Digital On-Demand Computing Organism for Real-
Time Systems

Jiirgen Becker!, Kurt Briindle!, Uwe Brinkschulte?, Jorg Henkel?, Wolfgang Karl3,
Thorsten Késter!, Michael Wenz?, Heinz Worn?2

! Institut fiir Technik der Informationsverarbeitung (ITIV)
Universitét Karlsruhe (TH)
76131 Karlsruhe, Germany
{becker, koester}@itiv.uni-karlsruhe.de

2 Institut fiir Prozessrechentechnik, Automation und Robotik (IPR)
Universitét Karlsruhe (TH)
76131 Karlsruhe, Germany
{brinks, mwenz, woern}@ira.uka.de

3 Institut fiir Technische Informatik (ITEC)
Universitét Karlsruhe (TH)
76131 Karlsruhe, Germany
henkel@informatik.uni-karlsruhe.de, karl@ira.uka.de

Abstract. This paper presents the goals and the research approach of the pro-
ject DodOrg (Digital On-demand Computing Organism for Real-Time Sys-
tems) within the Priority Programme “1183 - Organic Computing”. The main
goal of the project is the development of a biologically motivated computing
organism with the three levels “brain”, “organ” and “cell”. On the brain level
an organic robot control will be developed with emphasis on self-x features.
The robot control forms together with the middleware on the organ level and
the reconfigurable hardware on the cell level an organic computing architec-
ture.

1 Introduction

The project DodOrg focuses on the “self-x” properties that are essential to “Or-
ganic Computing” (e.g. self-organization, self-configuration, self-healing and self-
protection). Similar properties can be found in various fields of biology, suggesting a
comparison between technical systems and living organisms. This observation led us
to an interdisciplinary formation of authors’ working groups, tightly integrating
knowledge from various areas such as robotics, computer science, electrical engineer-
ing and —most important— biology. The goal of the project, however, is not to copy
nature, but rather to study the strategies organisms have developed to achieve their
aims, in order to find out whether similar strategies can be build in technical systems.

230

We start with the consideration of the “self-x”-properties from a biological point
of view before we discuss possible technical solutions.

During evolution, living organisms have found an immense number of solutions
for different problems. Moreover, in various groups of plants and animals different
solutions for the same problem were developed, e.g. respiration in Insects, Fishes,
Amphibians and Mammals. Unfortunately many of these solutions are either imprac-
ticable or irrelevant for hard- and software development. Therefore the main task of
“Organic Computing” consists in finding close resemblance of related problems in
nature and computer systems.

For our application we selected the mammalian heart (Fig. 1) as a model compara-
ble to our envisaged organic computing architecture, because it fits in many aspects
very well to the project: In both cases the subsystems are organized in a hierarchical
order showing similar characteristics. Some features overlap all levels, such as low
power consumption or fail safe features. Nevertheless the selection of the heart as a
model is arbitrary, because other examples, such as the coordination of limb move-
ments in Amphibians or the processing of visual information in lower vertebrates,
would have been just as good for comparison.

Fig. 1: The Mammalian heart as model for DodOrg research

In the mammalian heart the muscle cells form the lowest level of the system. Al-
though their contraction mechanism is most complex, their answer to electrical stimu-
lation is remarkably rigid: When an electrical impulse reaches the outer cell mem-
brane, it causes an inversion of the membrane potential (action potential), resulting in
a contraction of the muscle fibre. The action potentials are different from those in
skeletal muscles: their plateau persists for a prolonged time to make sure that all mus-
cle cells of a large area contracts almost simultaneously. Similar the pause after a
depolarization is prolonged to prevent tetanic contractions. At the same time the de-
polarization spreads on neighbour cells.

231

The next higher level is the contraction control of the whole heart. It coordinates
the contraction sequence in time. Activity initiated in a pacemaker region in the wall
of the atrium (sinus node) spreads over the muscles of both atria causing their simul-
taneous contraction. The atria are connected electrically to the ventricles only by a
second pacemaker, the atrio-ventricular node. After a short delay the wave of excita-
tion is conducted very fast via transitional fibers of HIS to the tip of both ventricles.
Starting there the contraction of the ventricles spreads back to the border between
atria and ventricles. The functional significance of the electrical organization of the
heart muscle is its ability to generate separate, synchronous contractions of the atria
and ventricles, following one another. Because the basic heart control resides in the
heart itself, the heart beat continues even in case the heart is isolated from the body.

