
Enriching OSGi Service Interfaces with Formal
Sequential Contracts∗

Marco Müller, Moritz Balz, Michael Goedicke
paluno - The Ruhr Institute for Software Technology

University of Duisburg-Essen, Campus Essen
Essen, Germany

{marco.mueller, moritz.balz, michael.goedicke}@paluno.uni-due.de

Abstract: Architecture description languages define component interfaces with se-
quential contracts, which allow for static analysis of method call sequences in compo-
nent or service interactions. However, component and service platforms like OSGi for
Java do not provide mechanisms for the specification or enforcement of such sequen-
tial contracts. Thus the contracts are only defined in the documentation which might be
outdated when long-living systems evolve at the implementation level. This vision pa-
per proposes to attach formal sequential models, in our case interface automata, to the
interface definition of OSGi services, so that the modeling information is permanently
and tightly coupled to the implementation. This enables consistent documentation,
static analysis of component interactions at design time, and real-time enforcement
of behavioural contracts at run time. By this means, component interactions can be
seamlessly verified in long-living systems when components and their connections are
added or changed over time.

1 Motivation

In component-based and service-oriented software architectures, systems consist of com-
ponents which are represented to their context by interfaces that describe their functional-
ity. The implementation of this functionality is hidden to the environment, and accessed
through the published interfaces. Beugnard et al. [BJPW99] define four levels of interface
descriptions: (1) syntactic level, i.e. method signatures; (2) behavioural level, i.e. pre- and
postconditions for method invocations; (3) synchronization level, which includes call syn-
chronization and sequences; and (4) quality of service level, including performance and
security information. Interface definition languages of current programming languages
usually allow for defining syntactic level interfaces, i.e. the methods available for invoca-
tion. For defining behaviour level interfaces, programming language extensions like the
Java Modeling Language (JML) [LC05] can be used.

Components often assume that their methods are called in certain orders, e.g. when a
component requires authentication before permitting the invocation of further methods.

∗Part of the work reported herein was funded by the German Federal Ministry of Education and Research
under the grant number 03FPB00320.

41



While these synchronization level interface descriptions are important for the interface’s
users, they are usually not explicitly and formally stated in current interface descriptions of
programming languages like Java and their component and service frameworks, like OSGi
[OSG05]. Hence, instead of focusing on the business aspects only, methods must validate
the current state to prevent errors and possibly inconsistent data. This is usually performed
at the beginning of the code in the method body, in which object attributes are inspected
for reasonable values, and exceptions are thrown when an invalid state was identified.

Several formal techniques exist for describing sequential contracts of interfaces. As an
instance of them, interface automata [dAH01] define permitted call sequences based on
state machines. These models and related tools can be used for verifying component or
service interaction with respect to the sequential description at design time. In this case, the
models reside in the software documentation. However, when designing architectures for
long-living software, it must be considered that the documentation might be unavailable
or become inconsistent when the software evolves. In this contribution we propose to
attach interface automata directly to OSGi service interface descriptions, thus enriching the
component interfaces with synchronization level information. At design time, the models
can be used for static analysis regarding component interactions. At run time, the model
information attached to the interfaces can be used to ensure that only valid sequences
of method calls are performed. This is of interest especially for system evolution, when
components are changed or added that are not known beforehand, since valid interaction
sequences can be ensured permanently once they are defined in the program code.

This paper is organized as follows: In section 2 we show how to enrich OSGi service
interfaces with interface automata definitions. The use of these models at design time and
run time is presented in section 3. A short overview of related work is given in section 4
before the paper is concluded in section 5.

2 Approach

Interface automata [dAH01] are essentially finite state machines with input, output, and
internal actions, where each input defines a received method call and each output defines
an outgoing method call. Systems of interface automata communicate via input and out-
put actions, so that service and component interactions can be described with sequential
contracts. Methods of interfaces are input actions that are executed when the method is
called. These actions trigger transitions (called steps) in the automaton. If the interface
automaton has a step with the called method in the current state, the call is permitted.

