About
DataMelt (or "DMelt") is an environment for numeric computation, data analysis, data mining, computational statistics, and data visualization. DataMelt can be used to plot functions and data in 2D and 3D, perform statistical tests, data mining, numeric computations, function minimization, linear algebra, solving systems of linear and differential equations. Linear, non-linear and symbolic regression are also available. Neural networks and various data-manipulation methods are integrated using Java API. Elements of symbolic computations using Octave/Matlab scripting are supported.
DataMelt is a computational environment for Java platform. It can be used with different programming languages on different operating systems. Unlike other statistical programs, it is not limited to a single programming language. This software combines the world's most-popular enterprise language, Java, with the most popular scripting language used in data science, such as Jython (Python), Groovy, JRuby.
|
About
Open source machine learning and data visualization. Build data analysis workflows visually, with a large, diverse toolbox. Perform simple data analysis with clever data visualization. Explore statistical distributions, box plots and scatter plots, or dive deeper with decision trees, hierarchical clustering, heatmaps, MDS and linear projections. Even your multidimensional data can become sensible in 2D, especially with clever attribute ranking and selections. Interactive data exploration for rapid qualitative analysis with clean visualizations. Graphic user interface allows you to focus on exploratory data analysis instead of coding, while clever defaults make fast prototyping of a data analysis workflow extremely easy. Place widgets on the canvas, connect them, load your datasets and harvest the insight! When teaching data mining, we like to illustrate rather than only explain. And Orange is great at that.
|
About
jsoup is a Java library that simplifies working with real-world HTML and XML. It offers an easy-to-use API for URL fetching, data parsing, extraction, and manipulation using DOM API methods, CSS, and XPath selectors. jsoup implements the WHATWG HTML5 specification and parses HTML to the same DOM as modern browsers. With jsoup, you can scrape and parse HTML from a URL, file, or string; find and extract data using DOM traversal or CSS selectors; manipulate HTML elements, attributes, and text; clean user-submitted content against a safelist to prevent XSS attacks; and output tidy HTML. jsoup is designed to deal with all varieties of HTML found in the wild, from pristine and validating to invalid tag-soup, creating a sensible parse tree. For example, you can fetch the Wikipedia homepage, parse it to a DOM, and select the headlines from the "In the news" section into a list of elements.
|
About
python-sql is a library to write SQL queries in a pythonic way. Simple selects, select with where condition. Select with join or select with multiple joins. Select with group_by and select with output name. Select with order_by, or select with sub-select. Select on other schema and insert query with default values. Insert query with values, and insert query with query. Update query with values. Update query with where condition. Update query with from the list. Delete query with where condition, and delete query with sub-query. Provides limit style, qmark style, and numeric style.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
scientists, students
|
Audience
Organizations interested in an open source machine learning and data visualization tool
|
Audience
Java developers in search of a tool to parse, extract, and manipulate data from HTML and XML documents
|
Audience
Developers searching for a solution offering a library to write SQL queries
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
$0
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationjWork.ORG
Founded: 2005
United States
datamelt.org
|
Company InformationUniversity of Ljubljana
Slovenia
orange.biolab.si
|
Company Informationjsoup
jsoup.org
|
Company InformationPython Software Foundation
United States
pypi.org/project/python-sql/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
|
|||||
|
|
|
|
||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Artificial Intelligence Features
Chatbot
For eCommerce
For Healthcare
For Sales
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Data Analysis Features
Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics
Data Mining Features
Data Extraction
Data Visualization
Fraud Detection
Linked Data Management
Machine Learning
Predictive Modeling
Semantic Search
Statistical Analysis
Text Mining
Data Visualization Features
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Statistical Analysis Features
Analytics
Association Discovery
Compliance Tracking
File Management
File Storage
Forecasting
Multivariate Analysis
Regression Analysis
Statistical Process Control
Statistical Simulation
Survival Analysis
Time Series
Visualization
|
Data Visualization Features
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
|
|||||
Integrations
Apache NetBeans
CSS
Domino Enterprise MLOps Platform
Eclipse BIRT
GitHub
HTML
Python
|
Integrations
Apache NetBeans
CSS
Domino Enterprise MLOps Platform
Eclipse BIRT
GitHub
HTML
Python
|
Integrations
Apache NetBeans
CSS
Domino Enterprise MLOps Platform
Eclipse BIRT
GitHub
HTML
Python
|
Integrations
Apache NetBeans
CSS
Domino Enterprise MLOps Platform
Eclipse BIRT
GitHub
HTML
Python
|
|||
|
|
|
|
|