
A pattern-based requirement specification language:
Mapping automotive specific timing requirements∗

Philipp Reinkemeier1, Ingo Stierand2, Philip Rehkop1, and Stefan Henkler1

1philipp.reinkemeier,philip.rehkop,stefan.henkler@offis.de
2stierand@informatik.uni-oldenburg.de

Abstract: Today most requirement specifications are documents written in natural
language. Natural language however is abiguous. Thus computer-aided verification of
system-models against such requirement specifications is generally impossible. In this
paper we propose a textual requirement specification language (RSL), that is based on
patterns, which have a formally defined semantics. RSL is able to express require-
ments from multiple aspects (e.g. real-time, safety, etc.) on a system. In order to apply
RSL in the domain of automotive systems, it has to support timing requirements as the
Timing Augmented Description Language (TADL). TADL is the comming standard
for handling timing information in the automotive domain. In this paper, we present a
mapping of TADL constraints to RSL patterns.

1 Introduction

Stating requirements is an essential tasks in developing products. They build an interface
between different groups of people, i.e. customers, engineers, project managers. Typically
requirements are stated as natural language text. The disadvantage is that ambiguities
can cause a huge amount of requirement changes in all development phases. This leads
to higher development costs and may also be unacceptable if the product is deployed in
safety critical environments. To avoid ambiguities, often formal languages are used to state
requirements with well defined meaning. It however does not only require some training
to write requirements in such formal languages, it may also be hard to read them.

The pattern based Requirement Specification Language RSL [Par10] bridges the gap by
providing a formal language with well defined semantics that is still readable like natural
language. RSL patterns consist of static text elements and attributes being instantiated by
the requirements engineer. Each pattern has well defined semantics exploitable in veri-
fication tools and exhibits a natural language style in order to facilitate consistent inter-
pretation of the written system specification across all project participants. Moreover, the
underlying semantics of RSL establishes formal verification in order to ensure correctness
of systems.

∗This work was supported by the German Research Council (DFG) in SPES 2020 as well as by the ARTEMIS
Joint Undertaking CESAR.

99

Writing requirements shall however be possible in an intuitive way. RSL allows writing
of natural sounding requirements while being expressive enough to formalize complex
requirements. To gain a high degree of intuition, the language consist of only a few con-
structs that can be easily remembered, allowing the user to fully understand the RSL and
to choose the right pattern that fits the intended system properties. RSL aims at providing
expression of a large scale of requirement domains. It defines patterns for each of the
following categories:

• Functional patterns express requirements such as relationship between events, han-
dling of conditions and invariants, and optional intervals in which a requirement (or
parts of it) is valid.

• Probability patterns are used to specify the probabilities of failures or hazards oc-
curing in safety critical systems.

• Safety related patterns outline relationships between system components. These
patterns enable the specification of single point of failures or other failure and hazard
dependencies between different components.

• Timing patterns are used to describe real-time behavior of systems. This includes
recurring activations, jitter and delay.

• Architectural patterns specify the existence of architectural elements like compo-
nents, events and connections between components.

There are already well established requirements specification languages for various as-
pects and application domains. In order to use RSL as a universal specification language
it must be able to cover expressive power of those more specific approaches. In the auto-
motive domain for example, there are mainly two relevant frameworks to specify timing
requirements, namely the Timing Augmented Description Language (TADL) [Par09] and
the AUTOSAR Timing Extensions (ARTE) [GbR09]. In this paper, we will justify about
expressive power of RSL in comparison to TADL.

Though not illustrated in this paper, there already exists a compiler for translating instances
of the patterns into observer automata. So verification can be done with state of the art
model-checking tools like UPPAAL [BDL04].