Nevertheless, the heart function can be modified to meet altered demands of the
body by two antagonistic parts of the vegetative nervous system: The sympathetic
system increases heart rate and stroke volume, the parasympathetic system decreases
the cardiac output. The activity of the vegetative nervous system is influenced by the
metabolic activity of the body as well as by psychic factors as excitement or fear.

2 State of the Art

This project covers topics from the fields of hardware architectures, low power de-
sign, monitoring, self-organization of distributed real-time systems and robotics.

2.1 Reconfigurable Hardware Architectures

Since application algorithms can be in principle implemented in software or in
hardware, i.e. either completely in time or completely in space, reconfigurable com-
puting means structural programming and reconfiguration concurrently in time and in
space. Data stream schedules have to be optimized within and at the I/O borders of
such kind of array architectures [BH03]. Dependent on the granularity and bitwidth
of the reconfigurable data manipulating logic and arithmetic units, the corresponding
hardware architectures are called fine-grain, coarse-grain, and multi-grain [BBUO5]:

e Fine-grain FPGA: Complex data manipulations are decomposed into single-bit
logic operations that match the available configurable logic blocks. The draw-
back is that fine-grain FPGAs lack mainly area/power-efficiency, since their
physical integration density is roughly two orders of magnitude worse than the
Gordon Moore Curve, whereas the logical integration density is about 4 orders of
magnitude behind Gordon Moore [D00].

e Coarse-grain FPFA (Field-Programmable Function Arrays): Complex data ma-
nipulations are decomposed into multiple-bit arithmetic operations that match the
available reconfigurable datapath units (rDPUs). Coarse-grain reconfigurable
hardware solutions are about one order of magnitude more energy-efficient than
fine-grain alternatives [BHPOS5].

e Multi-grain FPMA (Field Programmable Digital-Analog Mixed Arrays): Com-
plex data manipulations are decomposed into single- and multiple-bit logic,

232

arithmetic, and bitlevel operations that match the available mixed processing ele-
ments (MPEs). This “hybrid” architecture variation reflects combination of fine-
and coarse-grain operation types found in many application algorithms.

2.2 Ultra Low Power Design

Dynamic power management (DPM) is a design methodology that dynamically re-
configures an electronic system to provide the requested services and performance
levels with a minimum of active components or a minimum load on such components
as stated in [BBOO]. The basic concepts of DPM i.e. identification and definition of
power states and (power consuming) transitions between these states and first heuris-
tic optimization strategies with application to embedded systems have been proposed
in [BM97][PO1]. Early work has focused on known stationary effects [BBP99] i.e.
the transition matrix representing state transitions is time-invariant for a stationary
workload. More relevant for embedded systems, however, are unknown stationary
environments i.e. an offline analysis is not sufficient. Control theory [H89] has been
applied to address these scenarios. Stochastic learning with application to ACPI com-
pliant devices has been proposed. From an application point of view, power manage-
ment has also been applied to distributed computing systems. In [CR03] the paging of
a wireless system is combined with power management strategies.

2.3 Monitoring

An important issue with self-organization is system monitoring. Common used
techniques for monitoring include hardware probes and software instrumentation. The
former is non-intrusive, while the latter is flexible, easy-to-implement, but with over-
heads. In the hardware area, monitors are usually deployed either at processor level or
at system level. In the first case, they occur in the form of performance counters and
are integrated in the processor core. Actually, most modern processors provide such
counters. Well-known examples are the IBM POWER2[W94] that has 5 performance
counters enabling the concurrent monitoring of five events and Intel Itanium Archi-
tecture [INT02] which supplies 8 counters to allow the collection of more informa-
tion. At system level, usually specific hardware has to be developed in order to meet
individual requirements and purposes. Examples include the Princeton hardware
monitor for SHRIMP multiprocessor [KC99] and the Stanford hardware performance
monitor for the DASH multiprocessor [L93].

2.4 Self-organization of distributed real-time systems

Self-organization has been a research focus for several years. Publications like
[J89] deal with basic principles of self-organizing systems, like e.g. emergent behav-
iour, reproduction etc. Regarding self-organization in computer science, several pro-
jects and initiatives can be listed. IBM’s Autonomic Computing project [KCO03] deals
with self-organization of IT servers in networks. Several so called self-X properties

