About
Graph Engine (GE) is a distributed in-memory data processing engine, underpinned by a strongly-typed RAM store and a general distributed computation engine. The distributed RAM store provides a globally addressable high-performance key-value store over a cluster of machines. Through the RAM store, GE enables the fast random data access power over a large distributed data set. The capability of fast data exploration and distributed parallel computing makes GE a natural large graph processing platform. GE supports both low-latency online query processing and high-throughput offline analytics on billion-node large graphs. Schema does matter when we need to process data efficiently. Strongly-typed data modeling is crucial for compact data storage, fast data access, and clear data semantics. GE is good at managing billions of run-time objects of varied sizes. One byte counts as the number of objects goes large. GE provides fast memory allocation and reallocation with high memory ratios.
|
About
HyperGraphDB is a general purpose, open-source data storage mechanism based on a powerful knowledge management formalism known as directed hypergraphs. While a persistent memory model designed mostly for knowledge management, AI and semantic web projects, it can also be used as an embedded object-oriented database for Java projects of all sizes. Or a graph database, or a (non-SQL) relational database. HyperGraphDB is a storage framework based on generalized hypergraphs as its underlying data model. The unit of storage is a tuple made up of 0 or more other tuples. Each such tuple is called an atom. One could think of the data model as relational where higher-order, n-ary relationships are allowed or as graph-oriented where edges can point to an arbitrary set of nodes and other edges. Each atom has an arbitrary, strongly-typed value associated with it. The type system managing those values is embedded as a hypergraph and customizable from the ground up.
|
About
Neo4j’s graph data platform is purpose-built to leverage not only data but also data relationships. Using Neo4j, developers build intelligent applications that traverse today's large, interconnected datasets in real time. Powered by a native graph storage and processing engine, Neo4j’s graph database delivers an intuitive, flexible and secure database for unique, actionable insights.
|
About
python-sql is a library to write SQL queries in a pythonic way. Simple selects, select with where condition. Select with join or select with multiple joins. Select with group_by and select with output name. Select with order_by, or select with sub-select. Select on other schema and insert query with default values. Insert query with values, and insert query with query. Update query with values. Update query with where condition. Update query with from the list. Delete query with where condition, and delete query with sub-query. Provides limit style, qmark style, and numeric style.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Companies and developers looking for a distributed in-memory data processing engine solution
|
Audience
Anyone who needs an open-source data storage framework based on generalized hypergraphs
|
Audience
Companies of all sizes
|
Audience
Developers searching for a solution offering a library to write SQL queries
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationMicrosoft
Founded: 1975
United States
www.graphengine.io
|
Company InformationKobrix Software
Founded: 2015
United States
hypergraphdb.org
|
Company InformationNeo4j
Founded: 2007
United States
neo4j.com
|
Company InformationPython Software Foundation
United States
pypi.org/project/python-sql/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
|
|
||||
|
|
||||||
|
|
|
|
|
|||
Categories |
Categories |
Categories |
Categories |
|||
Data Visualization Features
Analytics
Content Management
Dashboard Creation
Filtered Views
OLAP
Relational Display
Simulation Models
Visual Discovery
NoSQL Database Features
Auto-sharding
Automatic Database Replication
Data Model Flexibility
Deployment Flexibility
Dynamic Schemas
Integrated Caching
Multi-Model
Performance Management
Security Management
|
||||||
Integrations
Assure Security
AtomicJar
Azure Marketplace
Cake AI
CloudTDMS
Cognee
Domino Enterprise MLOps Platform
FF4J
Grails
Graphlytic
|
Integrations
Assure Security
AtomicJar
Azure Marketplace
Cake AI
CloudTDMS
Cognee
Domino Enterprise MLOps Platform
FF4J
Grails
Graphlytic
|
Integrations
Assure Security
AtomicJar
Azure Marketplace
Cake AI
CloudTDMS
Cognee
Domino Enterprise MLOps Platform
FF4J
Grails
Graphlytic
|
Integrations
Assure Security
AtomicJar
Azure Marketplace
Cake AI
CloudTDMS
Cognee
Domino Enterprise MLOps Platform
FF4J
Grails
Graphlytic
|
|||
|
|
|
|
|