
Operators for Analyzing and Modifying

Probabilistic Data – A Question of Efficiency

Jochen Adamek, Katrin Eisenreich, Volker Markl, Philipp Rösch

j.adamek@tu-berlin.de, katrin.eisenreich@sap.com,

volker.markl@tu-berlin.de, philipp.roesch@sap.com

Abstract: To enable analyses and decision support over historic, forecast, and es-
timated data, efficient querying and modification of probabilistic data is an important
aspect. In earlier work, we proposed a data model and operators for the analysis and the
modification of uncertain data in support of what-if scenario analysis. Naturally, and
as discussed broadly in previous research, the representation of uncertain data intro-
duces additional complexity to queries over such data. When targeting the interactive
creation and evaluation of scenarios, we must be aware of the run-time performance
of the provided functionalities in order to better estimate response times and reveal
potentials for optimizations to users. The present paper builds on our previous work,
addressing both a comprehensive evaluation of the complexity of selected operators
as well as an experimental validation. Specifically, we investigate effects of varying
operator parameterizations and the underlying data characteristics. We provide exam-
ples in the context of a simple analysis process and discuss our findings and possible
optimizations.

1 Introduction

In the decision making process, we need to consider risks and chances of future devel-

opments. To this end, the derivation and evaluation of scenarios based on different as-

sumptions about the future is a powerful technique. However, as per definition, applying

an assumption always introduces uncertainty to the data at hand. This uncertainty must

be appropriately represented in the data. Existing uncertainty management approaches

mostly address applications in the fields of scientific and sensor data processing, spatial

databases, information extraction, or data cleansing. Decision support over large volumes

of data including both uncertain data and certain information, e.g., from a data warehouse,

has received comparatively little attention so far. A prominent exception is the work pre-

sented in [JXW+08], which relies completely on a sample-first approach. In previous work

(see [ERM+10]), we in contrast apply a model-extension approach to represent, analyze,

and modify uncertain data. Our primary goal is to support users in the flexible creation

and evaluation of what-if scenarios over (partially) uncertain data represented through ar-

bitrary distributions. We consider the process of what-if analysis as an iteration of steps of

data analysis and scenario creation as described in [ER10]. Apart from its iterative nature,

we also point out that we aim to enable users to conduct the analysis process in a highly

interactive fashion. In the best case, a user should be able to derive a scenario, analyze it,

454

change some of its underlying data, and analyze the resulting alternative scenario within

seconds. Naturally, the additional complexity implied by the representation of uncertainty

poses a major challenge when aiming at low response times. A comprehensive analy-

sis of run-times is therefore a major contribution when assessing the overall performance

and general applicability of our approach. Moreover, it can serve us to discover room for

improvements.

To exemplify the application scope of our solution, consider the following use cases:

• Use case UC 1: An analyst wants to prospect next year’s revenue in a newly de-

veloped region Rnew. He takes the past development of a similar region Rref as

reference for his prediction. Additionally, he wants to take into account available

forecasts about the general economic development.

• Use case UC 2: A user analyzes the process of delivery and deployment of orders.

He wants to investigate possible resource costs caused by deployment personnel

during a specific time frame. To this end, he applies different assumptions regarding

temporally uncertain delivery times and deployment durations.

As noted above, most of the existing approaches for uncertain data management focus on

efficient querying and analyses of (mainly discrete) probabilistic information. The aspect

of modifying data to create scenarios, which is a central aspect of our work, is mostly

out of their scope. In the remainder of the paper, we will therefore foremost discuss those

operators, yet emphasize that the ’traditional’ aspect of data analysis is also an integral part

of our approach. We briefly describe important aspects of our data model and an operator

set for deriving and converting uncertain values, as well as analysis and modification of

such values in Section 2. We then evaluate the complexity of the selected set of operators

(Section 3) and provide an experimental validation of their costs based on a prototypical

implementation (Section 4). We address opportunities for optimizing the computation

of steps in an analysis process in Section 5. We present related work in Section 6 and

summarize our findings in Section 7.

2 Data Model and Functionalities

What-if analyses and decision support over uncertain data require a flexible data model and

powerful operators which both are introduced in our previous work, see [ER10, ERM+10].

Our data model allows for the use of both symbolic and histogram-based representations

of uncertainty, similar to [SMM+08]. An uncertain value xi
1 is associated with a dis-

tribution Pi which can be represented symbolically or as a histogram P̄i. A histogram

comprises βi bins Bi = {b1, . . . , bβi
} within a lower support (boundary) li and an upper

support (boundary) hi. Each bin bj ∈ Bi is associated with a density wj . Similarly, we

use two-dimensional histograms to represent two-dimensional distributions Px,y . The dis-

cussion in this work is focused on the usage of equi-width histograms (EWH). Alternative

1Where possible, we omit the subscript for reasons of readability.

455

partitioning schemes are conceivable but imply higher costs and are out of the scope of the

current work.

By investigating typical questions for what-if analyses and processes implementing such

analyses (see [ER10]), we identified a set of operations we deem specifically important in

this context as discussed in the following.

Introducing and converting uncertain information First, at the start of an analysis

process, no specific knowledge about a value’s distribution is given in many cases. Users

therefore may want to derive information about an (expected) distribution from historic

fact data. For example, in UC 1 the user assumes next year’s revenue development in re-

gion Rnew to follow the distribution observed in a similar region Rref . To introduce this

information, he derives and stores a histogram over last year’s recorded revenue values

for cities in Rref by using our operator DRV . Another basic operation (CNV) serves

to change the representation of such derived or externally provided uncertain values. This

step can be applied explicitly, e.g., when users want to convert a symbolic into a histogram-

based representation as basis for flexible modifications. Moreover, it can be adopted im-

plicitly, e.g., when an input is given in symbolic form but the executed operator requires a

histogram-based representation. The derivation and conversion of the predicted (relative)

economic growth ince and the (relative) regional revenue increase increv are schemati-

cally depicted in the left portion of Figure 1 and further discussed in Sections 3.1 and 3.2.