233

like self-optimization, self-stabilization, self-configuration, self-protection and self-
healing have been postulated. The German Organic Computing Initiative has been
founded in 2003. Its basic intention is to improve the controllability of complex em-
bedded systems by using principles found in organic entities [VDE03]. Organization
principles successful in biology shall be adapted to embedded computing systems.
Regarding self-organization of distributed embedded real-time systems, not much
work has been done yet. On one side, the relationship between self-organization and
real-time to our knowledge is poorly researched. On the other side, in the field of
self-organization for distributed systems, more work has been done. Middleware is a
key component in organizing distributed systems. For standard applications middle-
ware architectures like CORBA, DCOM, .NET, JMS or RMI are state of technology.
Some of these systems are suitable for real-time applications, e.g. RT-CORBA
[OMO03]. The resource needs of the middleware architectures mentioned above is
quite high. So it is not possible to use them on small computation nodes like micro-
controllers due to memory and computing power limitations. To reduce these needs
and to make middleware applicable to embedded systems, several work has been
done. Regarding self-organization, current middleware approaches provide features
for load balancing. Middleware architectures fulfilling organic computing principles
are rare. In [BFLO3], the use of middleware for self-healing is investigated. In
[TBPO03], a self-organizing middleware to manage smart doorplates is described.

2.5 Application domain for organic computing: Robot-based manufacturing

The increasing degree of functionality of production systems with a concomitant
increase in degree of complexity of these systems, leads to the requirement for highly
efficient production systems. Thereby robots play a dominating role. In the area of
robot based manufacturing, the production processes and equipment are very complex
with a hierarchical multi-level structure, especially in the automotive industry.
Changes in production cause time and cost expensive reconfiguration and adaptation
of control parameters. Faults during automatic production can result in considerable
losses of the product quality or additional production costs e.g. due to maintenance or
standstill periods. Moreover, faults in the robot environment of a cell can considera-
bly endanger human health. Thus, around this field of application a very important
issue will be in future the overall multi-sensoric supervision and control of the com-
plete process to achieve goals of higher accuracy and more efficiency as well as to
guarantee safety even in the case of component malfunctions or faults of the human
operator.

3 The DodOrg Architecture - from the Organic Model to a
Technical System

In this section the overall architecture of the project and the relations between the
different sub areas are described. Starting with basic biological mechanisms, we de-
rive a digital, on-demand computing organism representing three levels.

234

Body / Emotions

Environment / Task

! v

Leaming/ ? Algo-
Adaptation rithm
? ?

©
oY | Th| |t

Control Organic Control
Loop Manager Loop

Brain Level

Organ Level

o e I

Processing Cells

Myocardial
Cell

Low Power — Fail Safe —Real Time

Cell Level

Fig. 2: From Biology towards an Organic Computing System

Fig. 2 puts the concept of the mammalian heart on the left side in relation to the
computing system architecture we envision. Three levels can be distinguished: Cell
level, organ level and brain level. These levels and their interrelation correspond to a
natural partitioning of this project:

e A robot control architecture is an example of a complex real-time system. It can
be regarded as the brain of a self-organizing robot. It controls the way in which
the robot performs its tasks and reacts to his sensor inputs. The robot controller
comprises the basic control algorithms within the robot system itself, e.g. control
of drives, sensors, technology, digital 10s, etc. The robot components are inte-
grated via high-performance industrial networks, e.g. field buses or Industrial
Ethernet. The architecture for self-organisation and self-configuration in the ro-
bot system is strongly demanding, because reconfiguration of components and
control policies has to be done during the run-time of the system.

e In biological organisms, cells specialize and group together to form organs. In
our organic architecture, this will be achieved by a middleware. The task of this
middleware is to dynamically group processing cells and to assign to them parts
of the application resulting in something like “virtual organs”. Furthermore, the
middleware is responsible for several self-X features on the organ level. The
challenge is to research and develop structures to realize these features. In order
to allow self-organization and self-optimization, closed control loops and organic
management must be present. To enable self-healing, these closed control loops
and organic management must be totally decentralized and reconfigurable, so
they do not break when processing cells fail.

235

To facilitate closed control loops, flexible monitors are necessary on each level to
observe vital system parameters. These monitors are responsible to gather state
information of the entire system, which is needed by the middleware to dominate
the cells and to configure them on-demand. As the monitors are connected to
various system levels, including hardware, middleware, and application, specific
requirement arises, especially in flexibility and reconfigurability. Hence, we pro-
pose monitors that operate independently of the target modules, much as the
autonomic nervous system operates independently of the human consciousness.
Each monitor will work as an independent device, which snoops on a bus or
communication wire, or which observes system resources in the middleware and
application level. Each monitor itself is reconfigurable, allowing to dynamically
adapt its activity to changing system conditions. These monitors will be devel-
oped both in the form of software and hardware, and distributed throughout the
complete system. At the cell level, hardware probes will be applied to snoop
buses and information about e.g. energy consumption, cell utility, malfunctions,
and abnormal operations will be delivered. At the middleware level, software
probes will be used to extract information from the components included in the
control loops and information about the efficiency of the middleware in terms of
various target functions will be gathered. At the application level, the monitors
are capable of acquiring, filtering, and processing any kind of state information
and events delivered by the applications, and then generating essential informa-
tion for application-specific adaptation, for example, fault-tolerance control. Ad-
ditionally, standardized API will be provided to control the monitors and to
query the performance data uniformly across all monitors in the system.