Related Work The idea of requirement specification languages featuring a natural lan-
guage style is not new. For instance in [HJD04] boilerplates for requirement specification
are proposed. While this approach is also based on templates of natural language, there
is not necessarily defined a formal semantics for them. Approaches based on controlled
natural languages like Attempto Controlled English (ACE), first described in [FS96], or
PENG [Sch04] are interesting as they come very close to natural language style and can
be translated into a first-order logic system. However quantitative specifications like time
intervals are inevitably for real-time systems. That cannot be done using such approaches
because they usually do not provide a typed system. Graphical specification languages
also provide an intuitive way to define requirements. Popular representatives are Live Se-
quence Charts (LCS) [DH01] and Timing Diagrams [DL02]. The mentioned approaches
and formal language style languages like RSL have in common compositional techniques
to define automaton semantics important for observer-based verification. RSL itself is

100

based on the Contract Specification Language (CSL) [GBC+08] defined in the SPEEDS
project. RSL has been extended and evolved in that it is more consistent and modular.

Section 2 introduces the common concepts of the RSL and defines its semantics as far as
relevant for this paper. Section 3 revisits the semantics of TADL constraints and discusses
their covering by respective RSL patterns. Section 4 concludes the paper.

2 The Requirement Specification Language

The notation of RSL patterns normally contain optional parts that are not necessarily in-
stantiated. A functional pattern for example describing causality between two events looks
like this: whenever event1 occurs event2 occurs [during interval]

Phrases in square brackets are optional, bold elements are static keywords of the pattern,
and elements printed in italics represent attributes that have to be instantiated by the re-
quirements engineer. The names of the attributes can be used later to be mapped to a given
architecture, or they can be used to generate the architecture.

When specifying requirements there is no strict typing like int or real but there are cat-
egories that specify what is described by the different attributes. To not complicate the
language too much and to be also expressive enough, the set of supported attributes has to
be carefully chosen:

Events represent activities in the system. An event can be for example a signal, a user
input by a pressed button, or a computational result. Events occur at distinct time instants
and have no duration.

Conditions are logic and/or arithmetic expressions over variables and the status of events.
Conditions can be used in two different ways. Firstly, they can be used as pseudo events
to trigger an action if the condition becomes true. And secondly, they may represent the
system state that has to hold for a specified time.

Intervals describe a continuous fragment of time whose boundaries are (relative) time
measures, or events. They can be open “]x,y[“, closed “[x,y]” or a combination thereof.

Components refer to entities that are able to handle events or condition variables. Typi-
cally, components refer to an architecture.

RSL supports various combinations of elements. It allows for example filtering of events
by intervals or conditions. That is, wherever an event occurs in a pattern, one may also use
event during [interval], or event under (condition). Thus, one can e.g. specify

whenever request during [activate, deactivate] occurs response occurs during [l, u]

meaning that a response is constrained only if the request happened after an activate and
before some deactivate event. Filtering of events can be applied recursively. So activate
could again be filtered by some interval or condition.

In the following we define syntax and semantics of those RSL patterns that are used later
to define the mapping to TADL-constraints. We define semantics in terms of timed traces

101

tevent2

event1
Event occurrence
Observation Interval

Figure 1: Semantics of pattern F1

and timed languages [AD94]. A timed trace over Σ is a pair (σ, τ), where σ = σ1σ2 · · ·
is an infinite word over Σ, and τ = τ1τ2 · · · is a sequence of time instants τi ∈ R and
∀i : τi ≤ τi+1, at which the events σi occur. A timed language is a set of timed traces
over Σ. The projection of (σ, τ) onto Σ� ⊆ Σ, written (σ, τ)|Σ� is formed by deleting
all σi /∈ Σ� along with their associated time value τi from (σ, τ). Projection is naturally
extended to languages over timed traces.

Pattern F1: whenever event1 occurs event2 [does not] occur[s] [during interval].

The pattern defines that an event2 shall (not) occur whenever an event1 has been occurred
in the system. An optional interval confines the instant in time for event2. Thereby
interval may be defined either by other events like [startEvent, endEvent], or by timed
values forming the boundaries of an interval like [0ms, 5ms]. Timed values can also be
negative, thereby allowing ”backward specification”. For mapping TADL constraints only
boundaries in terms of timed values are needed.

