Compare the Top In-Memory Databases for Linux as of April 2025

What are In-Memory Databases for Linux?

In-memory databases store data directly in a system’s main memory (RAM) rather than on traditional disk-based storage, enabling much faster data access and processing. This approach significantly reduces latency and increases performance, making in-memory databases ideal for real-time analytics, high-frequency transactions, and applications requiring rapid data retrieval. They are often used in industries like finance, telecommunications, and e-commerce, where speed and scalability are critical. In-memory databases support both SQL and NoSQL models and typically include features for data persistence to avoid data loss during system shutdowns. Ultimately, they provide high-speed performance for time-sensitive applications while ensuring data availability and integrity. Compare and read user reviews of the best In-Memory Databases for Linux currently available using the table below. This list is updated regularly.

  • 1
    RaimaDB

    RaimaDB

    Raima

    RaimaDB is an embedded time series database for IoT and Edge devices that can run in-memory. It is an extremely powerful, lightweight and secure RDBMS. Field tested by over 20 000 developers worldwide and has more than 25 000 000 deployments. RaimaDB is a high-performance, cross-platform embedded database designed for mission-critical applications, particularly in the Internet of Things (IoT) and edge computing markets. It offers a small footprint, making it suitable for resource-constrained environments, and supports both in-memory and persistent storage configurations. RaimaDB provides developers with multiple data modeling options, including traditional relational models and direct relationships through network model sets. It ensures data integrity with ACID-compliant transactions and supports various indexing methods such as B+Tree, Hash Table, R-Tree, and AVL-Tree.
    Partner badge
    View Software
    Visit Website
  • 2
    eXtremeDB

    eXtremeDB

    McObject

    How is platform independent eXtremeDB different? - Hybrid data storage. Unlike other IMDS, eXtremeDB can be all-in-memory, all-persistent, or have a mix of in-memory tables and persistent tables - Active Replication Fabric™ is unique to eXtremeDB, offering bidirectional replication, multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more - Row & Columnar Flexibility for Time Series Data supports database designs that combine row-based and column-based layouts, in order to best leverage the CPU cache speed - Embedded and Client/Server. Fast, flexible eXtremeDB is data management wherever you need it, and can be deployed as an embedded database system, and/or as a client/server database system -A hard real-time deterministic option in eXtremeDB/rt Designed for use in resource-constrained, mission-critical embedded systems. Found in everything from routers to satellites to trains to stock markets worldwide
  • 3
    Perst

    Perst

    McObject

    Perst is McObject’s open source, dual license, object-oriented embedded database system (ODBMS). It is available in one edition developed as an all-Java embedded database, and another implemented in C# (for Microsoft .NET Framework applications). Perst gives developers the ability to store, sort, and retrieve objects in their applications with maximum speed and with low memory and storage overhead while leveraging the object-oriented paradigm of Java and C#. In the TestIndex and PolePosition benchmarks, Perst displays one of its strongest features: its significant performance advantage over Java and .NET embedded database alternatives. Perst stores data directly in Java and .NET objects, eliminating the translation required for storage in relational and object-relational databases. This boosts run-time performance. Perst’s core consists of only five thousand lines of code. The small footprint imposes minimal demands on system resources.
    Starting Price: Free
  • 4
    Tarantool

    Tarantool

    Tarantool

    Corporations need a way to ensure uninterrupted operation of their systems, high speed of data processing, and reliability of storage. The in-memory technologies have proven themselves well in solving these problems. For more than 10 years, Tarantool has been helping companies all over the world build smart caches, data marts, and golden client profiles while saving server capacity. Reduce the cost of storing credentials compared to siloed solutions and improve the service and security of client applications. Reduce data management costs of maintaining a large number of disparate systems that store customer identities. Increase sales by improving the speed and quality of customer recommendations for goods or services through the analysis of user behavior and user data. Improve mobile and web channel service by accelerating frontends to reduce user outflow. IT systems of large organizations operate in a closed loop of a local network, where data circulates unprotected.
  • 5
    SAP HANA
    SAP HANA in-memory database is for transactional and analytical workloads with any data type — on a single data copy. It breaks down the transactional and analytical silos in organizations, for quick decision-making, on premise and in the cloud. Innovate without boundaries on a database management system, where you can develop intelligent and live solutions for quick decision-making on a single data copy. And with advanced analytics, you can support next-generation transactional processing. Build data solutions with cloud-native scalability, speed, and performance. With the SAP HANA Cloud database, you can gain trusted, business-ready information from a single solution, while enabling security, privacy, and anonymization with proven enterprise reliability. An intelligent enterprise runs on insight from data – and more than ever, this insight must be delivered in real time.
  • 6
    Symas LMDB

    Symas LMDB

    Symas Corporation

    Symas LMDB is an extraordinarily fast, memory-efficient database we developed for the OpenLDAP Project. With memory-mapped files, it has the read performance of a pure in-memory database while retaining the persistence of standard disk-based databases. Bottom line, with only 32KB of object code, LMDB may seem tiny. But it’s the right 32KB. Compact and efficient are two sides of a coin; that’s part of what makes LMDB so powerful. Symas offers fixed-price commercial support to those using LMDB in your applications. Development occurs in the OpenLDAP Project‘s git repo in the mdb.master branch. Symas LMDB has been written about, talked about, and utilized in a variety of impressive products and publications.
  • 7
    H2

    H2

    H2

    Welcome to H2, the Java SQL database. In embedded mode, an application opens a database from within the same JVM using JDBC. This is the fastest and easiest connection mode. The disadvantage is that a database may only be open in one virtual machine (and class loader) at any time. As in all modes, both persistent and in-memory databases are supported. There is no limit on the number of database open concurrently, or on the number of open connections. The mixed mode is a combination of the embedded and the server mode. The first application that connects to a database does that in embedded mode, but also starts a server so that other applications (running in different processes or virtual machines) can concurrently access the same data. The local connections are as fast as if the database is used in just the embedded mode, while the remote connections are a bit slower.
  • Previous
  • You're on page 1
  • Next