Since we envision, again comparable to the cells of an organism, to include a
large number of processing cells in our organic architecture, power consumption
is a key issue. Low power design is a key issue for designing future embedded
systems generations. Design for ultra low power consumption will allow apply-
ing embedded systems virtually everywhere as it increases the operation time of
mobile devices between re-charge cycles. In our proposed organic computing
mechanism, we will deploy what we call a swap-on-the-fly system architecture in
order to minimize the power consumption of our organic computing mechanism.
It is a technique that dynamically interchanges processing resources at the cell
and organ level in order to ensure a minimum of power consumption under the
momentarily valid constraints (e.g. performance). The swap-on-the-fly system
architecture provides a swap power manager, a swap scheduler and a swap exe-
cution unit as basic components. It receives monitoring data, aligns the schedule
with the coarse-grained system schedule and utilizes the adaptive hardware as
one possible option for swapping-on-the-fly.

On the level of processing cells, comparable to the cells of an organism, flexible,
adaptive, dependable and high performance hardware is necessary. Reconfigur-
able hardware architectures, based on a common infrastructure, promise to be an
appropriate solution to achieve this goal. Various types of hardware cells allow

113

for self-induced grouping via an extensible network, providing various “ser-

236

vices” to the whole of the system, such as (but not limited to) calculation, mem-
ory, interaction with the environment and monitoring of other cells. Seamless
shifting of tasks and responsibilities from one cell to another in case of failure
and self-monitoring of cells are needed for true de-centralization of the system
and provide challenges for research.

The overall architecture is organized in five categories addressing particular areas
of research. There are two hardware-centric, two software-centric, and one mixed
hardware/software category. These categories are described in detail in the following.

3.1 Organic Processing Cells

The organic self-x hardware architecture proposed in this project represents a new
kind of hardware and processor architecture family, which is conceptually derived
from today’s dynamically reconfigurable technologies. The architecture topology and
hardware data path structures are continuously adapted and dynamically (self-) cus-
tomized during runtime, in order to always have an optimally dimensioned hardware
solution available with respect to minimal power consumption and resource availabil-
ity. Monitoring, fault-detecting and -handling and reconfiguration must occur at regu-
lar intervals. An adaptive cell-based digital computing “organism” would functionally
behave like a real organic being and fulfill these needs. To effectively realize the
properties of future “organic” systems, a node-based approach to implementation
seems viable (Fig. 3).

System1 |Cellswith System 2
common

structure
FPGA DSP o] FPGA

Cell > Cell Cell

I !

Memory Monitor 110 - N)
Cell

Cell Cell Cell
~_

I I I transparent I

extension
FPFA WProc /0 FPGA

Cell Cell > Cel Cell

Multi-grained : configurable
interconnection Peripheral '\‘ /O ports

Devices
Fig. 3: Conceptual Hardware Architecture Overview
Modularity will be gained by having all cells of the “organic” hardware system
share one of a set of common “blue prints”. This corresponds to the notion of cells

being derived from one basic type, only differentiated during development of the
organism by special “programming” or interaction with neighbouring cells. True

237

“organic” behaviour could be achieved by only using FPGA cells, configured to the
needs of the respective processes running on it. As pointed out above, this would
render efforts of achieving low power consumption quite fruitless, though. In this
project, this strict principle should therefore be mellowed. Cells will come “pre-
packaged” with a certain special function, such as DSP or micro-processor function-
ality, FPGA functionality, FPFA functionality or I/O functionality, but the overall
number of these variations should be kept to a minimum. In addition, this constraint
will also make it easier for the system to find cells that can take over tasks from de-
funct neighbours. The necessary complexity of these functionality blocks will need to
be established, as it depends mainly on the overhead for the common cell infrastruc-
ture. The trade-off that must be considered here lies between few but powerful cells
(i.e. full-fledged processors) and many cells with only limited capabilities (e.g. recon-
figurable data path units with sequencers). A system of mixed complexity would be
possible as well.