Throughout this paper we make use of the following notations. We assume a set of events
ΣSys that can be produced by a given system. The events occurring in an RSL pattern p
are denoted Σp. For example, for the F1 pattern instance

whenever s occurs r occur during [l,u].
we get ΣF1 = {s, r} ⊆ ΣSys. We further assume l and u to be timed values l, u ∈ R. For
0 ≤ l ≤ u the semantics of pattern F1 is defined by the timed language LF1 over ΣF1:

LF1 = {(σ, τ)|∀i ∈ N,∃j ∈ N : σi = s ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + u) ∧ (σj = r)}
The semantics is shown in Figure 1. Multiple activations of the pattern may run in parallel.
The respective definition for u ≤ l < 0 is symmetric.

The semantics of some RSL patterns can be modified by additional attributes. A pat-
tern modified by the attribute once gets a strict interpretation of the action during the
observed interval. The attribute once modifies LF1 by replacing the quantified ∃j ∈ N
with ∃!j ∈ N. Note that the attribute once can only be used in combination with an in-
terval as otherwise the pattern would not terminate. Thus, the part ”during interval” of
the pattern becomes required. The optional part does not of the pattern modifies LF1 by
replacing the quantified ∃j ∈ N by �j ∈ N in the language definitions above.

Pattern R1: event occurs sporadic with minperiod period1 [and maxperiod period2]
[and jitter jitter].

The pattern defines that event shall occur sporadically, relatively to some reference event
which occurs with a minimum inter-arrival time period1. An optional jitter specifies
the maximum amount of time each occurrence of event can be delayed relatively to the

102

t
event

ref-event
Event occurrence
Jitter

Figure 2: Semantics of pattern R1

t

e
s

f
r

Event occurrence
Observation Interval

Figure 3: Semantics of sequences of events

occurrence of the reference event. If no jitter is defined it is assumed to be 0. The op-
tional period2 bounds the maximum inter-arrival time for subsequent occurrences of the
reference event. For the R1 pattern instance

e occurs sporadic with minperiod T1 and maxperiod T2 and jitter J .
we have ΣR1 = {e} ⊆ ΣSys, and T1, T2, J ∈ R, 0 ≤ T1 ≤ T2, 0 ≤ J are normalized
time values. The language LR1 of the pattern is defined as follows:

LR1 = {(σ, τ)|∃τ �,∀i ∈ N : (τ �
i ≤ τi ≤ τ �

i + J) ∧ (T1 ≤ τ �
i+1 − τ �

i ≤ T2)}

where T1, T2 form the lower and upper bound for the distance between subsequent occur-
rences of the reference event described by the time sequence τ � = τ �

1τ
�
2 · · · .

Sequences and Sets of Events The RSL language also provides specification of com-
plex event occurrences by means of event sequences, event sets and logical operations on
events. Event sequences are specified by an and then expression: (event and then event
[during interval])

It can be used wherever the syntax allows to specify an event. They can be nested allowing
for specification of event sequences longer than two. An optional interval in the expression
confines the minimum and maximum distance between the involved events. In order to
capture the semantics of event sequences, we denote aT the sequence of symbols specified
by an and then-expression, and aTi denotes the ith event in the sequence. In the following
we restrict to the case where only the last event may be bounded by an additional interval.
For example, the semantics of the F1 pattern instantiation

whenever s occurs (e and then f and then r during [l�, u�]) occur during [l,u].

is depicted in Figure 3. Here, ΣF1 = {s, e, f, r} ⊆ ΣSys denotes the set of events of the
pattern, l, u, l�, u� ∈ R, and aT = efr. The language LF1aT

is defined as follows:

LF1aT
= {(σ, τ)|∀i ∈ N,∃� = �1...�n, n = |aT | : σi = s ⇒ (i < �1) ∧ (∀1 ≤ k ≤ n :

(τi + l ≤ τ�k
≤ τi + u) ∧ (σ�k

= aTk) ∧ (τ�1 + l� ≤ τ�n
≤ τ�1 + u�))}

103

Similarly to LF1 the attribute once may be applied or the optional part does not may be
used, which replaces ∃� by ∃!�, respectively ��.

