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Abstract: The growing complexity of safety-critical embedded systems is leading to
an increased complexity of safety analysis models. Often used fault tolerance mecha-
nisms have complex failure behavior and produce overhead compared to systems with-
out such mechanisms. The question arises whether the overhead for fault tolerance is
acceptable for the increased safety of a system. In this paper, an approach is presented
that uses safety analysis models of fault tolerance mechanisms and execution times
of its subcomponents to generate failure dependent execution times. This provides a
detailed view on the safety behavior in combination with the produced overhead and
allows a trade-off analysis to find appropriate fault tolerance mechanisms.

1 Introduction

Safety-critical embedded systems are ubiquitous in our daily lives and can be found in
many sectors, such as automotive, aerospace, medicine, automation, and energy indus-
tries. They are becoming more and more complex due to increasing functionality and
automation in industry. The corresponding safety analysis models also grow in complex-
ity and level of detail. To increase the safety of such systems, redundancies are often
used within a certain mechanism to tolerate faults in the redundant units. These so-called
fault tolerance mechanisms are widely used concepts and have a known behavior. They
produce an overhead, e.g., in terms of execution time, energy consumption, additional
hardware, additional software, or additionally required components compared to systems
without such a mechanism. The problem arises whether the overhead produced by a fault
tolerance mechanism is acceptable for the increased safety of a system.

Since safety requirements often contain a deadline and an upper bound for failure probabil-
ity, e.g., the system has to provide its function within x ms with a failure probability of less
than y, this paper addresses the property of overhead in time of fault tolerance mechanisms.
The central approach presented in this paper aims at the fact that a fault tolerance mech-
anism is in a certain mode with a specific execution time for some faults being tolerated.
The mode itself depends on failure modes given by safety analysis models. The combina-
tion of the time consumed by a mode and failure modes provides a detailed prospect of the
timing behavior for a fault tolerance mechanism. Thereby a trade-off analysis in terms of
execution time is supported.

In section 2, related approaches are described. Since failure modes of safety analysis mod-
els are here combined with execution times, that section is divided into approaches which
belong to the research area of Worst Case Execution Time and into approaches that sup-
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port the process of safety engineering. In section 3, an example system is described that
is used to introduce the safety analysis model of Component Fault Trees, which provides
failure modes as an input for the approach presented in this paper. Section 4 is the central
section of this paper. The example system is picked up to describe the problem of mod-
eling failure-dependent overhead in time manually. The central approach of generating
execution times for fault tolerance mechanisms according to failure modes of the safety
analysis model is formalized and applied to the example system. The generated execution
times allow a sophisticated view of the overhead in time for such mechanisms. Section 5
concludes this paper and provides a perspective for future work.

2 Related Work

In this section, related approaches are discussed. Since the approach presented in this
paper crosses two research areas, this section is divided into approaches that belong to the
field of Worst Case Execution Time and into approaches that belong to the research area of
Safety Engineering.