Figure 1: Overview of exemplary representation and processing of distributions

Evaluating the uncertain information Once (uncertain) data is available in appropriate

representations, users need analysis capabilities such as computing aggregates, or selecting

and viewing values based on a provided threshold. While such data analysis functionality

is a natural part of our approach (contributing to the analysis part of the what-if analysis

process), it is not the focus of this paper. Rather, we mainly concentrate on (i) the mod-

ification of uncertain data, (ii) the handling of dependency in data, and (iii) the issue of

temporal indeterminacy, all of which are particularly estimable aspects in the context of

scenario-based planning:

456

Modifying uncertain data: The modification of uncertain data is essential to support the

application of assumptions about the development of selected aspects to derive scenarios

representing potential future states of the world. For example, considering the increv value

in UC 1, a user might want to discard “outlier” information or apply the assumption that

extremely low revenues will be avoided due to appropriate marketing measures. This is

reflected by modifying (MOD) part of the distribution of increv , as depicted in the middle

portion of Figure 1. In other cases, users want to update an old value altogether to assume a

new distribution for a future value. In both cases, we can view the applied modification as a

creation of a new scenario. To retain the relation between values in different scenarios, we

do not replace the original value but store the modification result together with a reference

to the original value. When modifying histograms, we use a delta approach, that is, we

keep the (bin-wise) delta of the new value to the old value. Besides enabling users to

investigate the lineage of values, the delta approach enables more efficient incorporation

of modification results in further processing steps (see Sections 3.3 and 5).

Introducing dependencies: Unlike many other approaches for probabilistic data manage-

ment, we explicitly target the representation and processing of arbitrary correlation struc-

tures between uncertain values. Specifically, we address the case where a user wants to

introduce an assumed correlation between two values when no dependency information

can be faithfully derived. This can be the case, e.g., when underlying fact data is too

sparse or when two values are provided as independent data. The latter occurs in UC 1,

where we dispose of separate values for the forecast economic development (ince) and

the derived revenue increase increv . To model arbitrary forms of correlation (e.g., linear

correlation or high dependencies of extreme values) we apply the approach of copula func-

tions as described in [ER10]. Rather than constructing copulas at run-time (implying calls

to statistical functions and corresponding costs) we precompute, store, and process them

in the form of a histogram-based approximative correlation representation (ACR). The

introduction of correlation is depicted in the right-hand portion of Figure 1, where two

univariate distributions (Pincrev and Pince) are combined into a joint distribution based on

correlation information from an ACR. Details of the ACR approach are discussed further

in Section 3.4.

Temporal uncertainty in planning processes: Finally, in addition to representing and pro-

cessing uncertainty of (measure) values, we also enable the representation of temporal

indeterminacy, i.e., uncertainty in the temporal allocation of data [ERM+10]. For exam-

ple, use case UC 2 rises the necessity to compute costs for the deployment of ordered

products following their uncertain delivery times and assuming an uncertain duration of

deployment. In this context, we consider the handling of indeterminate ”events“ occurring

during some uncertain time interval. In Section 3.5 we consider the aggregation (AGGT)

over measures associated with such events within a time interval T .

For a more detailed description of the set of operators and their application in the decision

support context, we refer to [ER10, ERM+10].

457

3 Analytical Evaluation

In this section, we analyze the complexity of the operators lined out above under different

parameterizations and varying input data characteristics. In general, except for the case

of converting representations, we assume input values to be represented in the histogram-

based form; i.e., we do not consider the application of our operators for modification,

correlation introduction, and temporal aggregation on symbolic representations. In case

a distribution is given in symbolic form, we can use the conversion operator to yield the

respective histogram-based representation. Consequently, the number of bins β used to

represent univariate distributions is the most relevant factor as regards the complexity of

the evaluated operators. Further, for the derivation of distributions, the number of under-

lying facts (nF) is crucial. Similarly, where sampling is applied, the number of sample

elements (nS) naturally influences not only the ”accuracy” of results but also the implied

costs for their derivation. When processing or constructing symbolic representations of

distributions, costs for computing specific statistics, such as quantiles, can vary. We do not

consider such distribution- and implementation-dependent costs in this section, but rather

examine them experimentally in Section 4.

3.1 Derivation of Representations

We support the derivation of distributions over values of fact data, which users can then use

as a basic input for their analyses. The intuition is that such a distribution may constitute

a proper reference for the development of another value in some similar context. For

example, in our use case UC 1, the analyst wants to utilize knowledge about the past

revenue increases in region Rref as reference for the prospective revenues in a newly

developed region Rnew with no historic data available. To this end, he needs to construct

a distribution from the historic revenues of all stores in Rref .

The DRV (F, tgt) operator serves exactly this purpose, essentially enabling the introduc-

tion of uncertainty based on fact data. It receives a number nF of facts from a column in

the fact table F of our database. The target distribution P is specified via the tgt parame-

ter, including the representation type and further parameters determining P . In particular,

the representation form can be either histogram-based or symbolic. In the former case, a

user must further provide the number of bins β and the lower and upper support (l, h) of

the desired histogram P . In the latter case, a user must provide the assumed function of

the distribution based on some insight or expectation about the underlying facts.

Histogram Representation When deriving a histogram over the fact values, we assume

they are provided in a non-sorted order. In the case of equi-width histograms, which we

focus in this paper, we statically compute bin boundaries based on the desired lower and

upper support (l, h) and the number of bins β and assign each of the nF values, resulting in

complexity O(nF). In the general case, for each of the nF values underlying the histogram

to-be derived, we apply a bisection algorithm for sorting it into one of the β bins of the

458

target histogram, resulting in a complexity of O(nF · log2(β)).

Symbolic Representation In our prototype, we support the derivation of uniform, Gaus-

sian, and Gamma distributions, while further functions could be added. Finding the lower

and upper bounds of the distribution support of an assumed uniform distribution requires

one scan of the underlying facts to determine their maximum and minimum. For a Gaus-

sian, we similarly need to process each of the nF values to iteratively compute the mean

and variance. We currently estimate the scale and shape parameters of a Gamma distri-

bution from those parameters. Hence, for all considered distribution functions, the com-

putation implies a complexity of O(nF). The specific costs for a given target function

naturally depend on the individual calculations conducted over each fact value.

