to track the reasoning
path across chunks is investigated and the exact approach to track the reasoning path is discussed in
this section.

A.2.1 MUSIQUE DATASET:

In the MuSiQue dataset, for each of the questions, question decomposition is provided, and hence,
the reasoning path can be traced to get the edges between the chunks. For example, for the question,
“When was the person who Messi’s goals in Copa del Rey compared to getting signed by Barcelona?"
The question decomposition is provided as

Q1 To whom was Messi’s goal in the first leg of the Copa del Rey compared? [Chunk ID: 1]

Q2 When was <ANS-1> signed by Barcelona? [Chunk ID: 2]

Using the details of Chunk IDs for the respective chunks, it can be inferred that Chunk IDs 1 and
2 should have an edge between them. In a similar fashion ground truth chunk edges (True edges)
are inferred for each of the questions in the MuSiQue dataset. The edge accuracy of a question is
calculated as shown follows

Edge accuracy =
| True edges ∩ Edges in the graph-of-chunks |

| True edges |
(3)

For the column ‘Edge Accuracy’ shown in Table 1, the average of all the edge accuracies across the
questions is shown.

A.2.2 2WIKIMQA DATASET:

In the 2WikiMQA dataset, all questions are categorized into four classes: comparison, inference,
composition, and bridge comparison. Comparison, inference, and composition questions involve
two-hop reasoning. Inference and composition questions require a connecting edge between them,
whereas comparison questions do not establish any edge between the two retrieved chunks. In contrast
to them, bridge comparison questions involve four-hop reasoning with two connecting edges. Given
the predefined question types, the true edges in this dataset can be inferred. The edge accuracy is
computed using the formula provided in Equation 3.

A.3 ISOMORPHIC ACCURACY

Isomorphic accuracy calculated for the query-subgraphs is discussed in this section. Consider the
following multi-hop query from the MuSiQue dataset:

“What month did the Tripartite discussions begin between Britain, France, and
the country where, despite being headquartered in the nation called the nobilities
commonwealth, the top-ranking Warsaw Pact operatives originated?”

The gold query decomposition is:

• Q1: What was the nobilities commonwealth?

• Q2: Despite being headquartered in #1, the top-ranking operatives of the Warsaw Pact were
from which country?

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Q3: What month did the Tripartite discussions begin between Britain, #2, and France?

This decomposition can be represented as a graph: Q1→ Q2→ Q3.

In contrast, the query decomposition generated by GPT-4o is:

• Q1: What is the nation called the nobility’s commonwealth?

• Q2: <Q1> Where are the top-ranking Warsaw Pact operatives headquartered?

• Q3: <Q2> In which country did the top-ranking Warsaw Pact operatives originate?

• Q4: <Q3> What month did the Tripartite discussions begin between Britain, France, and
the country where the top-ranking Warsaw Pact operatives originated?

This decomposition forms a graph: Q1→ Q2→ Q3→ Q4.

Since the generated and gold decompositions differ in structure, they are not isomorphic, resulting in
an isomorphic accuracy score of 0.

A similar evaluation procedure is applied to the 2WikiMQA dataset. The average isomorphic accuracy
across models is summarized in Table 7.

Table 7: Isomorphic accuracy of generated query decompositions.
LLM Model 2WikiMQA MuSiQue
GPT-4o 0.973 0.685
Claude-3.7-Sonnet 0.967 0.487

The results indicate that isomorphic accuracy is consistently higher on the 2WikiMQA dataset than
on MuSiQue for both models. GPT-4o performs slightly better than Claude-3.7 Sonnet across both
datasets, achieving 0.973 on 2WikiMQA and 0.685 on MuSiQue, compared to 0.967 and 0.487,
respectively.

A.4 GRAPH DENSITY CALCULATION

The density of an undirected graph is a measure of how many edges are in the graph compared to the
maximum possible number of edges. Let G = (V ,E) be a graph. The density GD of the graph is
given by:

GD =
2|E|

|V |(|V | − 1)

where | · | indicates the cardinality of the given set.

