Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
41
2.5k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
1k
Contracts for building reliable systems
keathley
5
840
Kafka, the hard parts
keathley
2
1.6k
Building Resilient Elixir Systems
keathley
6
2.2k
Consistent, Distributed Elixir
keathley
5
1.5k
Telling stories with data visualization
keathley
0
590
Easing into continuous deployment
keathley
2
360
Leveling up your git skills
keathley
0
720
Generative Testing in Elixir
keathley
0
490
Other Decks in Programming
See All in Programming
PHPのガベージコレクションを深掘りしよう
rinchoku
0
250
SQL Server ベクトル検索
odashinsuke
0
130
PHPによる"非"構造化プログラミング入門 -本当に熱いスパゲティコードを求めて- #phperkaigi
o0h
PRO
0
1.2k
AIコーディングワークフローの試行 〜AIエージェント×ワークフローでの自動化を目指して〜
rkaga
0
700
AtCoder Heuristic First-step Vol.1 講義スライド
terryu16
3
1.1k
CTFのWebにおける⾼難易度問題について
hamayanhamayan
1
1k
AtCoder Heuristic First-step Vol.1 講義スライド(山登り法・焼きなまし法編)
takumi152
4
1k
php-fpm がリクエスト処理する仕組みを追う / Tracing-How-php-fpm-Handles-Requests
shin1x1
5
880
家族・子育て重視/沖縄在住を維持しながらエンジニアとしてのキャリアをどのように育てていくか?
ug
0
250
Django for Data Science (Boston Python Meetup, March 2025)
wsvincent
0
270
AHC 044 混合整数計画ソルバー解法
kiri8128
0
310
Devinのメモリ活用の学びを自社サービスにどう組み込むか?
itarutomy
0
1.9k
Featured
See All Featured
The Cult of Friendly URLs
andyhume
78
6.3k
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
360
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Building Applications with DynamoDB
mza
94
6.3k
Done Done
chrislema
183
16k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Embracing the Ebb and Flow
colly
85
4.6k
For a Future-Friendly Web
brad_frost
176
9.6k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
500
Typedesign – Prime Four
hannesfritz
41
2.6k
Transcript
Chris Keathley / @ChrisKeathley / c@keathley.io Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley / c@keathley.io