3.2 Conversion of Representations

The operator CNV (x, tgt) allows users to flexibly change the way of managing the uncer-

tain data, converting the symbolic distribution representation of a value x to a histogram

and vice versa, depending on the parameters specifying the target distribution tgt. Further,

users can change the resolution of a histogram, e.g., for statistical error analysis, by set-

ting a new number of bins β. Returning to UC 1, a user wants to incorporate information

about the economic forecast for the region Rnew. This forecast is provided by means of

an expected value and an associated confidence interval and is represented in the system

as a Gaussian with appropriate mean and variance. In order to further process this value,

the user converts it to a histogram-based form. Another application of CNV arises when

users want to test a (derived) distribution for goodness of fit with actual data; such tests

(i.e., the χ2-test) often rely on binned data.

Similar to the DRV operator, users must provide parameters specifying the desired dis-

tribution tgt, including the type of representation and representation-specific parameters.

The three potential cases of conversion are as follows:

Symbolic Distribution into Histogram For constructing a histogram from a given dis-

tribution function, such as a Gaussian, the user defines the lower and upper support (l,h)

of the target histogram and the desired number of bins β or, alternatively, an optimal β
can be estimated using a basic heuristic aiming at an optimal approximation of the interval

with β bins (e.g., Sturges rule). For each of the β bins, the source distribution is integrated

within the lower and upper bin boundary, implying a complexity of O(β). In the case of

a uniform source distribution, density values for β bins based on l and h equally results

in O(β).

Histogram into Symbolic Distribution To compute parameters of an assumed uniform

distribution from a histogram we need to find its lower and upper bounds by reading β bins

or, if available, exploit stored metadata about l and h, inducing a complexity of O(β) or a

constant access cost O(1), respectively. To estimate parameters of a Gaussian or Gamma

459

distribution, we compute the required parameters (mean and variance or scale and shape,

respectively) through an iterative run over all bins, inducing a complexity of O(β).

Histogram into Histogram As a third alternative, we can convert a source histogram P̄x

with βx bins into a new histogram P̄y with βy bins. This conversion serves, e.g., to provide

users with a changed granularity of information or to ensure two histograms have the same

bin resolution. This might be required for a succeeding operation such as testing the fit

of two distributions to each other. The conversion proceeds by finding the bin boundaries

of the βy bins of P̄y and computing the area covered by the βx bins in P̄x within the

boundaries of each bin of P̄y . The imposed complexity of the computation is O(βx +βy).

3.3 Modification of Uncertainty

Modification of an uncertain value is necessary to introduce a new assumption about its

concrete distribution in a potential scenario or adapt its value otherwise. For example, in

UC 1, the derived distribution for the (relative) regional revenue increase increv might

include large tails due to outlier data. If the user assumes those tails of the distribution

irrelevant for his current analysis (or does not want to consider this part of the distribution

in his scenario), he can modify P increv by setting the densities associated with relevant

bins of P increv to 0, as illustrated in Figure 1. In UC 2, the analyst can modify expected

deployment start times of selected orders to analyze the potential influence on the resulting

deployment costs within the time slot under consideration.

The operator MOD(xold, xnew, cond) is applied to histograms P xold
and P xnew

to change

the represented distributions. A modification causes the frequencies associated with se-

lected bins of P xold
to be changed, optionally depending on a specified condition cond.

This way, a user can explicitly specify both the affected bins and their target density

through xnew; alternatively, he can provide a condition for determining the bins whose

density shall be changed as well as their new density value. An example is the application

of a predicate to modify a certain part (e.g., the tail) of a distribution by specifying a con-

dition on the (new) lower and upper support of xnew. To ensure that modified values can

be traced back to the original value, we do not replace xold but insert a new value xnew

with a reference to xold. This way, we can further apply and compare multiple modifica-

tions. Physically, the modification is written back as the delta P∆ (bin-wise difference)

from P xold
to P xnew

. A worst case complexity of O(β) is induced by reading β bins

and writing delta density values for all bins. The influence on actual costs depends on the

resulting degree of modification (fm), i.e., the fraction to which a distribution is actually

affected by a conditional modification.

460

3.4 Introduction of Correlation

The possibility to introduce correlation to previously independent (or independently rep-

resented) values is a valuable means to investigate effects of dependencies between values

in data, e.g., to analyze the probability of extreme values occurring jointly. In UC 1, we

assume that the user wants to evaluate a correlation among values that were provided sep-

arately; they are represented by the revenue increase distribution Pincrev and the forecast

economic growth Pince .

We use the operator COR(x, y,H, d) to enable the introduction of a correlation structure

determined by H and d between two distributions Px and Py . As noted before, the pro-

cessing of COR is based on the usage of copulas. In brief, a copula C is a distribution

function representing the relation between two marginals F and G and their joint distri-

bution H . The formal foundation is Sklar’s Theorem [Skl59, MST07], which states that,

given H as a bivariate2 distribution with F and G as univariate marginal distributions,

there exists a (copula) function C : [0, 1]
2
→ [0, 1] so that H(x, y) = C(F (x), G(y)).

Using the inversion approach (see, e.g., [Nel06]), we can construct a copula C(u, v) =
H(F−1(u), G−1(v)), u and v being uniforms over [0, 1]. We write CH,d to denote a cop-

ula where the structure of the represented correlation is determined by the distribution H
and the correlation degree d. To correlate two arbitrary distributions Px and Py , we then

again apply Sklar’s Theorem, substituting F and G with the desired marginals Px and

Py . We investigate both the complexity of the native (sampling-based) approach and our

approach based on approximate correlation representations (ACRs).

(a) nS = 500 samples of

a copula CG,0.8

(b) ACR C̄G,0.8 with

α2
= 10

2 bins

(c) nSACR
=

∑
wi,j

samples are drawn from

α2 bins bi,j

Figure 2: Factors influencing the performance of correlation introduction

Sampling-based copula approach For the sampling-based approach, we must consider

the costs for both constructing and applying the copula. We first draw nS samples of its

underlying bivariate distribution H with correlation d. We transform the samples using the

cumulative distribution function of each of F and G to construct the copula as distribution

over [0, 1]
2
. See Figure 2(a) for an example of a Gaussian copula CG,0.8 with 500 samples.

2Without loss of generality, we restrict our considerations to the bivariate case, i.e., only consider the corre-

lation amongst two variables.

461

The copula construction requires 3·nS computations applying calls to statistical functions,

inducing a complexity of O(nS). Applying the constructed copula implies, for the two

coordinates of each of the nS samples, a computation of the quantiles of the distributions

Px and Py (provided as histograms P̄x and P̄y). The computation of quantiles requires

a binary search over the frequency values of the βx, βy bins of P̄x and P̄y succeeded by

computing the concrete distribution within the bin based on a uniform spread assumption.