A.5 IMPORTANCE OF GRAPH-OF-CHUNKS

The graph-of-chunks plays a vital role in BrowseNet, not only in capturing dependencies but also
in enhancing latency. In BrowseNet, it is used for the dynamic modification of the corpus, which
constitutes the foundation of the proposed approach. This dynamic refinement significantly improves
both retrieval effectiveness and latency. Table 8 shows the improvement in retrieval performance
when the graph-of-chunks is utilized, compared to a baseline that considers all nodes as the corpus
at every retrieval step using the subquery. The results in the table are reported on a sample of 100
questions from the MuSiQue dataset.

Table 8: Impact of using Graph-of-chunks on retrieval performance and latency for 100 questions
from the MuSiQue dataset.

Setting Time Taken (sec) Recall@5
Without graph-of-chunks 177 70.75

With graph-of-chunks 115 75.08
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A.6 LATENCY ANALYSIS

To evaluate latency, we sampled 50 questions from the MuSiQue dataset. Table 9 presents a
comparison between BrowseNet and HippoRAG-2 based on the Average Time Per Query (ATPQ)
metric, which measures the average time in seconds taken to process each query up to the retrieval
stage. As shown in Table 9, BrowseNet incurs a slightly higher latency compared to HippoRAG-
2. However, the additional latency is marginal (0.49 seconds on average) and is justified by the
significant gains in retrieval accuracy and overall QA performance, as demonstrated in previous
sections.

Table 9: Latency comparison between BrowseNet and HippoRAG-2 based on the Average Time Per
Query (ATPQ) for 50 sampled questions from the MuSiQue dataset.

Method ATPQ (seconds)
BrowseNet 2.70

HippoRAG-2 2.21

For BrowseNet, query decomposition accounts for 1.50 seconds of the total latency, primarily due to
the overhead of API-based LLM calls. This component could be significantly improved by deploying
the language model locally, which would reduce network latency. In contrast, the retrieval stage is
relatively efficient, taking only 1.19 seconds on average.

A.7 COST ANALYSIS

We provide a quantitative comparison of LLM-related costs between BrowseNet and the state-of-the-
art retrieval baseline, HippoRAG-2, using the HotpotQA benchmark dataset in Table 10. The analysis
considers the full pipeline cost, from indexing to retrieval, using gpt-4o-mini in both systems. The
pricing model follows OpenAI’s current API rates (As of 24th September 2025): $0.15 per 1M input
tokens and $0.6 per 1M output tokens.

Table 10: Token-level comparison between HippoRAG-2 and BrowseNet on HotpotQA.
HippoRAG-2 BrowseNet

Input tokens 5,880,618 249,503
Output tokens 2,110,007 44,641
Total tokens 7,990,625 294,144

The corresponding LLM costs can be estimated as follows:

Cost =
Input tokens

106
× 0.15 +

Output tokens
106

× 0.6

Using this formula:

• HippoRAG-2: ≈ $2.15

• BrowseNet: ≈ $0.064

Thus, BrowseNet achieves roughly 33× higher cost efficiency while maintaining state-of-the-art
retrieval.

A.8 ABLATIONS

We performed ablation studies on the graph-of-chunks construction by varying the NER model
for keyword extraction and the ColBERT synonymity threshold for connecting nodes. As shown
in Table 11, edge accuracy on the 2WikiMQA dataset remains near 100% across all thresholds,
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indicating robustness to synonymity settings. In contrast, for the MuSiQue dataset, higher edge
accuracy is observed at lower synonymity thresholds across all NER models.

We also conducted ablations on answer generation using different LLMs (Table 12). The results
indicate a substantial variation in performance, with average exact match scores differing by ap-
proximately 10% between models, highlighting the influence of the LLM choice on final retrieval
quality.

Table 11: Graph-of-chunks performance with varying ColBERT synonymity threshold. Here, GD
refers to Graph density, and EA refers to Edge accuracy.

