About
DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
|
About
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
|
About
The VLFeat open source library implements popular computer vision algorithms specializing in image understanding and local features extraction and matching. Algorithms include Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, large scale SVM training, and many others. It is written in C for efficiency and compatibility, with interfaces in MATLAB for ease of use, and detailed documentation throughout. It supports Windows, Mac OS X, and Linux. MatConvNet is a MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications. It is simple, efficient, and can run and learn state-of-the-art CNNs. Many pre-trained CNNs for image classification, segmentation, face recognition, and text detection are available.
|
About
The core of extensible programming is defining functions. Python allows mandatory and optional arguments, keyword arguments, and even arbitrary argument lists. Whether you're new to programming or an experienced developer, it's easy to learn and use Python. Python can be easy to pick up whether you're a first-time programmer or you're experienced with other languages. The following pages are a useful first step to get on your way to writing programs with Python! The community hosts conferences and meetups to collaborate on code, and much more. Python's documentation will help you along the way, and the mailing lists will keep you in touch. The Python Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python's standard library and the community-contributed modules allow for endless possibilities.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Researchers, developers and professionals requiring an open-source, distributed, deep learning library for the JVM
|
Audience
Developers interested in an deep learning API solution to minimize the number of user actions required for common use cases
|
Audience
Anyone in need of a deep learning software
|
Audience
Developers interested in a beautiful but advanced programming language
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationDeeplearning4j
Founded: 2019
Japan
deeplearning4j.org
|
Company InformationKeras
United States
keras.io
|
Company InformationVLFeat
United States
www.vlfeat.org/matconvnet/
|
Company InformationPython
Founded: 1991
www.python.org
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
||||||
|
|
|
|
|
|||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
|||||
Integrations
APITemplate.io
Automata LINQ
Better Stack
CodeFactor
Codeaid
Metatext
Noma
Nuon
Posit
PromptIDE
|
Integrations
APITemplate.io
Automata LINQ
Better Stack
CodeFactor
Codeaid
Metatext
Noma
Nuon
Posit
PromptIDE
|
Integrations
APITemplate.io
Automata LINQ
Better Stack
CodeFactor
Codeaid
Metatext
Noma
Nuon
Posit
PromptIDE
|
Integrations
APITemplate.io
Automata LINQ
Better Stack
CodeFactor
Codeaid
Metatext
Noma
Nuon
Posit
PromptIDE
|
|||
|
|
|
|
|