In total, the sampling-based approach – including the construction and application of the

copula – results in a complexity of O(nS + nSlog2(βx) + nSlog2(βy)).

ACR-based approach Aiming at lower response times and an independence from sta-

tistical library calls at run-time, we pre-compute copulas CH,d and store them as ACRs

with α2 bins, denoted by C
α

H,d (see Figure 2(b)). Then, to correlate two values, the sys-

tem chooses and applies an appropriate ACR based on the desired correlation parameters.

This way, no costs for copula construction are induced at run-time. Rather, we use the

aggregated information stored in the ACR, i.e., the coordinates of the α2 bins bi,j and

their respective weights (densities) wi,j . As discussed in [ER10], we decrease the neg-

ative influence of discretization by applying inversion based on artificial samples from

each bin bi,j . This is indicated for an individual bin in Figure 2(c). Those samples are

uniformly distributed within each bi,j , the sample number per bin being relative to its

weight wi,j . The correlation introduction then proceeds exactly as for the sampling-based

approach. Using a total of nSACR
samples over all bins, this implies a complexity of

O(nSACR
log2(βx) + nSACR

log2(βy)) for computing quantiles of Px and Py for each

sample. In the usual case, we consider nSACR
to be similar to or higher than nS to ensure

comparable result accuracy. A very basic approach is to invert the coordinates of the α2

bin centers only (instead of inverting nSACR
sample coordinates), resulting in a complexity

of O(α2log2(βx) + α2log2(βy)). In a usual case, α2 is a magnitude smaller than nSACR
,

resulting in, e.g., α2 = 402 = 1600 rather than nSACR
= 40000 quantile computations for

Px and Py . However, those savings come at the cost of mostly unacceptable discretization

errors.

3.5 Indeterminate Temporal Aggregation

In order to enable the handling of temporal indeterminacy of plans, we consider the anal-

ysis over indeterminate events. The indeterminacy of an event ei is reflected through

an uncertain start time ti and a duration di. As an example, to implement UC 2, we

need to compute the prospective overall deployment costs implied by a number of in-

determinate deployments ei ∈ Edep during a specified interval, e.g., T = [1, 5]. We

use the operator AGGT (X,E, T) to compute the aggregate (sum, minimum, or maxi-

mum) of values of an attribute X = {x0, . . . , xn} associated with temporally indeter-

minate events E = {e1, . . . , en} within a time interval T =
[

lT , hT

]

. To compute

the aggregate, we must consider all events that have a potential overlap with T (i.e.,

lti < hT ∧ hti + hdi
> lT). In the following, we consider the aggregation over a single

event e ∈ E (omitting the subscript for reasons of readability). Essentially, we need to

462

(a) Start t and du-

ration d of event e

(b) Aggregation over indeterminate events illustrated over the single event e

Figure 3: Representation and processing of temporal indeterminacy associated with indeterminate
events

compute the fraction φ to yield the contribution φ · x of the measure value x associated

with e. The fraction φ depends both on the position of T and on the set of all possible

intervals Ipq ∈ I =
{[

tstartp = vp, t
end
pq = vp + vq

]}

, vp ∈ It, vq ∈ Id in which e can

occur. To give an example, Figure 3(a) depicts the start time t, βt = 3 and duration d,

βd = 2 of the event e while Figure 3(b) shows how aggregation works over this single

event. In Figure 3(b), the fraction φ of e results from six possible occurrence intervals

I = {I11, I12, . . . , I32}. For each possible interval, we need to compute joint probabili-

ties P (t = vp) · P (d = vq) (assuming independence between t and d) and the fractions of

overlaps, i.e., the part of Ipq that lies within T = [1, 5].

We denote the average number of potential occurrence intervals of all considered events

ei ∈ E as nI = (
∑

i=0...N βti · βdi
)/|E| and the fraction of those intervals that actually

overlap T (and therefore contribute to the aggregate result) as fφ . Temporal aggregation

implies |E| · nI · fφ complete computations of overlaps and joint probabilities. The worst

case therefore is of complexity O(nF · nI).

4 Experimental Evaluation

In this section, we report on experiments evaluating the discussed operators. The goal

of those experiments is the validation of our analytical results for the selected operators.

Further, based on concrete results, we can quantify the costs for reading and writing data

and the specific computations involved in operator processing steps.

4.1 Implementation and Setup

We extended an existing proprietary engine that computes complex analytical queries by

means of so-called Calculation Views (CV). Those views enable OLAP analysis function-

ality as well as applying custom operations provided as Python or C++ implementations.

463

For a more detailed explanation of the underlying architecture and the concept of CVs, see

[JLF10]. Further, for the computation of statistic functions (e.g., for copula construction

at runtime) we rely on the statistic library IMSL3. Physically, the data are stored and ac-

cessed per column. Since our operators operate only on one or two columns at most of the

time, this setting is beneficial for many operations.

Experimental Setup For the following experiments, we used a dual CPU workstation

with 4GB of main memory running Windows Vista 64bit. The goal was to investigate the

required run-times for selected operators. To validate the influence of factors identified in

Section 3 above on actual run-times, we varied both the parameterization of operators and

the scaling factors of the underlying TPC-H4 data as well as the characteristics of uncertain

input data (represented mostly by histograms). Note that, in the general case, intermediate

results derived by an operator are not persisted unless stated otherwise.

4.2 Experiments

Loading Histogram Data As a basis for most of the other operators, histogram data

needs to be loaded from the database into our internal histogram structure. Figure 4 shows

the costs induced by loading histograms with varying numbers β of bins. Note that for

the current prototype, those costs are far from optimal due to the fact that we access the

internal tables storing our histogram data via SQL statements rather than internal table

searches. Clearly, load times increase linearly with the number of fetched histograms.

However, repeated access to individual values or small sets of values causes relatively

higher costs.