Additionally, RSL provides a shortcut for the specification of N subsequent occurrences
of the same event. The syntax is: N times event.

Further it is sometimes useful to define sets of events where ordering does not matter.
Arbitrary ordering of a set {a, b, c} of events can thus be expressed as

(a and then b and then c during [l�, u�]) OR (a and then c and then b during [l�, u�])
OR (b and then a and then c during [l�, u�]) OR ...

As an abbreviation RSL provides the construct set{event, · · · , event} [during interval].

Satisfaction-relation While each RSL pattern instantiation defines a distinct language,
we have to reason about satisfaction of such constraint by a given system. So we assume
system behaviour also be defined in terms of languages over timed traces. That is, a system
S is defined by a language LSys over the alphabet ΣSys. S satisfies an RSL constraint p
over an alphabet Σp if and only if LSys|Σp

⊆ Lp.

For multiple RSL-patterns p1 · · · pn, each of which forms a timed language Lpi
over an

alphabet Σpi , the system obviously must satisfy all those constraints. This is equivalent to
constructing the parallel composition of the constraints �i pi and then to check the system
against it. The language of the parallel composition however is simply defined as follows:

L� = {(σ, τ)|∀i : (σ, τ)|Σpi
∈ Lpi}

If all alphabets Σpi are the same, then L� is simply the intersection of all Lpi .

3 Mapping of TADL Constraints

The TADL semantics [Par09] of constraints defines how assumptions about occurrences
of events must relate to each other for a set of timing constraints to be satisfied. That
is the semantics of a constraint is given by its satisfaction-relation. The semantics of an
event is the same as in RSL. For the occurrence of an event e TADL defines a function
dynamics(e) = �t1, t2, · · · �, which associates that event with a list of strictly increasing
time values. Thus it is a projection (σ, τ)|{e} followed by a projection on the second
component, where {e} ⊆ ΣSys. What remains is a strictly increasing time sequence
τ = τ1τ2 · · · denoting the times of occurrences for event e in an observation.

An event chain relates two sets of events, stimulus and response. There is an intuition
behind an event chain. However in [Par09] the semantics are left undefined and it is
argued, that arising questions about causality would involve the semantics of the structural
model, which was not intended. That means the causality of events is NOT defined by
such an event chain.

104

t

Event
occurrence

s

r

Figure 4: occurrences of s and r and the reference window for reaction constraint

3.1 Delay constraints

Delay constraints are applied on the stimulus- and response-sets of event chains and de-
scribe how the occurrences of events of that sets must relate. The parameters of each kind
of delay constraint are given by a subset the following elements: A set S of events acting
as stimuli, a set R of events acting as responses, a time offset l indicating the near edge of
a time window, a time offset u indicating the far edge, and the size w of a sliding window.

Reaction constraint From [Par09]: A reaction time constraint c is satisfied for some
given event behaviour if and only if for all events s in S, for all times t in dynamics(s), for
all events r in R, there exists at least one time v in dynamics(r) such that t+l ≤ v ≤ t+u.

Using the previously defined interpretation of the function dynamics(e), we can derive a
timed language characterizing a reaction constraint. A reaction constraint forms a timed
language Lreact over an alphabet Σreact = {S ∪ R} ⊆ ΣSys, defined as

Lreact = {(σ, τ)|∀i ∈ N,∀s ∈ S, ∀r ∈ R,∃j ∈ N :
(σi = s) ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + u) ∧ (σj = r)}

Characterizing the timed language of each TADL constraint is straight forward. For the
remaining constraints we will thus not cite the TADL semantics and directly give the timed
language. The semantics of a reaction constraint Lreact can be expressed in RSL by a F1
pattern for each event r ∈ {r1, · · · , rn} = R. The lower and upper bound l and u,
respectively, are the same for all these F1 patterns. Thus, ∀r ∈ R:

whenever s1 OR · · · OR sm occurs r occur during [l,u].

