About
Ludwig is a low-code framework for building custom AI models like LLMs and other deep neural networks. Build custom models with ease: a declarative YAML configuration file is all you need to train a state-of-the-art LLM on your data. Support for multi-task and multi-modality learning. Comprehensive config validation detects invalid parameter combinations and prevents runtime failures. Optimized for scale and efficiency: automatic batch size selection, distributed training (DDP, DeepSpeed), parameter efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and larger-than-memory datasets. Expert level control: retain full control of your models down to the activation functions. Support for hyperparameter optimization, explainability, and rich metric visualizations. Modular and extensible: experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
|
About
Neural Designer is a powerful software tool for developing and deploying machine learning models. It provides a user-friendly interface that allows users to build, train, and evaluate neural networks without requiring extensive programming knowledge.
With a wide range of features and algorithms, Neural Designer simplifies the entire machine learning workflow, from data preprocessing to model optimization. In addition, it supports various data types, including numerical, categorical, and text, making it versatile for domains.
Additionally, Neural Designer offers automatic model selection and hyperparameter optimization, enabling users to find the best model for their data with minimal effort.
Finally, its intuitive visualizations and comprehensive reports facilitate interpreting and understanding the model's performance.
|
About
Develop on your laptop and then scale the same Python code elastically across hundreds of nodes or GPUs on any cloud, with no changes. Ray translates existing Python concepts to the distributed setting, allowing any serial application to be easily parallelized with minimal code changes. Easily scale compute-heavy machine learning workloads like deep learning, model serving, and hyperparameter tuning with a strong ecosystem of distributed libraries. Scale existing workloads (for eg. Pytorch) on Ray with minimal effort by tapping into integrations. Native Ray libraries, such as Ray Tune and Ray Serve, lower the effort to scale the most compute-intensive machine learning workloads, such as hyperparameter tuning, training deep learning models, and reinforcement learning. For example, get started with distributed hyperparameter tuning in just 10 lines of code. Creating distributed apps is hard. Ray handles all aspects of distributed execution.
|
About
Wing Python IDE was designed from the ground up for Python, to bring you a more productive development experience. Type less and let Wing worry about the details. Get immediate feedback by writing your Python code interactively in the live runtime. Easily navigate code and documentation. Avoid common errors and find problems early with assistance from Wing's deep Python code analysis. Keep code clean with smart refactoring and code quality inspection. Debug any Python code. Inspect debug data and try out bug fixes interactively without restarting your app. Work locally or on a remote host, VM, or container. Wingware's 21 years of Python IDE experience bring you a more Pythonic development environment. Wing was designed from the ground up for Python, written in Python, and is extensible with Python. So you can be more productive.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Developers interested in a low-code framework to build custom AI models like LLMs and other deep neural networks
|
Audience
Analytics professionals, data scientists, researchers, universities
|
Audience
ML and AI Engineers, Software Developers
|
Audience
Python developers seeking a tool to build applications
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
$2495/year (per user)
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationUber AI
Founded: 2016
United States
ludwig.ai/latest/
|
Company InformationArtelnics
Founded: 2014
Spain
www.neuraldesigner.com
|
Company InformationAnyscale
Founded: 2019
United States
ray.io
|
Company InformationWingware
Founded: 1999
United States
wingware.com
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
|
|
||||
|
|
|
|||||
|
|
|
|
||||
Categories |
Categories |
Categories |
Categories |
|||
Artificial Intelligence Features
Chatbot
For eCommerce
For Healthcare
For Sales
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Big Data Features
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning Features
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Predictive Analytics Features
AI / Machine Learning
Benchmarking
Data Blending
Data Mining
Demand Forecasting
For Education
For Healthcare
Modeling & Simulation
Sentiment Analysis
|
Application Development Features
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development
|
|||||
Integrations
Aim
Alpaca
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Azure Kubernetes Service (AKS)
Eclipse IDE
Emacs
Feast
|
Integrations
Aim
Alpaca
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Azure Kubernetes Service (AKS)
Eclipse IDE
Emacs
Feast
|
Integrations
Aim
Alpaca
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Azure Kubernetes Service (AKS)
Eclipse IDE
Emacs
Feast
|
Integrations
Aim
Alpaca
Amazon EC2 Trn2 Instances
Amazon SageMaker
Amazon Web Services (AWS)
Apache Airflow
Azure Kubernetes Service (AKS)
Eclipse IDE
Emacs
Feast
|
|||
|
|
|
|
|