All cells need to be able to do a minimum of housekeeping themselves. More com-
plex tasks are taken over by the distributed organic middleware, but the basic inter-
facing to the hardware needs to be in place. We envisage a common structure of all
cells that comprises a router, clock and power management, functionality monitoring,
state and configuration control and cache memory, or possibly a subset thereof (Fig.
4).

> Clock and Power

houwerStaus Management (DVFS) <«—>
1 Conf. Failure
Status Observer Cell-Specific
R -
CellFaiwe CRC check “— Functionality Cell i
v Output watch (uProc, DSP specific
Neighbour interface FpPGA F PFA’ 1/0 port
4==) Router i Conf. survey Memo]’y, '
4 State Interface Monitoring,
State Info Configuration Control etc)
Request Conf. i Conf. Data
Con. Data Configuration Cache

Fig. 4: Hardware structures common to all cells

The router is the basic building block of the whole cell network. It must circum-
vent defunct cells (self-rerouting), it needs to forward data to suitable successive cells
as defined by the target application, thereby implementing self-establishing data-
paths, and it needs to communicate the cell’s status to neighboring cells and react to
similar messages coming in from other cells (basis for self-reconfiguring behavior).

238

To carry out the decisions made by the Power Management layer, hardware sup-
port is needed on cell level. The clock and power management functionality shall be
responsible for powering down cells when their functionality is not needed, and for
applying dynamic frequency and voltage scaling techniques to the cell’s content.

The observer circuit is the hardware part of the monitoring system. It checks for
errors in program code or configuration data, employing checksum or hash functions,
and it provides basic control of the cell’s behavior, e.g. monitoring its output and
rejecting possibly dangerous output events. The configuration control unit is respon-
sible for reconfiguration of the cell specific block. For FPGA cells it will determine
the slices that are to be reprogrammed dynamically [4], for processor cells it is re-
sponsible for loading application code to the proper memory location. It interfaces to
the router for obtaining the current configuration data or program code.

To facilitate effective and efficient adaptivity with respect to cell failures (self-
healing) and with respect to a reconfiguration of data-paths, a mechanism for transfer-
ring state information among the various cells is envisaged.

3.2 Low power through swap-based system architecture

A novel system architecture is proposed in order to minimize the all-over power
consumption of future MPSoCs (Multi-Processor-System-on-Chip). According to our
model (Fig. 5), this sub-area covers both the cell and organ level and requires moni-
toring input, utilizes the reconfigurable hardware and exchanges system information
with the middleware.

In the past, energy savings at system-level have been achieved through switching
between inherent power modes and adding additional modes to further extend the
leeway for optimization. However, if a system has only a small amount of compo-
nents with unfavorable power characteristics, there is only that much optimization
potential that can be managed by the power management scheme.

Our Swapping-on-the-fly proposal will vastly increase the leeway for power opti-
mization by offering a set of alternatives for implementations of a task. At any point
in time, exactly one implementation of a certain task will be instantiated though.
Here, the meaning of “implementation” is twofold: it may either denote the physical
implementation (“software”, “custom hardware”, “reconfigurable hardware” etc.) or
it may denote the algorithmic implementation.

In the first case, variations in power consumption result from the differing charac-
teristics of the physical fabric the task is implemented on. It is obvious that a task
implemented as a software program residing in a RAM-based memory has a different
power consumption and performance compared to an ASIC-style implementation. In
the second case, variations result from differences in computational complexity of
algorithms, additional features of an algorithm etc. Eventually, further variations
result from combining physical and algorithmic implementations.

Hence, we assume that each task may potentially be available on a SoC in one or
more implementations resulting from combining physical and algorithmic options.
Though this hardware/software architecture will result in a larger SoC area (i.c. gate
equivalents) compared to the case of only a single implementation for each task, it

239

will add a new dimension for significantly reducing the power consumption of a SoC
compared to an implement-once-and-fix-forever style of implementation.

Middleware (Brinkschulte)

Swap Power L Swap
Manager “| Scheduler

Y

Swapping
Execution

Task 1 | Task1 TaskK | TaskK
Impl.1 Impl. m Impl. 1 Impl. m

Task 1 Task K

Fig. 5: Three building blocks of self-adapting SoC for ultra-low power consumption

Fig. 5 shows an overview of the building blocks for the proposed sub-area. It com-
prises the swap power manager, the swap scheduler and the swapping unit. The swap
power manager receives monitoring data on the system’s status, like remaining bat-
tery energy, changes in constraints imposed to the systems (the system might need to
run temporarily at higher performance etc.) and so on. According to the swap power
manager’s policy, a swapping is initiated and the swap scheduler is instructed to pro-
vide the lowest possible power schedule under the momentarily valid performance
constraints. If a schedule is not possible the swap power manager is informed in order
provide a different swap scheme etc. Once, a valid schedule is found, the swapping
execution unit is eventually conducting all necessary actions to perform the swap-
ping. At any time, new monitoring data may trigger a re-swap.