Current approaches to WCET analysis can be divided into measurement-based approaches
and static timing analysis approaches [WEE+08]. In static timing analysis, the execution
times of individual static blocks are computed for a given program or a part of it. In gen-
eral, these approaches provide safe upper bounds for the WCET by making pessimistic
assumptions at the expense of overestimating the WCET in order to guarantee deadlines
for the analyzed program. Advanced approaches, e.g. like those presented in [FH04],
encompass precise hardware models to reduce overestimation of the WCET as much as
possible. On the other hand, measurement-based approaches do not need to perform any
complex analysis. They measure the execution time of a program on real hardware or pro-
cessor simulators. These approaches can, in general, not provide a safe upper bound for the
WCET, since neither an initial state nor a given input sequence can be proven to be the one
that produces the WCET. Both static timing analysis and measurement-based approaches
do not encompass additional timing failure modes or failure probabilities for calculating
probabilistic WCETs for several modes of an analyzed system. However, approaches can
be found that split the WCET in a probabilistic way. In [BCP03], an approach is presented
that calculates probabilistically distributed WCETs. Here, the authors concentrate on how
the nodes of a syntax tree have to be calculated if the WCETs for its leaves are given with
probabilistic distribution. In a later work, the approach is extended to also encompass de-
pendence structures. The authors solved the arising problem of multivariate distributions
by using a stochastic tool for calculating a probabilistically distributed WCET. To deter-
mine the probability distribution, there have been some initial approaches in probabilistic
WCET analysis. In [BE00], the authors use a measurement-based approach. The central
idea is to measure the timings of a task and to stochastically drive the statement that a
WCET will provide an upper bound for a certain subset of the input space. This approach
is extended for scheduling in [BE01]. In [BBRN02] and [NHN03], probability distribu-
tions are calculated for response times of the Controller Area Network (CAN) Bus. These
approaches may provide input to the approach presented in [BCP03], but do not aim at
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calculating WCETs. In contrast, the approach presented in this paper generates timing
failure modes for fault tolerance mechanisms. This approach can therefore be taken into
account as input for previously described approaches such as [BCP03].

Current approaches that automatically deduce safety analysis models from an annotated
system development model mainly shift the complexity from the safety analysis model to
the system development model. These approaches solve the problem of inconsistencies be-
tween the two models by combining the failure logic with the system development model
entities by using annotations [PM01, Gru06, Rug05]. Other approaches, like [Boz03] and
[JHSW06], rely on a formally executable design model to find inconsistencies between
the model and its specification. This procedure allows a high degree of automation, but
the type of system model is quite limited and the approaches do not solve the problem of
finding appropriate failure modes. Only a few approaches deduce failure behavior by se-
mantically enriching the system development model. In [GD02], an approach is presented
that supports the analysis at a high level by providing recurring safety analysis model con-
structs mainly for redundancy mechanisms. These constructs decrease the complexity of a
manual safety analysis, but do not provide a solution for generating timing failure modes.
In [dMBSA08], a larger design space is covered, but the high degree of detail in the safety
analysis model is achieved at the expense of a large number of annotations. Besides that,
this approach does not aim at generating failure modes, but is more dedicated to a prelim-
inary safety assessment aimed at designing an architecture that fulfills the safety require-
ments. The approach presented in this paper belongs to the group of semantic enrichment,
since parts of safety analysis models are used to deduce timing failures.

In the next section, an example system is introduced along with its safety analysis model
as the running example of this paper.

3 Example System

The example system of this paper is a simple fault tolerance mechanism. This section is
used to introduce the methodology of Component Fault Trees. This safety analysis model
relates parts of a fault tree and failure modes to components and ports (see [KLM03]),
what makes it an interesting model for combining execution times of components with
their failure modes. The approach presented in this paper uses CFTs, but also different
safety analysis models, such as Generalized Stochastic Petri Nets or Markov Chains may
provide input for it.

The example system is structured as follows: figure 1 shows on the left side the SysML
Internal Block Diagram of a sorting mechanism FTSORT that performs a fault tolerant
sorting of an array using two different sorting algorithms executed in the components
PRIMARY and ALTERNATE. The system FTSORT starts its operation by storing a received
array within a checkpoint. Then the checkpointing sends the array to the PRIMARY and
triggers this component to start processing. The PRIMARY sends its result to the DECIDER,
which checks whether the array is sorted. If the array is sorted, FTSORT has a result.
Otherwise, the array is unsorted and has a VALUE failure. The DECIDER triggers the
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CHECKPOINTING to restore the input. The checkpointing then sends the restored former
input to the ALTERNATE and triggers this component to start processing on the restored
input data. The result of the ALTERNATE is then taken as the result of FTSORT.
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Figure 1: SysML Internal Block Diagram of FTSORT (left side) and related Component Fault Trees
(right side).