NER Model Synonymity
Threshold

HotpotQA 2WikiMQA MuSiQue
GD EA GD EA GD EA

GLiNER
0.9 0.0641 NA 0.0978 99.86 0.0498 91.03
0.8 0.2309 NA 0.2653 99.86 0.1732 95.18
0.7 0.3781 NA 0.4018 100 0.3155 97.43

GPT-4o
0.9 0.0844 NA 0.0663 98.74 0.0371 97.83
0.8 0.2533 NA 0.2163 98.94 0.1652 97.94
0.7 0.3976 NA 0.3282 99.20 0.2934 98.71

Claude-3.7-Sonnet
0.9 0.0893 NA 0.0673 99.74 0.0550 94.33
0.8 0.2667 NA 0.2325 99.87 0.1848 98.26
0.7 0.4086 NA 0.3399 100 0.3143 98.54

Table 12: Performance comparison of different LLMs for answer generation on HotpotQA,
2WikiMQA, and MuSiQue. The best score is written in Bold and the second best is underlined.

LLM HotpotQA 2WikiMQA MuSiQue Average
EM F1 EM F1 EM F1 EM F1

gpt-4o-mini 62.20 77.69 63.90 74.50 41.60 54.08 55.90 68.76
gpt-3.5-turbo 58.80 73.81 47.70 59.57 37.40 49.77 47.97 61.05
gpt-4.1-mini 63.20 79.21 64.50 74.43 42.70 55.07 56.80 69.57
deepseek-chat-v3 62.20 78.91 66.10 75.86 43.50 56.25 57.27 70.34
gemini-2.0-flash 63.40 78.00 62.10 70.30 38.10 47.37 54.53 65.22

A.9 CASE STUDY

Using example questions, we demonstrate how BrowseNet improves retrieval performance compared
to the NaiveRAG approach. Table 13 presents a comparison of the articles retrieved by each method.
As we can see for NaiveRAG, the retrieved corpus is related to the keywords present in the query
rather than the underlying reasoning path required to answer the multi-hop question, which often
leads to the inclusion of spurious or contextually irrelevant passages.

For a detailed understanding of the BrowseNet approach, consider the question, ‘What is the Till dom
ensamma performer’s birth date?’. The query decomposition produces the subqueries:

• Q1) Who is the performer of “Till dom ensamma”?
• Q2) <Q1> What is the birth date of the performer of “Till dom ensamma”?

The subgraph to be retrieved from the graph-of-chunks has the structure, Q1→ Q2. Retrieval begins
with the initiator node Q1, treating all nodes in the graph-of-chunks as the initial corpus. Using
semantic similarity search, the top 5 most similar nodes (passages) are retrieved. Among them, the
passage containing “Till dom ensamm” is found to be most similar to Q1.

Next, for the query node Q2, the candidate contexts is restricted to the neighbors of the previously
retrieved passage “Till dom ensamma”. Then Q2 is used to search the new corpus, from which the
passage “Mauro Scocco" is identified as most relevant and subsequently retrieved.
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Table 13: Top-5 articles retrieved by NaiveRAG and BrowseNet for each question. The underlined
entries indicate the golden articles required to answer the corresponding question.

Question Top-5 Retrieved Documents
NaiveRAG BrowseNet

What is the Till dom ensamma
performer’s birth date?

1. Till dom ensamma
2. Langa Natter

3. Nar hela varlden ser pa
4. Roxy Recordings

5. Du far gora som du vill

1. Till dom ensamma
2. Mauro Scocco

3. Hits (Mauro Scocco album)
4. Langa natter

5. Nar hela varlden ser pa

How many episodes are in
season 5 of the series with

"The Bag or the Bat"?

1. The Bag or the Bat
2. List of Orange Is the New

Black episodes
3. Cheatty Cheatty

Bang Bang
4. Samurai Jack (season 5)
5. Arrested Development

(season 5)

1. The Bag or the Bat
2. List of Ray Donovan episodes

3. List of Orange Is the New
Black episodes

4. Cheatty Cheatty
Bang Bang

5. Samurai Jack (season 5)

Table 14: Number of entities extracted using distinct NER models.
NER Model No. of Entities

HotPotQA 2WikiMQA MuSiQue

GLiNER 60,862 44,907 67,332
GPT-4o 61,959 41,219 66,795

Claude-3.7 62,671 41,921 67,216

A.10 ERROR ANALYSIS: DETAILS

• Graph-of-chunks construction: These errors arise because of missing edges in the con-
structed graph. Our analysis reveals that 9% of relevant edges are missing from the graph.