3.3 Monitoring

An organic architecture requires a comprehensive, flexible, and adaptive monitor-
ing approach for self-organization. Current monitoring systems, however, do not meet
these features due to their limited monitoring capabilities and single source monitor-
ing. In this case, we propose to develop a flexible and unifying framework for moni-
toring of virtually any system component. To acquire parameters for middleware to
perform the loop controls, multilevel monitors are needed. These monitors are dis-
tributed across the system, connected to different components and layers, responsible
for a variety of performance metrics, and therefore must be themselves reconfigurable
and adaptable, multifunctional and efficient. For this, we develop a flexible and uni-
fying framework for monitoring of virtually any system component. The central parts
of this framework are a generic and standardized Monitor Cell capable of holding an
adaptable, reconfigurable monitoring device, domain-specific Monitor Analysis
Modules for extracting, processing, and storing system states, and a uniform software
infrastructure for correlation of monitoring information. Depending on the target

240

object, a Monitor Cell can be in the form of a hardware facility or a software compo-
nent, where the former deploys the same structure as the processing cells and the
corresponding Analysis Modules will be implemented using Hardware Description
Language, while the later relies on dynamically downloadable kernel modules to hold
the Analysis Modules which are also implemented using software.

3.4 Organic Middleware

To interconnect the processing cells and to form the virtual organs envisaged in
our project, an organic middleware architecture is needed. This middleware architec-
ture should be strongly influenced by successful biologic strategies and mechanisms.

We envision using decentralized closed control loops to operate the system and to
control the virtual organs. Like in biology, these control loops must be decentralized
to prevent a system failure in case of the failure of a control loop component. Fig. 6
gives an overall view of the processing cells, middleware to form the virtual organs
and the applications induced by the brain level.

Application «-- | Application Brain Level
Virtual Organ == | Virtual Organ Organ Level
-

Organic Middleware

Processing . . . Processing Processing . . . Processing Cell Level
Cell Cell Cell Cell

Fig. 6: Organic system architecture with middleware

To realize these decentralized control loops, the biological principle of suppressing
and accelerating messengers is used. Fig. 7 shows the basic concept:

Each processing cell initially contains all or at least a big subset of all system tasks.
This idea is adapted from the biological cells, which contain the full genome. It is not
a contradiction to low energy consumption, because the program code for all tasks
can be stored in read-only memory. Memory sections of inactive tasks can be turned
off thus not consuming energy.

For each task, a processing cell sends a messenger containing a value how eager
the cell is to execute this task. Let’s call this the Eager Value. E.g. if a cell is not able
to execute a specific task at all (e.g. due to missing periphery or computation power),
it sends a 0. If a cell is quite able to perform the task, it sends a medium value. If the
cell is eager to execute the task (e.g. due to special hardware very suitable to perform
the task), it sends a high value.

Each cell compares for each task its Eager Value to the Eager Value of the other
cells. If its Eager Value is higher, the cell starts executing the task.

In the moment a cell starts executing a task, it sends a suppressor messenger to all
the other cells. This suppressor is subtracted from the Eager Value thus preventing
others from executing the same task.

241

Supressor Supressor Accelerator Accelerator Send Eager, Eager| Send Send
for task i for task i for task i for task i Values of| Values for| suppressor | accelerator
derived sent from derived sent from a task i to all task i from for task i to for tasks
from another cell from neighbour other cells all other all other cells | related to i to
monitoring monitoring cell cells neighbour

cells
Eager Value i

>7?

Execute

Fig. 7: Principles of a decentralized biologically motivated control loop using mes-
sengers

For the virtual organ idea, it is advantageous when cooperating tasks are executed
on neighbor cells to reduce the communication overhead in the virtual organ. This
can be realized by accelerator messengers. If a cell has started executing a task, it not
only sends suppressors for the same task to all other cells, but as well accelerators for
the related tasks to the neighbor cells. These accelerators are added to the Eager
Value thus increasing the probability for a related task to be executed on a neighbor
cell.

