Related Products
|
||||||
About
Switch between command and editor modes with a single keystroke. Navigate over cells with arrow keys. Use all of the standard Jupyter shortcuts. Enjoy fully interactive outputs – right under the cell. When editing code cells, enjoy smart code completion, on-the-fly error checking and quick-fixes, easy navigation, and much more. Work with local Jupyter notebooks or connect easily to remote Jupyter, JupyterHub, or JupyterLab servers right from the IDE. Run Python scripts or arbitrary expressions interactively in a Python Console. See the outputs and the state of variables in real-time. Split Python scripts into code cells with the #%% separator and run them individually as you would in a Jupyter notebook. Browse DataFrames and visualizations right in place via interactive controls. All popular Python scientific libraries are supported, including Plotly, Bokeh, Altair, ipywidgets, and others.
|
About
Project Jupyter exists to develop open-source software, open-standards, and services for interactive computing across dozens of programming languages. JupyterLab is a web-based interactive development environment for Jupyter notebooks, code, and data. JupyterLab is flexible, configure and arrange the user interface to support a wide range of workflows in data science, scientific computing, and machine learning. JupyterLab is extensible and modular, write plugins that add new components and integrate with existing ones. The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include, data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more. Jupyter supports over 40 programming languages, including Python, R, Julia, and Scala.
|
About
Scikit-learn provides simple and efficient tools for predictive data analysis. Scikit-learn is a robust, open source machine learning library for the Python programming language, designed to provide simple and efficient tools for data analysis and modeling. Built on the foundations of popular scientific libraries like NumPy, SciPy, and Matplotlib, scikit-learn offers a wide range of supervised and unsupervised learning algorithms, making it an essential toolkit for data scientists, machine learning engineers, and researchers. The library is organized into a consistent and flexible framework, where various components can be combined and customized to suit specific needs. This modularity makes it easy for users to build complex pipelines, automate repetitive tasks, and integrate scikit-learn into larger machine-learning workflows. Additionally, the library’s emphasis on interoperability ensures that it works seamlessly with other Python libraries, facilitating smooth data processing.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
Developers and data science professionals
|
Audience
Developers searching for a solution to develop open-source software, open-standards, and services for interactive computing
|
Audience
Engineers and data scientists requiring a solution to manage and improve their machine learning research
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
||||
Pricing
$229
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationJetBrains
Founded: 2000
Czech Republic
www.jetbrains.com/dataspell/
|
Company InformationJupyter
Founded: 2014
jupyter.org
|
Company Informationscikit-learn
United States
scikit-learn.org/stable/
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
|
|||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categories |
||||
Integrations
Python
Amazon Q Developer
Apache Spark
Azure Marketplace
Baidu AI Cloud Machine Learning (BML)
CSS
Conda
DagsHub
Docker
Fosfor Decision Cloud
|
Integrations
Python
Amazon Q Developer
Apache Spark
Azure Marketplace
Baidu AI Cloud Machine Learning (BML)
CSS
Conda
DagsHub
Docker
Fosfor Decision Cloud
|
Integrations
Python
Amazon Q Developer
Apache Spark
Azure Marketplace
Baidu AI Cloud Machine Learning (BML)
CSS
Conda
DagsHub
Docker
Fosfor Decision Cloud
|
||||
|
|
|
|