About
Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications. The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
|
About
Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
|
About
The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. Whether you're new to programming or an experienced developer, it's easy to learn and use Python. Python can be easy to pick up whether you're a first-time programmer or you're experienced with other languages. The following pages are a useful first step to get on your way to writing programs with Python! The community hosts conferences and meetups to collaborate on code, and much more. Python's documentation will help you along the way, and the mailing lists will keep you in touch. The Python Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python's standard library and the community-contributed modules allow for endless possibilities.
|
About
The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
AI teams seeking a solution for generating high-quality, multimodal embeddings that enhance search accuracy and contextual understanding
|
Audience
Machine learning practitioners seeking a solution for topic modeling and semantic analysis of large text corpora
|
Audience
Developers interested in a beautiful but advanced programming language
|
Audience
Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
$0.47 per image
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationCohere
Founded: 2019
Canada
cohere.com/embed
|
Company InformationRadim Řehůřek
Founded: 2009
Czech Republic
radimrehurek.com/gensim/
|
Company InformationPython
Founded: 1991
www.python.org
|
Company InformationTensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|
||||
|
|
|
|
|
|||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Integrations
Ably
Bright Data
ConTEXT Editor
Devika
Fuzzbuzz
GPT-5 thinking
Grok 4 Heavy
Hacker AI
Llama 3.3
ManagePrompt
|
Integrations
Ably
Bright Data
ConTEXT Editor
Devika
Fuzzbuzz
GPT-5 thinking
Grok 4 Heavy
Hacker AI
Llama 3.3
ManagePrompt
|
Integrations
Ably
Bright Data
ConTEXT Editor
Devika
Fuzzbuzz
GPT-5 thinking
Grok 4 Heavy
Hacker AI
Llama 3.3
ManagePrompt
|
Integrations
Ably
Bright Data
ConTEXT Editor
Devika
Fuzzbuzz
GPT-5 thinking
Grok 4 Heavy
Hacker AI
Llama 3.3
ManagePrompt
|
|||
|
|
|
|
|