

Compressive Sensing (CS)

$y = \phi x$

$M \times 1 \quad \phi \quad N \times 1$
 $M < M \ll N \quad M \times N$
 $N \times 1 \quad \text{sparse signal} \quad K \text{ nonzero entries}$

- The Single-Pixel Camera (SPC) is a popular example of a compressive imager.

Traditional Pipeline – Reconstruct-then-infer

Compressive Measurements from SPC → Major bottleneck Reconstruction → Feature Extraction → Inference

- Recovering x from y is ill-posed but possible if x is sparse and MR (M/N) is sufficiently large.
- Most algorithms are iterative in nature and are computationally expensive. The reconstruction quality is also poor at low measurements rates of 0.1.

Reconstruction-free Feature Extraction/Inference

Compressive measurements → Reconstruction → Feature Extraction → Inference
 Bypass reconstruction → Feature Extraction → Inference

- Dimensionality-reduced matched filters – Smashed Filters [1]
 - Not robust to input variations.
 - Johnson – Lindenstrauss lemma is used to perform detection directly in the compressed domain.
 - Computationally much faster than reconstruct-then-infer paradigm.
- Dimensionality reduced correlation filters – Smashed Correlation Filters [2][3]
 - Utilizes J-L lemma to extract features directly without reconstruction.
 - More robust to input variations but cannot handle changes in pose and lighting since the features are still linear.
 - Although faster than reconstruct-then-infer, still computationally inefficient since the test image needs to be correlated with the template filter for each class.

Direct Inference Using Convolutional Neural Networks

- Project measurements back to the pixel space, which allows us to use the same CNN architectures designed for image recognition.
- Train a deep network on the “pseudo-images” to output the class labels.
- Computationally more efficient than smashed correlation filters since a single forward pass is sufficient to determine the class label.
- Possible to learn linear projection step (currently fixed to Φ^T) jointly with the remaining layers.

Scene → CS Measurements From SPC → Convolutional Neural Network → Class Label

CS Measurements From SPC: $\Phi x \xrightarrow{\text{Linear Projection}} \Phi^T \xrightarrow{M \times 1}$

Convolutional Neural Network: conv → max-pool → conv → max-pool → fc → fc → softmax → Class Label

Experimental Results

MNIST Hand-written digit database

- Grayscale images of hand-written digits (0 - 9)
- Image size = 28×28 (784 pixels)
- 50000 training images, 10000 testing images
- Φ is a random Gaussian matrix of size $m \times 784$
- CNN architecture based on LeNet-5 [4]

Measurement Rate (MR)	Number of Measurements (m)	Test Error (%)	
		Smashed Correlation Filters [3]	Our Method
1 (Oracle)	784	13.86	0.89
0.25	196	27.42	1.63
0.10	78	43.55	2.99
0.05	39	53.21	5.18
0.01	8	63.03	41.06

ImageNet Database

- RGB images belonging to 1000 classes
- 1.2 million training images and 50000 test images of size 256×256
- Φ is a low rank column permuted Hadamard matrix (approximating a Bernoulli matrix) of size $m \times 65536$. Measurements are computed using Fast Walsh-Hadamard Transform.
- CNN architecture is based on AlexNet [5] – consists of 5 convolutional layers and 2 fully connected layers.

Measurement Rate (MR)	Number of Measurements (m)	Accuracy (%)
1 (Oracle)	65536	56.88
0.25	16384	39.22
0.10	6554	29.84

[1] Mark A Davenport, Marco F Duarte, Michael B Wakin, Jason N Laska, Dharmpal Takhar, Kevin F Kelly, and Richard G Baraniuk, “The smashed filter for compressive classification and target recognition,” in *Electronic Imaging*. International Society for Optics and Photonics, 2007, pp. 64980H–64980H

[2] K. Kulkarni and P. Turaga, “Reconstruction-free action inference from compressive imagers,” *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. PP, no. 99, 2015.

[3] Suhas Lohit, Kuldeep Kulkarni, Pavan Turaga, Jian Wang, and Aswin C. Sankaranarayanan, “Reconstruction-free inference on compressive measurements,” in *4th Intl. Conf. on Computational Cameras and Displays*, held in conjunction with *IEEE CVPR*, June 2015.

[4] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based learning applied to document recognition,” *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classification with deep convolutional neural networks,” *2012*, pp. 1097–1105.