About
It supports high-performance training on AWS Trainium-based Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances. For model deployment, it supports high-performance and low-latency inference on AWS Inferentia-based Amazon EC2 Inf1 instances and AWS Inferentia2-based Amazon EC2 Inf2 instances. With Neuron, you can use popular frameworks, such as TensorFlow and PyTorch, and optimally train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal code changes and without tie-in to vendor-specific solutions. AWS Neuron SDK, which supports Inferentia and Trainium accelerators, is natively integrated with PyTorch and TensorFlow. This integration ensures that you can continue using your existing workflows in these popular frameworks and get started with only a few lines of code changes. For distributed model training, the Neuron SDK supports libraries, such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP).
|
About
DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training.
DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU.
DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
|
About
A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
|
About
Wing Python IDE was designed from the ground up for Python, to bring you a more productive development experience. Type less and let Wing worry about the details. Get immediate feedback by writing your Python code interactively in the live runtime. Easily navigate code and documentation. Avoid common errors and find problems early with assistance from Wing's deep Python code analysis. Keep code clean with smart refactoring and code quality inspection. Debug any Python code. Inspect debug data and try out bug fixes interactively without restarting your app. Work locally or on a remote host, VM, or container. Wingware's 21 years of Python IDE experience bring you a more Pythonic development environment. Wing was designed from the ground up for Python, written in Python, and is extensible with Python. So you can be more productive.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Organizations in need of an SDK solution with a compiler, runtime, and profiling tools that unlocks high-performance and cost-effective deep learning acceleration
|
Audience
Deep learning model developers
|
Audience
Developers and researchers requiring an open-source deep learning framework for research prototyping and production
|
Audience
Python developers seeking a tool to build applications
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationAmazon Web Services
Founded: 2006
United States
aws.amazon.com/machine-learning/neuron/
|
Company InformationMicrosoft
Founded: 1975
United States
www.deepspeed.ai/
|
Company InformationThe Apache Software Foundation
Founded: 1999
United States
mxnet.apache.org
|
Company InformationWingware
Founded: 1999
United States
wingware.com
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|
||||
|
|
|
|
||||
|
|
|
|
|
|||
|
|
||||||
Categories |
Categories |
Categories |
Categories |
|||
Application Development Features
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development
|
||||||
Integrations
AWS Deep Learning AMIs
AWS Trainium
Amazon EC2 Capacity Blocks for ML
Amazon EC2 UltraClusters
Amazon Elastic Inference
Amazon SageMaker
Amazon SageMaker Model Building
Amazon Web Services (AWS)
Eclipse IDE
Flask
|
Integrations
AWS Deep Learning AMIs
AWS Trainium
Amazon EC2 Capacity Blocks for ML
Amazon EC2 UltraClusters
Amazon Elastic Inference
Amazon SageMaker
Amazon SageMaker Model Building
Amazon Web Services (AWS)
Eclipse IDE
Flask
|
Integrations
AWS Deep Learning AMIs
AWS Trainium
Amazon EC2 Capacity Blocks for ML
Amazon EC2 UltraClusters
Amazon Elastic Inference
Amazon SageMaker
Amazon SageMaker Model Building
Amazon Web Services (AWS)
Eclipse IDE
Flask
|
Integrations
AWS Deep Learning AMIs
AWS Trainium
Amazon EC2 Capacity Blocks for ML
Amazon EC2 UltraClusters
Amazon Elastic Inference
Amazon SageMaker
Amazon SageMaker Model Building
Amazon Web Services (AWS)
Eclipse IDE
Flask
|
|||
|
|
|
|
|