To realize closed control loop, vital system parameters like performance, network
load, energy consumption, task response times etc. are monitored. This monitoring
allows conclusions on how well a certain task performs on a certain processing cell.
Based on the monitoring results accelerators or suppressors for this task are calcu-
lated and added or subtracted from the Eager Value thus encouraging or discouraging
the continuation of task execution on this cell. If due to the accelerators and suppres-
sors the Eager Value of task i currently executed on cell m becomes lower than the
Eager Value of the same task on cell m, this cell will take over task execution.

These principles enable main organic computing features like self-organization.
self-optimization and self-healing.

3.5 Organic Robot Control

Today’s fast changing industrial markets force manufacturers to reduce costs and
production time and to increase productivity whilst guaranteeing quality standards.
Manufacturing systems are becoming more and more automated. However, due to
application specific control technologies and fixed configured machines and robots,
limited flexibility of manufacturing systems is given. In order to handle small and fast
changing production series, future manufacturing systems must be build of highly
flexible and reconfigurable components.

In DodOrg a more flexible way of robot based manufacturing is examined. Two
levels of production are investigated. At the first level there are elementary autono-
mous production units, i.e. an autonomous robot which has knowledge over itself and
which can offer its capabilities to a higher manufacturing level, i.e. a production cell.
At the second level there is an autonomous production cell which consists of elemen-
tary autonomous production units, i.e. robots, transport and storage units. The pro-
duction planning system plans an order on a high level. According to this order the

242

autonomous production units are able to configure themselves in a decentralized way
over a local area network to an autonomous production cell. Each robot offers his
capabilities over the network to the cell control which is able to self-organize the
production cell consisting of different robots according to the order.

3.5.1 Self-organizing Robot System

There are two levels of self-organization and self-configuration in this manufactur-
ing scenario. At the first level there is the autonomous robot which consists of an
automation system. The automation system consists of different kind of field net-
works for coupling the cell level, the drives, the 10’s and the sensors. According to
the order, the tasks, the role and occurring failures of the autonomous robot an
autonomous self-configuration and self-reconfiguration of its software and hardware
system is performed. Monolithically structured robot controls can only be adapted
and enhanced with high efforts. Therefore a component based software architecture
for the organic robot control is developed. Self-configuration of the robot control for
a given manufacturing task is done based on knowledge and on rules. The feasibility
of the approach is shown in a simulation environment. The transfer to a real robot
system is aspired in a later phase of the project.

3.5.2 Self-organizing Robot Swarm

At the second level of self-organization according to a given order a free robot of-
fers its capability to a cell control which is able to distribute individual tasks autono-
mously to the robots according to their offered capabilities and according to the re-
quired capabilities of the order (Fig. 8).

o . High level
Communication network e.g .Industrial Ethernet, WLAN manufacturing

L l goals

Robot Controller
Components

o Mo
om

Rohot Controller Robot Controller
Components Components

0C API
0C Middleware

Performance
Faults

Self-Organisation

Cell controller
Actuators Sensors

Self-Healing and Self-Optimization

- T 1 T Subsystem 2

Cooperation along material flow

Fig. 8: Self-organization of an autonomous robot-based production cell

243

Thereby a main task is to configure and to reconfigure autonomously the hardware
and the software of the production cell (different robots, transport systems, storages,
fixtures, tools and local hardware and software of the automation system of the ele-
mentary production units).

To realize robots that cooperate intelligent with one another, the exploration of de-
centralized control strategies is done. Safe interaction including dynamic path plan-
ning and collision avoidance are also addressed, because the robots work together in a
shared workspace. Mechanisms to resolve competitive situations and to avoid stagna-
tions are examined as well. In order to cope with unexpected events and failures in
dynamic environments, robots are given more autonomy. Key components, such as
programs and data, are interchangeable among different robots. Furthermore it is
possible that if one robot fails a task, another one can take it over. Thus, the robot
group introduces some kind of redundancy into the manufacturing process. Through
communication various information, e. g. positions, current status, future actions, etc.
are exchanged. Robots tell each other what they are doing. Thereby the knowledge on
how to react when a dynamic change occurs is distributed over the cooperating ro-
bots. Communication is done both between robots and robot to human operator. In
these highly mobile environments beside PDA’s and other hand-held devices also
direct human-robot interaction over tactile or vision sensors are investigated.

4 Conclusion

In this paper an organic computing system that is especially suited for real-time
applications is proposed. Starting with investigating basic biological mechanisms, we
eventually derive a digital, on-demand computing organism representing the three
levels, “brain”, “organ” and “cell”. The “on-demand” characteristic thereby empha-
sizes its responsiveness to environmental requests / changes as well as to changes
resulting from the dynamics of the computing organism itself.