The safety analysis model for this system is depicted on the right side of figure 1. Com-
ponent Fault Trees (CFTs) are used to model the failure behavior of FTSORT1. Every
subcomponent of FTSORT has an associated (sub)CFT. Every CFT has input and output
failure modes (triangles). They are associated to the ports of the corresponding compo-
nent (for example the output failure mode VALUE of the CFT PRIMARY is associated to
the OUT port of the component PRIMARY). The port associations are straightforward and
therefore not depicted to keep the figure readable. Within a CFT, conventional fault tree
gates can be used to model the failure behavior of a component. For example, the com-

1For reasons of simplicity, no additional basic failure modes for DECIDER and CHECKPOINTING, a failure
propagation via the trigger ports or other failure modes than VALUE and TIMING failures are included in this
model.
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ponent PRIMARY produces a VALUE failure if the basic failure mode P1 occurs or if it
receives data with a VALUE failure (see CFT PRIMARY in figure 1). The system FTSORT
produces a VALUE failure, if the basic failure modes P1 and A1 occur or if the provided
input has a VALUE failure (see middle AND-gate in the CFT DECIDER in figure 1).

Additional to the VALUE failures, PRIMARY and ALTERNATE have two timing failure
modes (see corresponding CFTs in figure 1). If the basic failure mode P2 occurs, the re-
sult of the PRIMARY is two milliseconds delayed. If the basic failure mode A2 occurs, the
result of the ALTERNATE is three milliseconds delayed. The CFT DECIDER can be used to
show that these two timing failure modes are insufficient to provide a sophisticated view on
the timing failure modes of the entire mechanism. Both output failure modes LATE+2MS
and LATE+3MS are used in this CFT. The DECIDER is delayed by 2 ms if the basic failure
mode P2 is active and the PRIMARY component does not produce a VALUE failure (in this
cause, the DECIDER would detect a failure and execute the ALTERNATE). This behavior is
reflected by the leftmost AND-gate in the CFT DECIDER. Furthermore, the system is de-
layed by at least 5 ms, if the PRIMARY produces a VALUE failure, is additionally delayed
by 2 ms and the ALTERNATE is delayed by 5ms (rightmost AND-gate of the CFT DE-
CIDER). Nevertheless, these failure modes cannot be used to express the overhead in time
for this mechanism, since the significance of the failure mode LATE>5MS, for example, is
depending highly on the execution times of PRIMARY, DECIDER and CHECKPOINTING.
If, e.g., the PRIMARY requires 500 ms to execute, the actual overhead in time is quite
larger then 5 ms.

The safety analysis model indeed provides failure modes that involve a overhead in time,
but generating absolute values can become an error prone and time-consuming task. Ex-
ecution times have to be included in this calculation and additional timing failures com-
plicate this process additionally. This is demonstrated in the next section and the central
approach of this paper is presented that automates this process.

4 Analysis of Timing Overhead for Fault Tolerance Mechanisms

To tackle the problem of gaining a sophisticated view on the overhead in time for fault tol-
erance mechanisms, an approach is described in this section that automatically combines
the execution times of components and failure modes of CFTs. As stated in the introduc-
tion, there are failure modes in safety analysis models that correspond with a certain mode
of a fault tolerance mechanism. For example the failure mode VALUE of the component
PRIMARY is corresponding to the mode in which the ALTERNATE is invoked to recover
from this fault. If this failure mode is not active, the fault tolerance mechanism is in a
different mode where only the PRIMARY redundant unit is executed. Such a set is here
called a run. Since the here presented approach aims at execution times, the sets of exe-
cuted elements for those two modes are needed as an input. Two run sets for FTSORT are
depicted in table 1. The failure mode PRIMARY.OUT.VALUE relates to the value output
failure mode of the CFT PRIMARY as depicted in figure 1. The consumed time for a run
is based on the execution times of the subcomponents of FTSORT as follows: CHECK-
POINTING: 1ms, PRIMARY: 2ms, ALTERNATE: 3ms, and DECIDER: 1ms. The execution
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Run Executed Elements Consumed Time Corresponding Failure Mode
1 C,P,D 4ms not(Primary.out.value)
2 C,P,D,C,A,D 9ms Primary.out.value

