Deci

Deci

Deci AI

About

ConvNetJS is a Javascript library for training deep learning models (neural networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. The library allows you to formulate and solve neural networks in Javascript, and was originally written by @karpathy. However, the library has since been extended by contributions from the community and more are warmly welcome. The fastest way to obtain the library in a plug-and-play way if you don't care about developing is through this link to convnet-min.js, which contains the minified library. Alternatively, you can also choose to download the latest release of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create a bare-bones index.html file in some folder and copy build/convnet-min.js to the same folder.

About

Easily build, optimize, and deploy fast & accurate models with Deci’s deep learning development platform powered by Neural Architecture Search. Instantly achieve accuracy & runtime performance that outperform SoTA models for any use case and inference hardware. Reach production faster with automated tools. No more endless iterations and dozens of different libraries. Enable new use cases on resource-constrained devices or cut up to 80% of your cloud compute costs. Automatically find accurate & fast architectures tailored for your application, hardware and performance targets with Deci’s NAS based AutoNAC engine. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings. Automatically compile and quantize your models using best-of-breed compilers and quickly evaluate different production settings.

About

DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.

About

Simple, fast, safe, and compiled. For developing maintainable software. Simple language for building maintainable programs. You can learn the entire language by going through the documentation over a weekend, and in most cases, there's only one way to do something. This results in simple, readable, and maintainable code. This results in simple, readable, and maintainable code. Despite being simple, V gives a lot of power to the developer and can be used in pretty much every field, including systems programming, webdev, gamedev, GUI, mobile, science, embedded, tooling, etc. V is very similar to Go. If you know Go, you already know 80% of V. Bounds checking, No undefined values, no variable shadowing, immutable variables by default, immutable structs by default, option/result and mandatory error checks, sum types, generics, and immutable function args by default, mutable args have to be marked on call.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Developers, professionals and researchers seeking a solution for training deep learning models

Audience

Deep Learning acceleration platform for developers wanting to build, optimize, and deploy ultra-fast models on any hardware

Audience

Researchers, developers and professionals requiring an open-source, distributed, deep learning library for the JVM

Audience

Developers interested in a language for building maintainable programs

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

Screenshots and Videos

Screenshots and Videos

Pricing

No information available.
Free Version
Free Trial

Pricing

No information available.
Free Version
Free Trial

Pricing

No information available.
Free Version
Free Trial

Pricing

Free
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

ConvNetJS
cs.stanford.edu/people/karpathy/convnetjs/

Company Information

Deci AI
Founded: 2019
Israel
deci.ai/platform/

Company Information

Deeplearning4j
Founded: 2019
Japan
deeplearning4j.org

Company Information

V Programming Language
United States
vlang.io

Alternatives

Alternatives

Alternatives

MXNet

MXNet

The Apache Software Foundation

Alternatives

Swift

Swift

Apple
Neural Designer

Neural Designer

Artelnics
Neural Designer

Neural Designer

Artelnics
Zig

Zig

Zig Software Foundation

Categories

Categories

Categories

Categories

Integrations

Apache Spark
C
Hadoop
Helix Editor
JavaScript
Lapce
Qwen3-Omni

Integrations

Apache Spark
C
Hadoop
Helix Editor
JavaScript
Lapce
Qwen3-Omni

Integrations

Apache Spark
C
Hadoop
Helix Editor
JavaScript
Lapce
Qwen3-Omni

Integrations

Apache Spark
C
Hadoop
Helix Editor
JavaScript
Lapce
Qwen3-Omni
Claim ConvNetJS and update features and information
Claim ConvNetJS and update features and information
Claim Deci and update features and information
Claim Deci and update features and information
Claim Deeplearning4j and update features and information
Claim Deeplearning4j and update features and information
Claim V Programming Language and update features and information
Claim V Programming Language and update features and information