Best Key-Value Databases

What are Key-Value Databases?

Key-value databases are a type of NoSQL database that store data as pairs, where each unique key is associated with a value. This structure is simple and highly flexible, making key-value databases ideal for scenarios requiring fast access to data, such as caching, session management, and real-time applications. In these databases, the key acts as a unique identifier for retrieving or storing the value, which can be any type of data—strings, numbers, objects, or even binary data. Key-value stores are known for their scalability, performance, and ability to handle high volumes of read and write operations with low latency. These databases are particularly useful for applications that require quick lookups or high availability, such as online retail platforms, social networks, and recommendation systems. Compare and read user reviews of the best Key-Value Databases currently available using the table below. This list is updated regularly.

  • 1
    BangDB

    BangDB

    BangDB

    BangDB natively integrates AI, streaming, graph, analytics within the DB itself to enable users to deal with complex data of different kinds, such as text, images, videos, objects etc. for real time data processing and analysis Ingest or stream any data, process it, train models, do prediction, find patterns, take action and automate all these to enable use cases such as IOT monitoring, fraud or disruption prevention, log analysis, lead generation, 1-on-1 personalisation and many more. Today’s use cases require different kinds of data to be ingested, processed, and queried at the same time for a given problem. BangDB supports most of the useful data formats to allow user to solve the problem in a simple manner. Rise of real time data pushes for real time streaming and predictive data analytics for advanced and optimized business operations.
    Starting Price: $2,499 per year
  • 2
    Redis

    Redis

    Redis Labs

    Redis Labs: home of Redis. Redis Enterprise is the best version of Redis. Go beyond cache; try Redis Enterprise free in the cloud using NoSQL & data caching with the world’s fastest in-memory database. Run Redis at scale, enterprise grade resiliency, massive scalability, ease of management, and operational simplicity. DevOps love Redis in the Cloud. Developers can access enhanced data structures, a variety of modules, and rapid innovation with faster time to market. CIOs love the confidence of working with 99.999% uptime best in class security and expert support from the creators of Redis. Implement relational databases, active-active, geo-distribution, built in conflict distribution for simple and complex data types, & reads/writes in multiple geo regions to the same data set. Redis Enterprise offers flexible deployment options, cloud on-prem, & hybrid. Redis Labs: home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
    Starting Price: Free
  • 3
    eXtremeDB

    eXtremeDB

    McObject

    How is platform independent eXtremeDB different? - Hybrid data storage. Unlike other IMDS, eXtremeDB can be all-in-memory, all-persistent, or have a mix of in-memory tables and persistent tables - Active Replication Fabric™ is unique to eXtremeDB, offering bidirectional replication, multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more - Row & Columnar Flexibility for Time Series Data supports database designs that combine row-based and column-based layouts, in order to best leverage the CPU cache speed - Embedded and Client/Server. Fast, flexible eXtremeDB is data management wherever you need it, and can be deployed as an embedded database system, and/or as a client/server database system -A hard real-time deterministic option in eXtremeDB/rt Designed for use in resource-constrained, mission-critical embedded systems. Found in everything from routers to satellites to trains to stock markets worldwide
  • 4
    ArcadeDB

    ArcadeDB

    ArcadeDB

    Manage complex models using ArcadeDB without any compromise. Forget about Polyglot Persistence. no need for multiple databases. You can store graphs, documents, key values and time series all in one ArcadeDB Multi-Model database. Since each model is native to the database engine, you don't have to worry about translations slowing you down. ArcadeDB's engine was built with Alien Technology. It's able to crunch millions of records per second. With ArcadeDB, the traversing speed is not affected by the database size. It is always constant, whether your database has a few records or billions. ArcadeDB can work as an embedded database, on a single server and can scale up using multiple servers with Kubernetes. Flexible enough to run on any platform with a small footprint. Your data is secure. Our unbreakable fully transactional engine assures durability for mission-critical production databases. ArcadeDB uses a Raft Consensus Algorithm to maintain consistency across multiple servers.
    Starting Price: Free
  • 5
    Google Cloud Bigtable
    Google Cloud Bigtable is a fully managed, scalable NoSQL database service for large analytical and operational workloads. Fast and performant: Use Cloud Bigtable as the storage engine that grows with you from your first gigabyte to petabyte-scale for low-latency applications as well as high-throughput data processing and analytics. Seamless scaling and replication: Start with a single node per cluster, and seamlessly scale to hundreds of nodes dynamically supporting peak demand. Replication also adds high availability and workload isolation for live serving apps. Simple and integrated: Fully managed service that integrates easily with big data tools like Hadoop, Dataflow, and Dataproc. Plus, support for the open source HBase API standard makes it easy for development teams to get started.
  • 6
    DataStax

    DataStax

    DataStax

    The Open, Multi-Cloud Stack for Modern Data Apps. Built on open-source Apache Cassandra™. Global-scale and 100% uptime without vendor lock-in. Deploy on multi-cloud, on-prem, open-source, and Kubernetes. Elastic and pay-as-you-go for improved TCO. Start building faster with Stargate APIs for NoSQL, real-time, reactive, JSON, REST, and GraphQL. Skip the complexity of multiple OSS projects and APIs that don’t scale. Ideal for commerce, mobile, AI/ML, IoT, microservices, social, gaming, and richly interactive applications that must scale-up and scale-down with demand. Get building modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Use REST, GraphQL, JSON with your favorite full-stack framework Richly interactive apps that are elastic and viral-ready from Day 1. Pay-as-you-go Apache Cassandra DBaaS that scales effortlessly and affordably.
  • 7
    GridDB

    GridDB

    GridDB

    GridDB uses multicast communication to constitute a cluster. Set the network to enable multicast communication. First, check the host name and an IP address. Execute “hostname -i” command to check the settings of an IP address of the host. If the IP address of the machine is the same as below, no need to perform additional network setting and you can jump to the next section. GridDB is a database that manages a group of data (known as a row) that is made up of a key and multiple values. Besides having a composition of an in-memory database that arranges all the data in the memory, it can also adopt a hybrid composition combining the use of a disk (including SSD as well) and a memory.
  • 8
    JaguarDB

    JaguarDB

    JaguarDB

    JaguarDB enables fast ingestion of time series data, coupling location-based data. It also can index in both dimensions, space and time. Back-filling time series data is also fast (inserting large volumes of data in past time). Normally time series is a series of data points indexed in time order. In JaguarDB, the time series has a different meaning: it is both a sequence of data points and a series of tick tables holding aggregated data values at specified time spans. For example, a time series table in JaguarDB can have a base table storing data points in time order, and tick tables such as 5 minute, 15 minute, hourly, daily, weekly, monthly tables to store aggregated data within these time spans. The format for the RETENTION is the same as the TICK format, except that it can have any number of retention periods. The RETENTION specifies how long the data points in the base table should be kept.
  • Previous
  • You're on page 1
  • Next