• Query-subgraph extraction: This stage is evaluated through two approaches: manual
analysis to determine whether each question is correctly decomposed, and isomorphic
accuracy, as defined in Section 4.3. Human evaluation shows that 33% of the questions are
either incorrectly decomposed or contain redundant sub-queries (i.e., multiple sub-queries
retrieving the same information). Isomorphic accuracy reveals that 35% of the questions
result in query-subgraphs that are not isomorphic to the ground-truth structure, indicating
errors or redundancies in the decomposition process.
Here, we present an example where query-graph generation failed to produce accurate
outputs.
Query: Are both businesses, Google and Banco De Ponce, located in the same country?
The generated single-hop queries with dependencies are:

– Q1: In which country is Google located?
– Q2: In which country is Banco De Ponce located?
– Q3: <ANS-1> <ANS-2> Are both Google and Banco De Ponce located in the same

country?

In this case, only the first two questions are necessary to traverse the graph. The third
question is redundant because the answer to the third question cannot be inferred from any
of the chunks in the graph-of-chunks.

• Semantic retrieval: In terms of overall recall (Recall@5) distribution across all evaluated
questions, 1% of the questions resulted in zero recall, while 48% exhibited a recall of less
than 1. To understand the influence of query-subgraph extraction on retrieval effectiveness,
we analyze recall performance based on both human evaluation and isomorphic accuracy.
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According to human evaluation, among the 33 incorrectly decomposed questions, only 11
(33.33%) achieved full recall. In contrast, for the 67 correctly decomposed questions, 40
(59.70%) achieved full recall. This highlights the critical role of accurate query decomposi-
tion in successful retrieval. A similar trend is observed using isomorphic accuracy. Out of
the 35 incorrectly decomposed questions (based on non-isomorphic subgraphs), 12 (34.28%)
achieved full recall. Among the 65 correctly decomposed questions, 40 (60.00%) achieved
full recall. These results further reinforce that effective query decomposition significantly
improves retrieval performance.

• Answer Generation: For questions where the retrieval stage achieved full recall, the final
answer generation step still produced incorrect answers in 9% of the cases. This indicates
that even when all relevant information is successfully retrieved, the model may still fail
to generate the correct answer. Such failures can be attributed to challenges in reasoning,
interpreting the evidence, or inherent limitations of the generative model itself.

Importantly, despite errors in decomposition, BrowseNet’s adaptive retrieval strategy was still able to
achieve full recall in approximately one-third of the incorrectly decomposed cases. This demonstrates
the robustness of the system in handling imperfect inputs. The utilization of a multi-query approach,
as discussed in Section 3.2.2, plays a key role in alleviating the impact of decomposition errors and
enhancing retrieval robustness.

A.11 STATISTICAL SIGNIFICANCE

Confidence intervals for retrieval results are presented in Table 15, computed using a paired bootstrap
test with 10,000 resamples and α = 0.05, yielding 95% confidence intervals. We also performed
significance analysis across all retrieval comparisons. Most of the BrowseNet retrieval results are
statistically significant (p < 0.05), except in three cases: HotpotQA-Recall@2 vs. NV-Embed-
v2, HotpotQA-Recall@5 vs. HippoRAG-2, and MuSiQue-Recall@5 vs. HippoRAG-2, where
the improvements are not statistically significant. However, even when retrieval differences are
small, BrowseNet still achieves stronger overall question-answering performance because the query-
subgraph guides the LLM more effectively toward the correct final answer.

Table 15: Confidence Intervals (CIs) of recall metric for context retrieval on HotpotQA, 2WikiMQA,
and MuSiQue. The best score is written in Bold and the second best is underlined. The confidence
intervals are represented in the superscript (upper bound) and subscript (lower bound) of the mean
value.