Figure 4: Times for loading histograms for a number of uncertain values

Derivation Subsequently, we use the lineitem table from the TPC-H benchmark as a

basis for deriving distributions. We derive both histogram-based representations with vary-

3http://www.vni.com/products/imsl/
4http://tpc.org

464

ing numbers of bins and symbolic representations over the values of the extendedprice

attribute. We assume that the considered data follows either one of a uniform, a Gaus-

sian, or a Gamma distribution. Using scaling factors s = 0.1 and s = 1.0 results in

nF = 600k and nF = 6M attribute values, respectively. Depending on an optional

grouping, we derive a total distribution over all values, or 20k and 200k distributions for

each lineitem.partkey, respectively. As shown in Table 1, run-times increase al-

most linearly with the size of nF when we derive one distribution from all fact values.

In the grouped derivation, we observe a slightly stronger increase in the case of histogram

derivations, which we attribute to the high memory allocation costs. This factor also causes

slightly rising run-times as β increases, even though the bin allocation as such is constant

at O(1). For the derivation of symbolic representations, run-times increase perfectly linear

with nF .

Table 1: Run-times (sec) for derivation of different distribution representations over a to-
tal of nF = 600k values (s = 0.1) and nF = 6M values (s = 1.0) of attribute
lineitem.extendedprice.

Scale

Distribution Representation

(Equi-width) Histogram Symbolic

β = 10 β = 20 β = 100 Uniform Gaussian Gamma

s = 0.1, total 0.165 0.156 0.28 0.28

s = 0.1, grouped 0.57 0.60 0.61 0.65 0.92 0.92

s = 1.0, total 1.62 1.55 2.82 2.82

s = 1.0, grouped 6.55 6.87 6.96 6.50 8.95 8.95

Table 2: Run-times (sec) for converting 1000 val-
ues from symbolic to histogram representations.

Source Target Histogram Representation β

10 20 50 100

Uniform 0.136 0.19 0.3 0.556

Gaussian 0.115 0.173 0.338 0.619

Gamma 0.136 0.176 0.364 0.692

Table 3: Run-times (sec) for convert-
ing 1000 histogram-based representa-
tions to symbolic representations.

Source Target Distribution

Uniform Gaussian Gamma

β = 10 0.025 0.06 0.062

β = 50 0.028 0.067 0.068

β = 100 0.035 0.080 0.082

Conversion Tables 2 and 3 show results for converting symbolic into histogram repre-

sentations with varying β and for converting histograms into assumed symbolic represen-

tations, respectively. We can see in Table 2 that the observed costs are relatively higher

for low values of β, which results from setup and loading costs. Beyond this initial cost,

run-times increase almost linear with β, due to the fact that we must compute discrete

density values by integration within each of the β bins as discussed in Section 3.2. Note

that the concrete cost for potential further distribution functions will vary depending on

the concrete implementation (e.g., through a call to an external library) of their integra-

tion. Table 3 shows run-times for deriving function parameters of assumed distribution

functions from source histograms. Computation costs increase only slightly with the size

465

of β. The total costs are strongly dominated by loading times, increasing linearly with β
as already shown in Figure 4.

Modification We evaluated both the modification of values based on an update value

xnew provided a priori and applying value-based conditions. Different from the other

operators, in the case of MOD, we write back the bin-wise delta from the old to the new

value. Figure 5 shows the results of modifying histograms with varying β based on a

threshold on the distribution support; that is, all bins with right bounds below a threshold

were modified (e.g., set to 0). The threshold was varied so that the modified fraction fm
increased from 0.0 to 1.0. One can see that run-times increase linearly with fm as only

modified bins are written back. The increase of run-times is also linear in β. We observe

a stronger increase for β = 100, which is due to current implementational restrictions of

our prototype.

Figure 5: Run-times for modifying 100 histograms, applying (value-based or frequency-based) con-
ditions affecting various fractions of the histograms

Correlation Introduction To evaluate run-times of the COR operator, we varied the

characteristics of the copulas underlying the sampling- and ACR-based approaches as well

as the distributions to be correlated. First, we evaluated the application of different copulas

CH,d built from a bivariate Gaussian and T-student distribution H with correlation degrees

d = 0.4 and d = 0.8, respectively. We further varied the number of samples (nS) per

copula CH,d and the number of bins (α) per ACR C
α

H,d. Both CH,d and C
α

H,d were applied

to two histograms P
20

x and P
20

y to yield a result histogram P
20,20

x,y . Table 4 displays the

run-times required for computing P
20,20

x,y , averaged over 100 runs each. For the sampling-

based approach, we must include the times for copula construction and for deriving P
20,20

x,y .

In contrast, for the ACR-based approach, we exclude copula construction times since we

only need to access the precomputed ACR histograms and compute the quantiles for the

nSACR
artificially derived samples. In this case, we fix nSACR

= 100k. Table 4 shows

that the run-times of the ACR-based cases are almost constant at about the time required

for processing the respective copulas CT (1),d and CG,d using nS = 5k and nS = 10k
samples, respectively. The constant behavior is due to the fact that we keep the number of

466

nSACR
constant for all applied ACRs, irrespective of the number of α. The displayed run-

times for the sampling-based approach increase linearly with the used number of samples

nS . As an indication – although the issue of accuracy is not further discussed in this paper

– the result accuracies reached by using copulas of 20k and 40k samples are comparable

to those achieved when using the respective ACR with α = 40 bins.

Table 4: Run-times (in ms) for deriving P
20,20
x,y through sampling approach and ACR processing

Copula
nS ACR-based (α)

5k 10k 40k 10 20 40

CGauss,0.4, CGauss,0.8 123 157 361 150 150 150

CT (1),0.4, CT (1),0.8 140 189 474 150 150 150

Figure 6: Run-times for ACR-based correlation introduction with varying parameters

We further varied the number of βx and βy used to represent Px and Py as well as the

number of nSACR
. The resulting run-times are shown in Figure 6. We can see that there

is an initial cost for setting up the operator and loading the data, which clearly dominates

run-times especially for small β and nSACR
. Beyond this initial cost factor, we see an

increase linear in nSACR
due to the cost for each additional sample inversion (quantile

computation). With increasing numbers of βx and βy (simultaneously set to 10, 20, 50,

or 100 bins, respectively) we can see increasing run-times slightly below the assumed

logarithmic increase due to the increased cost of each quantile computation, as discussed

in Section 3.4.

