Related Products
|
||||||
About
PyQtGraph is a pure-python graphics and GUI library built on PyQt/PySide and NumPy. It is intended for use in mathematics/scientific/engineering applications. Despite being written entirely in python, the library is very fast due to its heavy leverage of NumPy for number crunching and Qt's GraphicsView framework for fast display. PyQtGraph is distributed under the MIT open-source license. Basic 2D plotting in interactive view boxes. Line and scatter plots. Data can be panned/scaled by mouse. Fast drawing for real-time data display and interaction. Displays most data types (int or float; any bit depth; RGB, RGBA, or luminance). Functions for slicing multidimensional images at arbitrary angles (great for MRI data). Rapid update for video display or real-time interaction. Image display with interactive lookup tables and level control. Mesh rendering with isosurface generation. Interactive viewports rotate/zoom with mouse. Basic 3D scenegraph for easier programming.
|
About
A seamless JavaScript code coverage library. Blanket.js is a code coverage tool for JavaScript that aims to be easy to install, easy to use, and easy to understand. Blanket.js can be run seamlessly or can be customized for your needs. JavaScript code coverage compliments your existing JavaScript tests by adding code coverage statistics (which lines of your source code are covered by your tests). Parsing the code using Esprima and node-falafel, and instrumenting the file by adding code tracking lines. Connecting to hooks in the test runner to output the coverage details after the tests have been completed. A Grunt plugin has been created to allow you to use Blanket like a "traditional" code coverage tool (creating instrumented copies of physical files, as opposed to live-instrumenting). Runs the QUnit-based Blanket report headlessly using PhantomJS. Results are displayed on the console, and the task will cause Grunt to fail if any of your configured coverage thresholds are not met.
|
About
Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
Professional users interested in a solution offering scientific graphics and a GUI library for Python
|
Audience
Developers seeking a solution to manage their code tracking processes and statistics
|
Audience
Engineers and data scientists requiring a solution to manage and improve their machine learning research
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationPyQtGraph
www.pyqtgraph.org
|
Company InformationBlanket.js
github.com/alex-seville/blanket
|
Company Informationscikit-learn
United States
scikit-learn.org/stable/
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
Categories |
||||
Integrations
Axis LMS
DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
JSON
JavaScript
Keepsake
MLJAR Studio
|
Integrations
Axis LMS
DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
JSON
JavaScript
Keepsake
MLJAR Studio
|
Integrations
Axis LMS
DagsHub
Databricks Data Intelligence Platform
Flower
Guild AI
Intel Tiber AI Studio
JSON
JavaScript
Keepsake
MLJAR Studio
|
||||
|
|
|
|