Retriever HotpotQA 2WikiMQA MuSiQue
R@2 R@5 R@2 R@5 R@2 R@5

NV-Embed-v2 (7B) 83.95+1.60
−1.60 95.64+0.86

−0.89 69.05+1.57
−1.53 76.72+1.51

−1.47 53.31+1.67
−1.65 69.86+1.70

−1.71

HippoRAG-2 81.79+1.61
−1.69 96.20+0.85

−0.90 75.45+1.62
−1.68 90.62+1.11

−1.09 53.63+1.82
−1.81 73.70+1.69

−1.68

BrowseNet 83.83+1.52
−1.58 96.40+0.80

−0.85 76.77+1.66
−1.64 93.29+0.91

−0.91 55.12+1.76
−1.68 73.92+1.69

−1.67

A.12 COMPUTATIONAL RESOURCES USED:

To get the embeddings from the encoder, NV-Embed-v2, we have used NVIDIA A100 GPU and
512GB RAM.

A.13 LARGE LANGUAGE MODEL (LLM) USAGE:

During the preparation of this work, the author(s) used Large Language Model application to improve
the paper’s organizational flow and eliminate errors by providing the draft. After using this tool or
service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the
content of the published article.
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Figure 2: A small snippet (seven nodes) of graph-of-chunks obtained from the 2WikiMultiHopQA.
The color of the edge denotes whether the keyword obtained is from an exact match or derived from
the Colbert similarity mapping.

Figure 3: Traversal over the graph-of-chunks is analogous to the beam search where the top-K
candidates are retained at every iteration. Here cos∠ refers to the maximum of cosine similarity
obtained from Equation 1, cki refers to the candidate chunks to be retrieved from the graph-of-chunks.
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Figure 4: LLM prompt used for named entities extraction. This prompt is adapted from the HippoRAG
(Gutiérrez et al., 2024)

Figure 5: LLM prompt used for query-subgraph extraction in the Musique dataset. Few shot example
questions are taken from Musique dataset

Figure 6: LLM prompt used for query-subgraph extraction in the 2WikiMQA dataset. Few shot
example questions are taken from 2WikiMQA dataset
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Figure 7: LLM prompt used for query-subgraph extraction in the HotpotQA dataset. Few shot
example questions are taken from HotpotQA dataset

Figure 8: LLM prompt used for answer generation after relevant context retrieval
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Algorithm 1 Graph Traversal and Context Retrieval for Query-Subgraph
1: Input: Original Query Qorig, Query-subgraph Q = (Vq,Eq) with connected components
{Q(1), Q(2), . . . }, Graph-of-chunks G = (V ,E), number of subgraphs k, Encoder M

2: Output: Top-k scored subgraphs per connected component as retrieved context
3: for each connected component Q(i) inQ do
4: {V 1

q , V
2
q , . . . } ← Topological_sort(Q(i))

5: for each subquery V i
q = {V 1

q , V
2
q , . . . } do

6: if V i
q has no predecessors then

7: Retrieve top-k chunks c1, c2, . . . , ck ∈ V based on Equation 1
8: else
9: Let P = {V j

q : V j
q is a predecessor of V i

q }
10: Generate all combinations C by selecting one candidate from each predecessor in P
11: for each combination Ck ∈ C do
12: CandidateChunks =

⋃
cj∈Ck

Neighbours(cj) ∪ (C \ Ck)
13: Set V i′

q = V i
q

14: for each cj ∈ Ck do
15: if cos∠(V i

q , cj) > max({cos∠(V i
q , cnk) : cnk ∈

⋃
cj∈Ck

Neighbours(cj)})
then

16: V i′
q ← concat(cj , V i′

q )
17: end if
18: end for
19: for each v ∈ CandidateChunks do
20: Compute SSv = max(cos∠(V i

q , v), cos∠(V i′
q , v), cos∠(Qorig, v))

21: end for
22: Select top-k chunks Ki from Sc based on SSv

23: for each cm ∈ Ck do
24: for each cn ∈ Ki do
25: Form edge cm → cn in the subgraph
26: end for
27: end for
28: end for
29: end if
30: Score each subgraph G based on Equation 2.
31: Retain top-k scoring subgraphs
32: end for
33: Accumulate rank-r subgraphs from each component for r = 1 to k
34: end for
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