Temporal Aggregation The efficiency of AGGT is subject to many variations as de-

scribed above. We now evaluate the influence of βti and βdi
, as well as the fraction fφ

of the potential occurrence intervals Iipq overlapping T . We apply SUM [10,15] for 1000
artificial events ei ∈ E. Start times ti and durations di are uniformly distributed over

[0, 5], each represented by a corresponding histogram with βti = βdi
= 5. The results are

displayed in Figures 7(a) and 7(b).

We investigate the variation of β by aggregating over a number of 1000 events associated

with varying βti and βdi
, respectively. The portion fφ of overlapping occurrence intervals

467

(a) Varying βti from 0 to 50 (b) Varying fraction of overlaps fφ from 0.0 to 1.0

Figure 7: Temporal aggregation over 1k events with varying start time and duration characteristics

is kept stable (at 100%) by ensuring that, for every variation, hti < lT ∧ lti + ldi
> lT .

The results are shown in Figure 7(a). Results for varied βdi
are similar given the portion of

potential overlaps is similarly kept stable at 100%. To vary the portion fφ of overlapping

Iipq from 0.0 to 1.0, we keep ti and T constant and calculate AGGT for ldi
= 0, . . . , 10

and hdi
= ldi

+5. The resulting run-times are shown in Figure 7(b). In both experiments,

the observed behavior is in line with the results of Section 3.5, reflecting a linear rising in

run-times for increased βti , βdi
, and fφ, respectively. An exception occurs for fφ = 1/25,

where we observe an initially stronger increase. This is due to the fact that for fφ = 0.0 all

events lie outside T and do not induce any costs for testing of overlapping intervals, while

for any fφ > 0.0 those tests imply an initial cost.

5 Efficiency and Optimization of the Analysis Process

So far, we discussed the efficiency of individual operators with respect to their specific

characteristics. We now address selected issues of optimization in the face of large amounts

of input data and the application of composed operator sequences in order to enable lower

response times for their interactive and iterative application in analysis processes.

An example process In Figure 8 we illustrate the subsequent application of selected op-

erators implementing UC 2. Recall that we want to analyze costs associated with a set

of indeterminate deployments Edep during a specified time interval, where the deploy-

ment of a part follows its uncertain delivery. Consider as the basis for our analysis a data

warehouse storing information about line items and associated orders as represented in the

lineitem and order tables. We want to prospect the probable deployment costs for a

group of line items during the next weeks. We assume that their times to delivery (ttd)

(computed from the order.orderdate and lineitem.receiptdate attributes)

will behave similar to the distribution of delivery times observed in the historic data. To

reflect this assumption, for each lineitem.partkey, we derive a histogram (EWH)

P̄ti over ttd for all delivered items. We view Pti as the distribution of the start time of a

prospective deployment event ei for an item ordered today (viewing ”today” as day 0). For

468

Figure 8: Process illustrating UC 2 and the incremental derivation of scenarios

simplicity, we assume a constant cost ci = 100 and a duration di following a uniform dis-

tribution in [0, 5] (converted to P̄di
) for all deployment events ei ∈ Edep. The aim of our

analysis is (i) to compute prospective deployment costs induced by selected orders during

time intervals [5, 10] and [10, 15] and (ii) to investigate, in the case of an unfavorable cost

situation, alternative delivery scenarios. The first step is achieved through an application

of SUM [5,10](Edep, C) and SUM [10,15](Edep, C). The latter involves the modification of

deployment start times ti based on the user’s assumption followed by a second aggregation

over Edep, now including the modified temporal information.

5.1 Iterative creation and computation of scenarios

In our exemplary use case UC 2, the user wants to analyze the influence of applying

express delivery on the deployment costs induced during a considered time frame. To this

end, as shown in Figure 8, he modifies the start times ti of a selected subset of Edep,

creating a new scenario S2. He then needs to analyze the modified data underlying S2,

e.g., by repeating the described aggregation over intervals [5, 10] and [10, 15]. The results

scenarios can be compared, stored, or further processed. Naturally, we want to reuse as

many results as possible throughout this process. To this end, we must provide information

about their derivation and evaluate it in the processing of operators. It is important to note

that most of the derived results are kept in memory as intermediate results, enabling fast

access and iterative application of different operators. Of course, we can persist results to

enable their reuse at a later point in time.

Incorporating modifications and insertions The creation of a new scenario virtually

always goes along with modifications to some minor part of the underlying data. For ex-

ample, the scenario described above is derived on the assumption of modified delivery

times for a group of items. Note that we can calculate the succeeding aggregation very

efficiently given the fraction of modified times is relatively small. In particular, rather than

applying AGGT to all ei ∈ Edep, we only need to compute SUMT over the affected

events, using the delta values t∆i that represent the previous modification. We can then

469

compute sumS2 as sumS2 = sumS1 + sum∆. Modifications can be incorporated in

the described iterative fashion only if we can preserve the semantics of the applied oper-

ators. For example, we can apply a similar step to update previously derived histograms

or distribution parameters to incorporate modified or new fact data in an iterative fashion,

rather than recomputing the complete distribution. Similarly, we can update a bivariate

distribution (derived using COR) when one of the marginals is modified. This is be-

cause internally, COR essentially relies on summing up the joint densities in the result

histogram. Thus, the same iterative approach as above can be applied. Note that we can

not use this approach when the analysis process includes operators whose semantics are

not preserved under modifications, e.g., for the computation of extrema (both in the sense

of standard aggregation and the computation of MINT and MAXT). A comprehensive

consideration of how new data and modifications can be incorporated in the execution of

(sequences of) operators is yet outstanding.

5.2 Parallelization

Besides optimizing the calculation of succeeding operators based on the provenance of

intermediate results, we also need to address the issue of long response times due to large

amounts of data processed by operators such as DRV . To this end, we considered dif-

ferent forms of parallelization. For many of our operators, a large part of their overall

costs is determined by loading and processing individual columns. Those can be executed

independently, returning relatively small results which are merged in a final step. In pre-

vious work, we applied alternative ways of parallel loading and processing of underlying

input data. We evaluated parallelization of computations executed within an operator and

parallel processing of operators between cores in [ERM+10], where we exemplified our

approaches using the data-intensive operator DRV . The reported results show that in

cases of large amounts of input data, parallel loading and processing of partitioned data

over many cores is beneficial due to dominant loading times. Conversely, when operators

process relatively small amounts of data, we can apply threaded execution within a single

operator.

