Lompat ke isi

Sebaran binomial

Ti Wikipédia Sunda, énsiklopédi bébas
Versi yang bisa dicetak tidak lagi didukung dan mungkin memiliki kesalahan tampilan. Tolong perbarui markah penjelajah Anda dan gunakan fungsi cetak penjelajah yang baku.

Dina matematik, sebaran binomial mangrupa probability distribution diskrit nu ngajelaskeun angka keberhasilan tina sekuen n independent percobaan enya/heunteu, unggal nu hasil mibanda probabiliti p. Saperti ogé hasil/gagalna percobaan disebut ogé percobaan Bernoulli atawa Bernoulli trial. Sebaran binomial mangrupa dasar nu kawentar keur binomial test tina statistical significance.

Conto tipikalna nyaéta: 5% populasi mangrupa positif HIV. Anjeun nyokot 500 urang sacara acak. Kumaha cara yén anjeun meunang 30 atawa leuwih HIV-positip? Jumlah HIV-positip nu dicokot ku anjeun mangrupa variabel random X nu nuturkeun sebaran binomial mibanda n = 500 sarta p = .05. Hartina urang museurkeun kan probabiliti Pr[X ≥ 30].

Sacara umum, lamun variabel random X nuturkeun sebaran binomial mibanda paramater n sarta p, dituliskeun X ~ B(n, p). Probabiliti nu pasti sukses k dirumuskeun ku

di mana

mangrupa koéfisién binomial "n milih k" (oge dilambangkeun ku C(n, k)), ti mana ngaran sebaran. Rumus bisa dipikaharti saperti kieu: urang hayang k sukses (pk) sarta nk gagal ((1 − p)nk). Sanajan kitu, sukses k bisa kajadian di mana waé di antara n percobaan, sarta di mana C(n, k) béda jalan kasebarna sukses k dina sekuen n percobaan.

Lamun X ~ B(n, p), mangka nilai ekspektasi X nyaéta

sarta varian nyaéta

Nilai nu leuwih siga atawa mode X dibérékeun ku integer panggedéna kurang atawa sarua jeung (n+1)p; lamun m = (n+1)p mangrupa interger sorangan, mangka m − 1 sarta m duanana mangrupa mode.

Lamun X ~ B(n, p) sarta Y ~ B(m, p) mangrupa variabel binomial bébas, mangka X + Y ogé mangrupa variabel binomial; sebaranna nyaéta

Dua sebaran penting nu ngadeukeutan sebaran binomial nyaéta:

Binomial PDF and Normal approximation for n=6 and p=0.5.
  • Lamun np sarta n(1 − p) leuwih gedé ti 5 atawa séjénna, mangka pendekatan panghadéna (dumasar kana continuity correction nu mungkin dipaké) ka B(n, p) dirumuskeun ku sebaran normal
Pendekatan ieu ngarupakeun huge time-saver; sajarahna, ieu mimiti dipake sebaran normal, dimimitian ku Abraham de Moivre dina bukuna The Doctrine of Chances taun 1733. Kiwari, bisa ditempo sabab tina central limit theorem, B(n, p) ngarupakeun jumlah n bebas, identically distributed 0-1 indicator variable. Inget: ieu pendekatan hasilna teu akurat lamun teu make continuity correction.Catetan: gambar nembongkeun normal and binomial probability density function (PDF) sarta lain cumulative distribution function.
Contona, anggap anjeun nyokot sampel random n ti masarakat nu populasi loba sarta nyebutkeun ten maranéhna satuju kana hiji pernyataan. Proporsi masakarat nu satuju tangtu gumantung kana sampel. Lamun grup sampel n masarakat diulang sarta bener-bener random, proprosi bakal nuturkeun sebaran normal nu mibanda mean sarua kana proporsi satuju sabenerna p dina populasi sarta mibanda simpangan baku σ = (p(1 − p)/n)1/2. Ukuran sampel n badag ngarupakeun hal nu hade sabab simpangan baku bakal jadi leutik, nu ngijinkeun keur estimasi nu hade keur paramater p nu teu dipikanyaho.
  • Lamun n badag sarta p leutik, mangka np ukuranna sedeng, mangka Poisson distribution mibanda paraméter λ = np mangrupa pendekatan nu hadé keur B(n, p).

Rumus keur Bézier curves kailhaman ku sebaran binomial.