OSGi services are components that can be described with interface automata, since they
publish functionality with a Java interface and thus a set of methods. To reach our ob-
jective of coupling sequential modeling information to these interfaces, we use meta data
annotations in Java source code [Sun04]: The annotation @InterfaceAutomaton can
be attached to OSGi service interfaces and contains information about the sets of states
and steps. Each state is represented by a nested annotation @State denoting the state’s
name. One of the states is marked as initial, representing the entry point of the sequential

42



@InterfaceAutomaton(
states={ @State(value="loggedOut",initial=true),

@State("loggedIn") },
steps={
@Step(from="loggedOut", action="login(java.lang.String,java.lang.String)",

to="loggedIn"),
@Step(from="loggedIn", action="execute(java.lang.String)", to="loggedIn"),
@Step(from="loggedIn", action="logout()", to="loggedOut")} )

public interface IShell {
public void login(String user, String password);
public void logout();
public String execute(String command);

}

Listing 1: An interface automaton definition for a Java interface

contract. Each step is represented by a nested annotation @Step referencing an originat-
ing state, a Java method signature as input action, and a target state. Since we consider
provided interfaces only, each action is an input action in this context.

Listing 1 shows a Java interface with an interface automaton annotation. This automaton
is defined by 2 states loggedOut and loggedIn, 3 input actions (the interface method
definitions), and 3 corresponding steps. The contract defines that the first method to be
called is login, before the methods execute and finally logout may be called.

3 Usage of the Models

When interface automata are attached to OSGi services as described above, component
interaction can be verified with appropriate tools, thus ensuring valid invocation sequences
even if the participating components change. The usage of annotations for embedding
the interface automaton into the program code has several advantages: Annotations are
typed meta data that can be accessed programmatically at design time and run time of the
software, as the automaton definition is directly embedded into the source code. Thus the
modeling information can be used for different kinds of verification.

3.1 Design Time

In OSGi, some Java interfaces are service descriptions used by the framework during ex-
ecution. Since the models are not only filed in the documentation, but coupled to these
service descriptions, they are always available with the source code when long-living sys-
tems evolve, even when the documentation is outdated. The static nature of annotations
allows for graphical editing for an easier understanding of more complex automata because
they can be read and written by an according editor as any other notation.

Since the Java methods define the actions in the source code unambiguously, it is possible
to perform static code analysis for component interactions. This requires to extract models

43



that describe how services are used by other components. Approaches for this already
exist, e.g. in the JADET tool [WZL07]; for our purpose, they must be adapted to extract
calls to OSGi service interfaces from the control flow to create an interface automaton with
output actions, which can then be matched with the automaton describing the service.

3.2 Run Time

Since the annotations are accessible at run time, they can be used in the OSGi Service
Platform for monitoring and enforcing the compliance of calls to service interfaces with
their behavioural contract. To accomplish this, a technique must exist that can observe
and prevent method calls. Examples for such techniques are aspect-oriented programming
(AOP) [KLM+97] and dynamic proxies [Sun10].

As a proof-of-concept1 we implemented the integration for the OSGi implementation
Eclipse Equinox [Ecl11a] in combination with Equinox Aspects [Ecl11b], which enables
AOP in an OSGi environment. This proof-of-concept includes business components as
services which are described by interfaces with interface automata definitions, and one
observer component which observes and possibly rejects interface calls using AOP. The
observer reads interface automata from the annotations first when service components with
interface automata descriptions are deployed. Subsequently, all method calls to these in-
terfaces are verified with respect to the model. When the sequential contract is broken, the
observer will reject calls.

Figure 1 visualizes this concept. The left side shows the interaction of two business com-
ponents without the explicitly modeled sequential contract. As explained in the motivation,
the business components must themselves check the permission of the call. The right side
shows the same scenario with the proposed concept in use: The observer is notified about
method calls, verifies them against the interface automaton, and rejects the second login
method, since it is not valid in the example interface automaton shown in section 2.

4 Related Work

The extension of interfaces with further information is subject to many publications. How-
ever, most of them focus on implementing behavioural contracts, i.e. pre- and postcon-
ditions for method calls. It is possible to emulate call sequence specifications using be-
havioural descriptions with dedicated internal state fields that are checked in preconditions
and set in postconditions of method invocations. This approach is argued to be error-prone
and hard to understand since the sequential contract is modeled indirectly [CP07].