6 Related Work

Existing approaches for uncertain data management foremost focus on areas such as the

management of sensor data, information extraction results, or scientific data. In this con-

text, those approaches mainly address the representation, indexing, and analysis of data

represented through tuple alternatives [HAKO09, SD07, ABS+06] and values distributed

over discrete or continuous domains [SMM+08, AW09]. The generally high complexity

of queries over uncertain data is a well-known problem and has been discussed – among

other issues – with respect to join evaluation [Che06], range predicates [DS07, CXP+04],

and exact and approximate aggregate computation [MIW07].

470

The abovementioned aspects serve as valuable building blocks for the analysis part of

the planning processes we envision. However, our work focuses on the specific aspects

of derivation and modification of uncertainty and interdependencies in data. To incorpo-

rate those aspects, we apply symbolic and equi-width histogram representations of dis-

tribution functions. The use of histograms and the performance of different partition-

ing schemes, such as equi-depth or MaxDiff, have been investigated in depth (see, e.g.,

[PHIS96]) with respect to both their construction efficiency and accuracy. Likewise, the

usage of histogram-based and symbolic representations for uncertain data management

has been previously discussed, e.g., in [SMM+08, AW09]. We similarly exploit the his-

togram model to represent arbitrary distributions generically; in addition, our data model

employs uni- and multivariate histograms to represent and efficiently handle modifications

(deltas) and correlation information. The aspect of correlations in data was addressed pre-

viously primarily for the case of tuple alternatives and discrete value distributions. The

approach reported in [SD07] uses graphical models to represent such dependencies in a

factored fashion and discusses efficient inference-based query evaluation over the graphs.

Although, in general, the graphical representation can be applied in the face of continuous

distributions, [SD07] does not address the computation or introduction of correlation in-

formation by users. While the authors in [KO08] discuss efficient approaches for the intro-

duction of ”conditioning” constraints (e.g., implications and mutual exclusion) and queries

over conditioned data, they similarly do not discuss the separate representation and intro-

duction of arbitrary correlation to data as we do. Our previous work [ER10, ERM+10]

introduced the general ideas of our support for scenario-based planning, but lacked a com-

prehensive discussion and evaluation of our operators’ efficiency, foremost as regards the

COR and AGGT operators. In this paper, we addressed this open issue as a basic pre-

requisite to judge their practical applicability. The challenge of efficiently incorporating

modified data in the face of scenario creation relates to the topic of data lineage. Lin-

eage handling has been previously discussed in the context of probabilistic data, e.g., in

[ABS+06, STW08] and in the broader context of view maintenance in data warehouses

[CWW00] and data-centric workflows. Its application for optimizing scenario-based plan-

ning process constitutes an interesting new facet complementing previous research.

7 Conclusion and Future Work

In this paper, we extended our previous work on operators for derivation, analysis and

modification of uncertain data in the context of scenario-based planning processes. We

derived and discussed the complexity of these operators and created a basis for assessing

them in different application scenarios. We also validated the analytical results through

an experimental evaluation. Generally, we observe a dominating cost factor for loading

histogram structures from the database, while the computation routines themselves are

highly efficient and introduce only small additional costs with growing data complexity.

We further highlighted opportunities for optimization concerning both parallelization and

the incremental execution of steps in an analysis process, including the efficient derivation

of related scenarios. Finally, we addressed related research topics touching on various

471

aspects of both the functional and performance-related aspects of the presented work.

Apart from enabling provenance handling in the scenario derivation process, another highly

important factor of future work is an assessment of the accuracy of results derived in this

process. Naturally, we cannot quantify the “correctness” of a computed result scenario

since the future fulfillment of the applied assumptions is unknown. Still, we can measure

discretization errors introduced through operator applications and quantify the resulting

trade-offs between accuracy and efficiency. In this respect, both varying aspects of the

data model and the applied operators can help enable manual and automatic optimization

based on users’ preferences. For example, applying an alternative histogram partitioning

scheme such as equi-depth could decrease approximation errors at the cost of lower con-

struction and update efficiency. Conversely, a user might resort to approximate operators

for the benefit of lower run-times. In this context, a complementary track of our work

investigates approximate temporal aggregation based on a clustering of events with simi-

lar temporal associations. A comprehensive investigation of the exemplified trade-offs is

subject to future work.

References

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar,
Tomoe Sugihara, and Jennifer Widom. Trio: A System for Data, Uncertainty, and
Lineage. In VLDB ’06: Proceedings of the 32nd International Conference on Very
Large Data Bases, pages 1151–1154. VLDB Endowment, 2006.

[AW09] Parag Agrawal and Jennifer Widom. Continuous Uncertainty in Trio. In MUD. Stan-
ford InfoLab, 2009.

[Che06] Reynold Cheng. Efficient join processing over uncertain data. In In Proceedings of
CIKM, pages 738–747, 2006.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view data
in a warehousing environment. ACM Trans. Database Syst., 25(2):179–227, 2000.

[CXP+04] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah, and Jeffrey Scott Vitter. Ef-
ficient indexing methods for probabilistic threshold queries over uncertain data. In
VLDB ’04: Proceedings of the Thirtieth international conference on Very large data
bases, pages 876–887. VLDB Endowment, 2004.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The
VLDB Journal, 16(4):523–544, 2007.

[ER10] Katrin Eisenreich and Philipp Rösch. Handling Uncertainty and Correlation in Decision
Support. In Proceedings of 4th Workshop on Management of Uncertain Data at VLDB
2010, September 2010.

[ERM+10] Katrin Eisenreich, Philipp Rösch, Volker Markl, Gregor Hackenbroich, and Robert
Schulze. Handling of Uncertainty and Temporal Indeterminacy for What-if Analy-
sis. In Proceedings of Workshop on Enabling Real-Time Business Intelligence at VLDB
2010, September 2010.

472

[HAKO09] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. MayBMS: A
Probabilistic Database Management System. In Proceedings of the 35th SIGMOD In-
ternational Conference on Management of Data, pages 1071–1074, New York, NY,
USA, 2009. ACM.

[JLF10] Bernhard Jäcksch, Wolfgang Lehner, and Franz Faerber. A Plan for OLAP. In EDBT,
pages 681–686, 2010.