Beginning with the brain level, a software architecture for a robot controller with
emphasis on self-x features is proposed. It closely interacts with an organic middle-
ware at the organ level, featuring a decentralized control loop using messengers. At
the cell level, a novel adaptive and dynamically reconfigurable hardware architecture
is capable to implement the self-x features in an efficient way. In between, a power
management system’s architecture co-ordinates brain level and cell level for ultralow
power system efficiency. All levels are supplied with monitoring techniques and
architectures as a prerequisite for enabling self-x features. We believe that our com-
prehensive approach to organic computing will represent the first step towards more
adaptive, more power efficient and more flexible future embedded real-time systems.

Acknowledgments. The work presented in this paper is supported by a grant from
the German Research Foundation (DFG) within the scope of the priority programme
““‘Organic Computing’’, SPP 1183.

244

References

[BHO3] Becker, J.; Hartenstein, R.W.: Configware and morphware going mainstream, J. of
Systems Architecture 49, pp. 127-142, 2003.

[BBUOS] Becker, J.; Brindle, K.; Ullmann; M.: Rekonfigurierbare Hardware und intelligente
Laufzeitsysteme fiir adaptives Rechnen. "it-information technology journal", Olden-
burg, 2005.

[D00] DeHon, A.: The Density Advantage of Configurable Computing; IEEE Computer,
2000.

[BHPO5] Becker, J.; Hiibner, M.; Paulsson, K.; Thomas, A.: Dynamic Reconfiguration On-
Demand: Real-time Adaptivity in Next Generation Microelectronics, ReCoSoc2005,
Montpellier, France, 2005.

[BB0OO] Benini, L.; Bogliolo, A.; De Micheli, A.G.: A survey of design techniques for system
level dynamic power management; Very Large Scale Integration (VLSI) Systems,
IEEE Tran actions on, Volume: 8, Issue: 3, June 2000, Pages: 299 — 316, 2000.

[BM97] Benini, L.; De Micheli, G.: Dynamic Power management: Design Techniques and
CAD Tools, Kluwer, 1997.

[PO1] Pedram, M.: Power management and optimization in embedded systems systems,
Proc of Asia and South Pacific Design Automation Conference, pp.239-244, 2001.

[BBP99] Benini, L.; Bogliolo, A.; Paleologo, A.; De Micheli, G.: Policy optimization for
dynamic power management; Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, Volume: 18, Issue: 6, Pages: 813 — 833, 1999.

[H89] Hernandez-Lerma, O.: Adaptive Markov Control Process, Springer Verlag 1989.

[CRO3] Chiasserini, C.F; Rao, R.R.: Improving energy saving in wireless systems by using
dynamic power management; Wireless Communications, IEEE Transactions on, Vol-
ume: 2, Issue: 5, Sept. 2003, Pages: 1090 — 1100, 2003.

[W94] Welbon, E. et al.. The POWER?2 Performance Monitor. IBM Journal of Research and
Development, vol. 38, no. 5, 1994.

[INTO2] Intel Corporation: Intel Itanium Architecture Software Developer's Manual, Volume
1-3.2002.

[KC99] Karlin, S.C.; Clark, D.W.; Martonosi, M.: SurfBoard - A Hardware Performance
Monitor for SHRIMP. Technical report of Princeton University, Computer Science
Department, 1999.

[L93] Lenoski, D. et al.: The DASH Prototype: Logic Overhead and Performance. IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no.1, 1993.

[J89] Jetschke, G.: Mathematik der Selbstorganisation, Harry Deutsch Verlag, Frankfurt,
1989.

[KCO03] Kephart, J.O., Chess, D.M.:. The Vision of Autonomic Computing, IEEE Computer,
2003.

[VDEO3] VDE/ITG (Hrsg.), ,, VDE/ITG/GI-Positionspapier Organic Computing: Computer und
Systemarchitektur im Jahr 2010%, GIL, ITG, VDE, 2003.

[OMO03] Object Management Group. RealTime - CORBA Specification (Dynamic Schedul-
ing) 2.0, OMG Document formal/03-11-01 edition, 2003.

[BFL0O3] Buschmann, C.; Fischer, S.; Luttenberger, N; Reuter, F.: Middleware for Swarm-like
Collections of Devices, IEEE Pervasive Computing Magazine, Vol. 2, No. 4, 2003.

[TBP03] Trumler, W.; Bagci, F.; Petzold, J.; Ungerer, T.: Smart Doorplate - Toward an Auto-
nomic Computing System. The Fifth Annual Internatioanl Worshop on Active Mid-
dleware Services (AMS2003), Seattle USA, 2003.

245

