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Compressive Sensing (CS) Traditional Pipeline — Reconstruct-then-infer
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* Recovering x from y is ill-
posed but possible if x is sparse

and MR (M/N) is sufficiently
large.
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* Most algorithms are iterative in

e Compressive i nature and are computationally
Measurements : :
» The Single-Pixel Camera (SPC) is a popular example from SPC EXPENSIVE. The reconstruction
of a compressive imager. quality is also poor at low

measurements rates of 0.1.

Reconstruction-free Feature Extraction/Inference

* Dimensionality-reduced matched filters — Smashed Filters [1]

= Not robust to input variations.
= Johnson — Lindenstrauss lemma is used to perform detection directly in the
compressed domain.
Inference * Computationally much faster than reconstruct-then-infer paradigm.

* Dimensionality reduced correlation filters — Smashed Correlation Filters [2][3]
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Compressive
measiremems = Utilizes J-L lemma to extract features directly without reconstruction.

/ = More robust to input variations but cannot handle changes in pose and lighting since
Bypass reconstruction . .
\ N the features are still linear.

= Although faster than reconstruct-then-infer, still computationally inefficient since
the test image needs to be correlated with the template filter for each class.

Direct Inference Using Convolutional Neural Networks

* Project measurements back to the pixel space,

which allows us to use the same CNN ! | N
architectures designed for image recognition. Scene CS Measurements Convolutional Neural Network
: ., . , From SPC e ~
* Train a deep network on the “pseudo-images” to | e - |
output the class labels. Dx Linear
« Computationally more efficient than smashed > Projection > | | | softmaxy, Class
correlation filters since a single forward pass is T j’ Label
sufficient to determine the class label. Ly
. conv max-pool conv max-pool f f
* DPossible to learn linear projection step (currently | Mx 1 - - L
fixed to ®') jointly with the remaining layers.
Experimental Results
MNIST Hand-written digit database ImageNet Database
* Grayscale images of hand-written digits (0 - 9) * RGB images belonging to 1000 classes
* Image size = 28 x 28 (784 pixels) * 1.2 million training images and 50000 test images of

» 50000 training images, 10000 testing images size 256 x 256

* @isalow rank column permuted Hadamard matrix
(approximating a Bernoulli matrix) of size m x 65536.
Measurements are computed using Fast Walsh-
Hadamard Transform.

Measurement Number of Test Error (%) « CNN architecture is based on AlexNet [5] — consists of

5 convolutional layers and 2 fully connected layers.

e @ isarandom Gaussian matrix of size m x 784
(NN architecture based on LeNet-5 [4]

Rate VEERNEIN NS Smashed Correlation
(MR) Filters [3]

Our Method

1 (Oracle) 784 13.86 0.39 Measurement Rate Number of Accuracy
0.25 196 27.42 1.63 Wi Measurements (m) (%)
0.10 78 43.55 2.99 1 (Oracle) 65536 56.88
0.05 39 53.21 5.18 0.25 16384 39.22
0.01 3 63.03 41.06 0.10 6554 29.84
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