[JXW+08] Ravi Jampani, Fei Xu, Mingxi Wu, Luis L. Perez, Christopher Jermaine, and Peter J.
Haas. MCDB: A Monte Carlo Approach to Managing Uncertain Data. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pages 687–700, New York, NY, USA, 2008. ACM.

[KO08] Christoph Koch and Dan Olteanu. Conditioning probabilistic databases. Proc. VLDB
Endow., 1(1):313–325, 2008.

[MIW07] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. Making Aggregation Work
in Uncertain and Probabilistic Databases. Technical Report 2007-7, Stanford InfoLab,
June 2007.

[MST07] G. Mayor, J. Suner, and J. Torrens. Sklar’s Theorem in Finite Settings. Fuzzy Systems,
IEEE Transactions on, 15(3):410 –416, june 2007.

[Nel06] Roger B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[PHIS96] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. Im-
proved Histograms for Selectivity Estimation of Range Predicates. SIGMOD Rec.,
25(2):294–305, 1996.

[SD07] Prithviraj Sen and A. Deshpande. Representing and Querying Correlated Tuples in
Probabilistic Databases. In Data Engineering, 2007. ICDE 2007. IEEE 23rd Interna-
tional Conference on, pages 596–605, 2007.

[Skl59] A. Sklar. Fonctions de repartition à n dimensions et leurs marges. Publications de
l’Institut de Statistique de L’Universite de Paris, 8:229–231, 1959.

[SMM+08] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Hambrusch,
and Rahul Shah. Orion 2.0: Native Support for Uncertain Data. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD, pages 1239–1242, New York, NY, USA, 2008.
ACM.

[STW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting Lineage for Con-
fidence Computation in Uncertain and Probabilistic Databases. In ICDE ’08: Pro-
ceedings of the 2008 IEEE 24th International Conference on Data Engineering, pages
1023–1032, Washington, DC, USA, 2008. IEEE Computer Society.

473

	Vorwort

	Inhaltsverzeichnis
	Eingeladene Vorträge
	SanssouciDB: An In-Memory Database for Processing Enterprise Workloads
	The Web as the development platform of the future
	The Power of Declarative Languages: From Information Extraction to Machine Learning

	Wissenschaftliches Programm
	Verarbeitung großer Datenmengen
	MapReduce and PACT - Comparing Data Parallel Programming Models
	Parallel Sorted Neighborhood Blocking with MapReduce
	PigSPARQL: Übersetzung von SPARQL nach Pig Latin

	Datenströme
	Koordinierte zyklische Kontext-Aktualisierungen in Datenströmen
	Tracking Hot-k Items over Web 2.0 Streams
	Flexible and Efficient Sensor Data Processing - A Hybrid Approach
	Feature-Based Graph Similarity with Co-Occurence Histograms and the Earth Mover's Distance

	Vorhersagemodelle
	Lightweight Performance Forecasts for Buffer Algorithms
	Offline Design Tuning for Hierarchies of Forecast Models
	Online Hot Spot Prediction in Road Networks

	DB-Implementierung
	Advanced Cardinality Estimation in the XML Query Graph Model
	Efficient In-Memory Indexing with Generalized Prefix Trees
	Stets Wertvollständig! - Snapshot Isolation für das Constraint-basierte Datenbank Caching

	Anfrageverarbeitung
	A generalized join algorithm
	View Maintenance using Partial Deltas
	Cloudy Transactions: Cooperative XML Authoring on Amazon S3

	Informationsextraktion
	Conceptiual Views for Entity-Centric Search: Turning Data into Meaningful Concepts
	A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases
	Efficient Interest Group Discovery in Social Networks using an Integrated Structure/Quality Index
	Filtertechniken für geschützte biometrische Datenbanken

	Benchmarking & Simulation
	Benchmarking Hybrid OLTP&OLAP Database Systems
	Simulating Multi-Tenant OLAP Database Clusters
	SSD != SSD – An Empirical Study to Identify Common Properties and Type-specific Behavior
	HiSim: A Highly Extensible Large-Scale P2P Network Simulator

	Probabilistische und inkonsistente Daten
	Operators for Analyzing and Modifying Probabi listic Data - A Question of Efficiency
	Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases
	QSQL^p: Eine Erweiterung der probabilistischenMany-World-Semantik umRelevanzwahrscheinlichkeiten

	Maßgeschneiderte DB-Anwendungen
	Generierung maßgeschneiderter Relationenschemata in Softwareproduktlinien mittels Superimposition
	SIMPL – A Framework for Accessing External Data in Simulation Workflows
	Einsatz domänenspezifischer Sprachen zur Migration von
Datenbankanwendungen

	Dissertationspreis
	XML Query Processing in XTC

	Industrieprogramm
	Complex Event Processing und Reporting
	An Integrated Data ManagementApproach to Manage Health Care Data
	Involving Business Users in the Design of Complex Event
Processing Systems
	Fast and Easy Delivery of Data Mining Insights to
Reporting Systems

	Rund um OLAP
	Technical Introduction to the IBM Smart Analytics Optimizer for DB2 for System z
	Architecture of a Highly Scalable Data Warehouse Appliance Integrated to Mainframe Database Systems
	Interactive Predictive Analytics with Columnar Databases

	In-Memory und Cloud
	An In-Memory Database System for Multi-Tenant
Applications
	Available-To-Promise on an In-Memory Column Store
	Cloud Storage: Wie viel Cloud Computing steckt dahinter?

	Panel
	Panel: “One Size Fits All”: An Idea Whose Time Has Come and Gone?

	Demonstrationsprogramm
	Improving Service Discovery through
Enriched Service Descriptions
	StreamCars – DatenstrommanagementbasierteVerarbeitung von Sensordaten im Fahrzeug
	NexusDSEditor — Integrated Tool Support for the DataStream Processing Middleware NexusDS
	AIMS: An SQL-based System for Airspace Monitoring
	PROOF: Produktmonitoring im Web
	ProCEM Software Suite - Integrierte Ablaufsteuerung und -überwachung auf Basis von Open Source Systemen
	Demonstration des Parallel Data Generation Framework
	Measuring Energy Consumption of a Database Cluster
	Snowfall: Hardware Stream Analysis Made Easy
	MOAW: An Agile Visual Modeling and Exploration Tool
for Irregularly Structured Data
	Touch it, Mine it, View it, Shape it
	Metadata-driven Data Migration for SAP Projects

	Ende