Table 1: Assumed execution times for the subcomponents of FTSORT

Run Additional Time Consumed Time Corresponding Failure Mode
1 0ms 4ms not(Primary.out.value)
1 2ms 6ms not(Primary.out.value) and p2
2 0ms 9ms Primary.out.value
2 2ms 11ms Primary.out.value and p2
2 3ms 12ms Primary.out.value and a2
2 2ms + 3ms 14ms Primary.out.value and p2 and a2

Table 2: Possible Timings for FTSORT

times are also an input for this approach. As stated before, the output failure mode VALUE
of the component PRIMARY corresponds to both runs.

Since the components PRIMARY and ALTERNATE provide additional timing failure modes
LATE+2MS and LATE+3MS, six combinations of different timings can be possible. Those
are depicted in table 2. The corresponding failure modes are a conjunction of the failure
modes that correspond to a specific run as depicted in table 1 and the failure modes that
correspond to an additional timing failure mode. E.g., the first run requires an additional
execution time of 2 ms (what sums the consumed time up to 6 ms) if this run is executed
and P2 is active (second row of table 2). This combination of additional timing failure
modes and execution times provides a sophisticated view on the overhead in time produced
by the fault tolerance mechanism. For quantified basic failure modes in the safety analysis
model and a specific quantified requirement as described in section 1, the table can be
used to directly perform a trade-off analysis of the fault tolerance mechanisms in terms of
increased system safety and overhead in time.

Nevertheless, for every additional timing failure mode in one of the CFTs of PRIMARY
or ALTERNATE, additional alternates, or additional timing failure modes elsewhere in FT-
SORT, this table will expand rapidly. Calculating a larger number of such combinations
manually is error prone and time consuming. Therefore, it is described in the follow-
ing how this table can be generated if the set of runs is given, the corresponding failure
modes are known, and additional timing failure modes are quantified in terms of absolute
additional execution time.

Let 	 be the set of components that belong to a fault tolerance mechanism with

	 = {"1, .., "�̄} with ∣	∣ = ,̄ ∈ ℕ.

Each component "� has one associated execution time, here labeled as 10� . With all optional
additional timing failure modes of "�, labeled as 1
� with ) > 0, the set �� represents the
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different execution times for the component "� with

�� = (10� , .., 1
�̄�
� ) with ∣��∣ = +̄� + 1 ∈ ℕ.

Each 1
� is a tuple that consists of a time and a failure mode '+ with

1
� = (1(+&, '+),

whereat '+(1
� ) represents the corresponding timing failure mode of the safety analysis
model and 1(+&(1
� ) represents the consumed time if this failure mode is active. If neces-
sary, 1(+&(1
� ) has to be combined with 10� to reflect the execution time of the component
in combination with additional required time for the failure mode. Additionally, '+(10� )
is set to true to ease the later construction.

In the example, the component PRIMARY (P) has two execution times in �� : 10� and 11�
with 1(+&(10� ) = 2+0, 1(+&(11� ) = 4+0, '+(10� ) = 1/2& and '+(11� ) = *$1&+ 2+0.

These sets of execution times and their corresponding failure modes are used in the fol-
lowing to generate the different execution times of a run. The set ℛ = (/2,1, .., /2,) is
the set of runs as described in the example. Each run is a tuple of executed components
that belong to this run and corresponding failure modes that determine this run with

/2,� = (("�, .., "	), '$(*2/&+-%&0), "�, .., "	 ∈ 	

In the previous example, the corresponding sets for the runs as depicted in table 1 have the
following form:

/2,1 = ((�, ,�), ,-1( /(+$/4.-21.3$*2&))

/2,2 = ((�, ,�,�,�,�),  /(+$/4.-21.3$*2&)

Using this sets, the all possible combinations of executions can be deducted. Let the set
Ω(/2,
) hold all combinations of execution times of components that are possible for a
certain /2,� ∈ ℛ with

Ω(/2,
) = {5 = (1�, .., 1�) ∣ + ≤ ( ≤ ,,

/2,
 = (("�, .., "�), '+), "� ∈ 	,
1� ∈ ��}.