Proposition 1 Lreact =�r∈R LF1r

Output Synchronization constraint An output synchronization constraint is a reaction
constraint extended by the additional parameter w. It forms a timed language Loutput over
an alphabet Σoutput = {S ∪ R} ⊆ ΣSys, defined as

Loutput = {(σ, τ)|∀i ∈ N, ∀s ∈ S,∃x ∈ R,∀r ∈ R,∃!j ∈ N :
(σi = s) ⇒ (j > i) ∧ (τi + l ≤ τj ≤ τi + u) ∧ (σj = r) ∧ (x ≤ τj ≤ x + w)}

The semantics of an output synchronization constraint Loutput can be expressed in RSL
by a F1 pattern for each event r ∈ {r1, · · · , rn} = R. The lower and upper bound l and
u, respectively, are the same for all these F1 patterns. Thus, ∀r ∈ R:

105

t

Event
occurrence

s

r1
r2
rn.

..

Synchronization
Window

Figure 5: output synchronization constraint and the reference- and sliding-window

t

Event
occurrence

s

r

Figure 6: occurrences of s and r and the reference window for age constraint

whenever s1 OR · · · OR sm occurs r occur during [l,u], once.
Finally another F1 pattern of the following definition must be instantiated:

whenever s1 OR · · · OR sm occurs set{r1, · · · , rn} during [0, w] occur during [l,u].

Proposition 2 Loutput = (�r∈R LF1oncer
) � LF1setw

Age constraint An age constraint forms a timed language Lage over an alphabet Σage =
{S ∪ R} ⊆ ΣSys, defined as

Lage = {(σ, τ)|∀i ∈ N,∀r ∈ R,∀s ∈ S, ∃j ∈ N :
(σi = r) ⇒ (j < i) ∧ (τi − u ≤ τj ≤ τi − l) ∧ (σj = s)}

The semantics of an age constraint Lage can be expressed in RSL by a F1 pattern for
each event s ∈ {s1, · · · , sn} = S. The lower and upper bound l and u, respectively, are
the same for all these F1 patterns. Thus, ∀s ∈ S:

whenever r1 OR · · · OR rm occurs s occur during [−u,−l].

Proposition 3 Lage =�s∈S LF1s

Input Synchronization constraint An input synchronization constraint is an age con-
straint extended by the additional parameter w. It forms a timed language Linput over an
alphabet Σinput = {S ∪ R} ⊆ ΣSys, defined as

Linput = {(σ, τ)|∀i ∈ N,∀r ∈ R,∃x ∈ R,∀s ∈ S, ∃!j ∈ N :
(σi = r) ⇒ (j < i) ∧ (τi − u ≤ τj ≤ τi − l) ∧ (σj = s) ∧ (x ≤ τj ≤ x + w)}

The semantics of an input synchronization constraint Linput can be expressed in RSL by
a F1 pattern for each event s ∈ {s1, ..., sn} = S. The lower and upper bound l and u,
respectively, are the same for all theses F1 patterns. Thus, ∀s ∈ S:

106

t
r

s1
s2
sn.

..

Event
occurrence

Synchronization
Window

Figure 7: input synchronization constraint and the reference- and sliding-window

whenever r1 OR ... OR rm occurs s occur during [−u,−l], once.
Finally another F1 pattern of the following definition must be instantiated:

whenever r1 OR ... OR rm occurs set{s1, ..., sn} during [0, w] occur during [−u,−l].

Proposition 4 Linput = (�s∈S LF1onces
) � LF1setw

3.2 Repetition rate constraints

Repetition rate constraints place restrictions on the distribution of the occurrences of a
single event, forming a so called event model. TADL includes four kinds of repetition rate
constraints, namely: periodic, sporadic, pattern and arbitrary. An additional generic rep-
etition rate constraint is defined, that constitutes a semantic foundation for those repetition
rate constraints. However it can NOT be instantiated directly.

