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Compressive Sensing (CS)

• Recovering x from y is ill-
posed but possible if x is sparse 
and MR (M/N) is sufficiently 
large.

• Most algorithms are iterative in 
nature and are computationally 
expensive. The reconstruction 
quality is also poor at low 
measurements rates of 0.1.

Direct Inference Using Convolutional Neural Networks

Traditional Pipeline – Reconstruct-then-infer

Reconstruction-free Feature Extraction/Inference

Experimental Results

Measurement
Rate 
(MR)

Number of 
Measurements 

(m)

Test Error (%)

Smashed Correlation 
Filters [3]

Our Method

1 (Oracle) 784 13.86 0.89

0.25 196 27.42 1.63

0.10 78 43.55 2.99

0.05 39 53.21 5.18

0.01 8 63.03 41.06

Measurement Rate 
(MR)

Number of 
Measurements (m)

Accuracy 
(%)

1 (Oracle) 65536 56.88

0.25 16384 39.22

0.10 6554 29.84

MNIST Hand-written digit database

• Grayscale images of hand-written digits (0 - 9)

• Image size = 28 x 28 (784 pixels)

• 50000 training images, 10000 testing images

• Φ is a random Gaussian matrix of size m x 784

• CNN architecture based on LeNet-5 [4]

ImageNet Database

• RGB images belonging to 1000 classes

• 1.2 million training images and 50000 test images of 
size 256 x 256

• Φ is a low rank column permuted Hadamard matrix 
(approximating a Bernoulli matrix) of size m x 65536. 
Measurements are computed using Fast Walsh-
Hadamard Transform. 

• CNN architecture is based on AlexNet [5] – consists of 
5 convolutional layers and 2 fully connected layers. 

• The Single-Pixel Camera (SPC) is a popular example 
of a compressive imager. 

Compressive
measurements

Reconstruction Feature
Extraction

Inference

Bypass reconstruction

• Dimensionality-reduced matched filters – Smashed Filters [1]

 Not robust to input variations.
 Johnson – Lindenstrauss lemma is used to perform detection directly in the 

compressed domain. 
 Computationally much faster than reconstruct-then-infer paradigm. 

• Dimensionality reduced correlation filters – Smashed Correlation Filters [2][3]

 Utilizes J-L lemma to extract features directly without reconstruction.
 More robust to input variations but cannot handle changes in pose and lighting since 

the features are still linear. 
 Although faster than reconstruct-then-infer, still computationally inefficient since  

the test image needs to be correlated with the template filter for each class. 

• Project measurements back to the pixel space, 
which allows us to use the same CNN 
architectures designed for image recognition.

• Train a deep network on the “pseudo-images” to 
output the class labels.

• Computationally more efficient than smashed 
correlation filters since a single forward pass is 
sufficient to determine the class label.

• Possible to learn linear projection step (currently 
fixed to ΦT) jointly with the remaining layers. 
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