Ziegler-Nicholsmetoden
Ziegler-Nicholsmetoden är en heuristisk metod som används för att optimera en PID-regulator och är en så kallad frekvenssvarsmetod. Metoden introducerades under 1940-talet av John G. Ziegler och Nathaniel B. Nichols, och har fördelen att den inte kräver tidskrävande beräkningar och/eller omfattande empirisk utprovning. Z-N ger en snabb, aggressiv reglering lämplig för snabba förlopp, som håller ÄR-värdet nära BÖR-värdet även vid varierad last, med nackdelen att regleringarna ofta blir instabila (oscillerande), och att styrdonen sätts i konstant arbete vilket leder till förslitning. I praktisk användning kan Kp och Td halveras medan Ti dubbleras för en lugnare reglering, som sedan kan justeras upp vid behov.[1]
Tillvägagångssätt
För att använda sig av formlerna måste man först ta fram den kritiska förstärkningen(Kp0) samt mäta den kritiska periodtiden(T0).
- Stäng av I- och D-delarna i regulatorn.
- Sätt in P-delens förstärkning (P) till 0.
- Ställ in önskat börvärde (SP).
- Sätt regulatorn i automatik.
- Öka sakta värdet på P tills självsvängning precis uppstår vid störning.
- Värdet du nu har på P är Kp0, den regulatorförstärkning då självsvängning uppstår.
- Mät nu våglängden (räknad i sekunder) för svängningarna med oscilloskop för att få fram T0.
Formler
Formler för att beräkna parametrarna för P-, PI-, PD- och PID-regulatorer.[2]
P | PI | PD | PID 1) | |
Kp | Kp0 x 0,5 | Kp0 x 0,45 | Kp0 x 0,8 | Kp0 x 0,6 |
Ti | Frånslagen | Kp / (T0/ x 0,85) | Frånslagen | Kp / (T0 / 2) |
Td | Frånslagen | Frånslagen | Kp x (T0 / 8) | Kp x (T0 / 8) |
1) Gäller vid idealstruktur av PID-blocket, vid seriestruktur halveras värdena.[1]
Se även
Källor
- ^ [a b] Praktisk processautomation, Göran Malmberg, Kim Nyborg 2005, ISBN 91-7322-282-8, s. 157f
- ^ Festo didactic, Closed-loop pneumatics TP 111; Workbook. Table A16.1, sida A-167