Heinlein [Hei09] describes concurrency and sequence constraints for Java classes using
interaction expressions. The constraints are checked at run time, postponing prohibited
method calls. However, the Java language is extended in this approach to integrate the

1The prototype can be downloaded at http://www.s3.uni-duisburg-essen.de/index.html?op=view&id=342

44



Figure 1: On the left side, the callee needs to check whether the calls respect the sequential contract.
On the right side, these checks are processed by the contract enforcing component. The callee can
focus on the business issues.

checks for the constraints. Our approach does not require changes in the language, and is
thus easier to adopt. Pavel et al. [PNPR05] introduce a framework which allows to check
and reject method calls to Enterprise JavaBeans [Sun08] components based on Symbolic
Transition Systems. In their approach, the state checks have to be implemented manually
or with a precompiler directly into the business methods. In contrast to our approach, the
validation code is integrated in the business methods, which makes them harder to read
and understand, especially when maintaining or evolving a legacy software.

5 Conclusion and Future Work

In current programming languages and frameworks, component or service interfaces are
usually described structurally. This only includes the method signatures. However, com-
ponents often assume certain orders of method calls, e.g. an authentication before further
methods may be called. While several formal techniques exist that allow for describing call
sequences, these concepts are not reflected in current programming languages and frame-
works. In this contribution we presented a concept for representing sequential contracts
in Java for checking the compliance of a callers behaviour at run time, and for rejecting
calls that break the sequential contract. We also presented how to integrate this concept in
existing frameworks, using the OSGi Service Platform for a proof-of-concept.

As a benefit of the implementation, the business methods do not need to validate the com-
ponent’s state, but the development can focus on the business requirements. This eases
program comprehension in software maintenance and evolution especially in long-living
systems, when documentation might be absent, because the sequential contracts are not
defined in the documentation, but directly in the code.

As future work we plan to build tools for developing the automata graphically, synchroniz-
ing them with the code, and performing static analysis as introduced above. This allows
for validation of the approach in large development projects. We will also improve the no-

45



tation for interface automata in code. In addition, we plan to integrate interface automata
in further component frameworks and service platforms, e.g. Enterprise JavaBeans. As
another step, we will statically verify the compliance of sequential contracts in complex
architectures, using input and output interfaces for components.

References

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making
Components Contract Aware. Computer, 32(7):38–45, 1999.

[CP07] Yoonsik Cheon and Ashaveena Perumandla. Specifying and Checking Method Call Se-
quences of Java Programs. Software Quality Journal, 15(1):7–25, March 2007.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proceedings of the
Ninth Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages
109–120, 2001.

[Ecl11a] Eclipse Foundation. Equinox, 2011. http://www.eclipse.org/equinox/.

[Ecl11b] Eclipse Foundation. Equinox Aspects, 2011. http://eclipse.org/equinox/
incubator/aspects/.

[Hei09] Christian Heinlein. Advanced Thread Synchronization in Java Using Interaction Expres-
sions. Objects, Components, Architectures, Services, and Applications for a Networked
World, 2591/2009:345–365, 2009.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwing. Aspect-Oriented Programming. ECOOP ’97 - Object-Oriented Programming:
11th European Conference, LNCS 1241:220–242, 1997.

[LC05] G.T. Leavens and Y. Cheon. Design by Contract with JML. Draft, available from jml-
specs. org, 1:4, 2005.

[OSG05] OSGi Alliance. OSGi Service Platform, Core Specification, Release 4, Version 4.1. IOS
Press, Inc., 2005.

[PNPR05] Sebastian Pavel, Jacques Noye, Pascal Poizat, and Jean-Claude Royer. Java Implemen-
tation of a Component Model with Explicit Symbolic Protocols. In In Proceedings of
the 4th International Workshop on Software Composition (SC’05), volume 3628 of LNCS,
pages 115–124. Springer-Verlag, 2005.

[Sun04] Sun Microsystems, Inc. JSR 175: A Metadata Facility for the JavaTMProgramming Lan-
guage, 2004. http://jcp.org/en/jsr/detail?id=175.

[Sun08] Sun Microsystems, Inc. JSR 318: Enterprise JavaBeansTM3.1 - Proposed Final Draft,
March 2008. http://jcp.org/en/jsr/detail?id=318.

[Sun10] Sun Microsystems. Dynamic Proxy Classes, Java SE Documentation, Jan-
uary 2010. http://java.sun.com/javase/6/docs/technotes/guides/
reflection/proxy.html.

[WZL07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting Object Usage
Anomalies. In Proceedings of the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 35–44, New York, NY, USA, 2007. ACM.

46