Generic repetition rate constraint A generic repetition rate constraint is parametrized
by the following elements: The event e, whose occurrences are constrained, a lower bound
l on the time-distance between occurrences of e, an upper bound u on the time-distance
between occurrences of e, the deviation J from an ideal point in time, at which the event
e is expected to occur and the actual time it occurs and a count SP indicating whether it
is subsequent occurrences or occurrences farther apart that are constrained.

A generic repetition rate constraint forms a timed language Lgeneric over an alphabet
Σgeneric = {e} ⊆ ΣSys, defined as

Lgeneric = {(σ, τ)|∃τ �,∀i ∈ N : (τ �
i ≤ τi ≤ τ �

i + J) ∧ (l ≤ τ �
i+SP − τ �

i ≤ u)}

where τ � = τ �
1τ

�
2... is a time sequence of ideal times of occurrences for event e.

The semantics of the four kinds of repetition rate constraints are defined in terms of multi-
ple generic repetition rate constraints and reaction time constraints. The definition of pe-
riodic, sporadic and pattern are based on generic repetition rate constraints with SP = 1.
That semantics can be expressed in RSL by instantiating the following R1 pattern:

e occurs sporadic with minperiod l and maxperiod u and jitter J .
If we have a generic repetition rate constraint c, with SP = 1, Lc = LR1 is given by the
definitions of both languages.

107

The semantics of an arbitrary repetition constraint is based on generic repetition rate
constraints with SP ≥ 1 and J = 0. It can be expressed by the following F1 patterns:

whenever e occurs SP times e occur during [0,u], once.
whenever e occurs SP times e does not occur during [0, l[.

Proposition 5 For a generic repetition rate constraint c with jitter(c) = 0: Lc =
LF1aT,once

� LF1aT,neg

4 Conclusion

We presented a pattern-based textual requirements specification language (RSL), that ex-
hibits a natural language style. The RSL allows writing of natural sounding requirements
while providing a well defined formal semantics. Thus RSL can narrow the gap from in-
formal requirement specification documents to formal specifications and verification tech-
niques. The language provides patterns for various aspects like safety, functional and
timing requirements. With regard to timing aspects we showed that the expressiveness
of RSL is powerful enough to cover all constraints of the Timing Augmented Description
Language (TADL). This enables using RSL to express a relevant set of timing requirements
as defined in a well established specification language, while maintaining convenience and
intuitiveness of natural language.

References

[AD94] R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comp. Sc., 126(2), 1994.
[BDL04] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal. In LNCS, Formal

Methods for the Design of Real-Time Systems, pages 200–237. Springer, 2004.
[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design, 19(1):45–80, July 2001.
[DL02] H. Dierks and M. Lettrari. Constructing Test Automata from Graphical Real-Time Re-

quirements. In Proc. FTRTFT ’02, 2002.
[FS96] N. E. Fuchs and R. Schwitter. Attempto Controlled English (ACE). In CLAW ’96: First

International Workshop on Controlled Language Applications, pages 124–136, 1996.
[GBC+08] V. Gafni, A. Benveniste, B. Caillaud, S. Graph, and B. Josko. Contract Specification

Language (CSL). Technical report, SPEEDS Consortium, April 2008.
[GbR09] AUTOSAR GbR. Specification of Timing Extensions, r4.0 rev1 edition, November 2009.
[HJD04] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer, 2 edition, 2004.
[Par09] Project TIMMO: TIMMO Partners. TADL: Timing Augmented Description Language

version 2. Deliverable d6, The TIMMO Consortium, October 2009.
[Par10] Project CESAR: CESAR Partners. RSL Reference Manual. CESAR Consortium, 1.1

edition, 2010. Not publically available yet.
[Sch04] R. Schwitter. Representing Knowledge in Controlled Natural Language: A Case Study.

In Knowledge-Based Intelligent Information and Engineering Systems, LNCS. 2004.

108