For the example system, the corresponding set for /2,1 is Ω(/2,1) =
((10� , 1

0
� , 1

0
�), (10� , 1

1
� , 1

0
�)), since only the CFT for the PRIMARY has an additional timing

failure mode. To generate tuples of execution times and corresponding failure modes for
an 5�, the execution times are summed up and the failure modes are combined.

In the following, execution times are combined by simply summing them up. It is here im-
portant to mention, that this is in general not applicable to approaches that generate Worst
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Case Execution Times (WCETs), since for two components � and �, #��! (�+�) ∕=
#��! (�) + #��! (�). This is true for many approaches that encompass processor
states and stack values for calculating WCETs. To use such complexer WCET approaches
in combination with our approach, the execution time for an entire run has to be calculated
by a WCET tool. But to demonstrate our approach, we assume the independence of the
given timings and for an 5 ∈ Ω(/2,
) with 5 = (1�, .., 1�), 1� ∈ ��, the consumed time
is

1(+&(5) = 1(+&(1�) + ..+ 1(+&(1�).

The corresponding failure mode that models the execution of a specific combination of
timing values for a run 5 ∈ Ω(/2,
), is a conjunction of the specific failure mode of the
run, '+(/2,
) and all failure modes that are active to result in the specific time behavior.
The symbol ∧ is here used to express the Boolean AND. The corresponding failuremode
is then

'+(5) = '+(/2,
) ∧ '+(1�) ∧ .. ∧ '+(1�).

In the example system, we previously constructed the set Ω(/2,1) with 52 =
(10� , 1

1
� , 1

0
�). Since '+(10�) = '+(10�) = 1/2&, '+(11� ) = .2 and '+(/2,1) =

,-1( /(+$/4.-21.3$*2&), the corresponding failuremode for 52 is:

'+(52) = ,-1( /(+$/4.-21.3$*2&) ∧ 1/2& ∧ .2 ∧ 1/2&

= ,-1( /(+$/4.-21.3$*2&) ∧ .2.

Using this construction, the different execution times are combined with failure modes
in a fashion as described for the example system at the beginning of this section. The
construction of different alternate executions provides a sophisticated view on the overhead
in time of fault tolerance mechanisms. The automated construction of possible alternates
is less error prone than a manual approach and is capable to handle a larger amount of
combinations and failure modes. In the next section, we conclude this paper and provide
an outlook for future work.

5 Conclusion and Future Work

In this paper, an approach is presented that uses timing failure modes of safety analysis
models and execution times of modes of fault tolerance mechanisms to automatically de-
duce different execution times along with their corresponding failure modes within the
safety analysis model. This sophisticated view on execution times supports a trade-off
analysis in terms of safety and overhead in time for fault tolerance mechanisms. Such a
trade-off analysis can save costs when fault tolerance mechanisms cannot be identified as
an appropriate solution by classic execution time analyses.

Section 3 provides an example for such a mechanism and motivates for combining execu-
tion times with safety analysis models to perform a trade-off analysis for the overhead in
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time of fault tolerance mechanisms. Since the number of possible combinations may be
problematic for a manual approach, we present in section 4 an approach that automatically
deduces execution times and corresponding failure modes. This requires clearly identified
modes of fault tolerance mechanisms.

In our future work we concentrate on extending the approach to generic mechanisms,
respectively to parallel redundancy. Furthermore, we want to be able to automatically
deduce the execution behavior from a system model. This reduces the effort for applying
the here presented methodology and also allows the use of WCET tools that are able to
calculate tight upper bounds.
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