About
Powerful data engineering workflows, without the infrastructure headaches. Complex streaming, scheduling, and data backfill pipelines, are all defined in simple, composable Python. Make ETL a thing of the past, fetch all of your data in real-time, no matter how complex. Incorporate deep learning and LLMs into decisions alongside structured business data. Make better predictions with fresher data, don’t pay vendors to pre-fetch data you don’t use, and query data just in time for online predictions. Experiment in Jupyter, then deploy to production. Prevent train-serve skew and create new data workflows in milliseconds. Instantly monitor all of your data workflows in real-time; track usage, and data quality effortlessly. Know everything you computed and data replay anything. Integrate with the tools you already use and deploy to your own infrastructure. Decide and enforce withdrawal limits with custom hold times.
|
About
Powerful and affordable RPA platform. Use the flexibility of Python, the convenience of low code, and the potential of AI for intelligent automation. Python RPA is an easy-to-use platform for developing and managing bots in Python. The capabilities of Python make the platform an effective and powerful tool for automating business processes. Enterprise-grade orchestrator for managing Python scripts and low-code projects. Basic Python knowledge is enough to start your automation journey. Stay ahead with instant notifications and a status management board. Uninterrupted flow of process execution, keeping things running smoothly. Ensure secured and managed user access. Keep your credentials secured and ensure activities are being logged. Use any library or framework for creating your project. Develop your Python automation in any open-source Python development environment.
|
About
dbt helps data teams transform raw data into trusted, analysis-ready datasets faster. With dbt, data analysts and data engineers can collaborate on version-controlled SQL models, enforce testing and documentation standards, lean on detailed metadata to troubleshoot and optimize pipelines, and deploy transformations reliably at scale. Built on modern software engineering best practices, dbt brings transparency and governance to every step of the data transformation workflow.
Thousands of companies, from startups to Fortune 500 enterprises, rely on dbt to improve data quality and trust as well as drive efficiencies and reduce costs as they deliver AI-ready data across their organization. Whether you’re scaling data operations or just getting started, dbt empowers your team to move from raw data to actionable analytics with confidence.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
Engineers and developers in need of a data platform to incorporate deep learning and LLMs into their decisions
|
Audience
Enterprises interested in a tool to manage their business processes and automate routine tasks
|
Audience
SQL users looking for a ETL solution to engineer data transformations
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
||||
Pricing
Free
Free Version
Free Trial
|
Pricing
$275 per month
Free Version
Free Trial
|
Pricing
$100 per user/ month
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationChalk
United States
www.chalk.ai/
|
Company InformationPython RPA
Founded: 2019
Kazakhstan
pythonrpa.org
|
Company Informationdbt Labs
Founded: 2016
United States
www.getdbt.com
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
||||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categoriesdbt powers the transformation layer of modern data pipelines. Once data has been ingested into a warehouse or lakehouse, dbt enables teams to clean, model, and document it so it’s ready for analytics and AI. With dbt, teams can: - Transform raw data at scale with SQL and Jinja. - Orchestrate pipelines with built-in dependency management and scheduling. - Ensure trust with automated testing and continuous integration. - Visualize lineage across models and columns for faster impact analysis. By embedding software engineering practices into pipeline development, dbt helps data teams build reliable, production-grade pipelines to accelerate time to insight, and deliver AI-ready data. dbt brings rigor and scalability to data preparation by enabling teams to clean, transform, and structure raw data directly in the warehouse. Instead of siloed spreadsheets or manual workflows, dbt uses SQL and software engineering best practices to make data preparation reliable, repeatable, and collaborative. With dbt, teams can: - Clean and standardize data with reusable, version-controlled models. - Apply business logic consistently across all datasets. - Validate outputs through automated tests before data is exposed to analysts. - Document and share context so every prepared dataset comes with lineage and definitions. By treating data preparation as code, dbt ensures that prepared datasets aren’t just quick fixes — they’re trusted, governed, and production-ready assets that scale with the business. dbt modernizes the “T” in ETL: Transformation. Instead of relying on legacy pipelines or black-box transformations, dbt empowers data teams to build, test, and document transformations directly inside the data warehouse or lakehouse. With dbt, teams can: - Transform raw data into analytics-ready models using SQL and Jinja. - Ensure reliability with built-in testing, version control, and CI/CD. - Standardize workflows across teams with reusable models and shared documentation. - Leverage modern platforms like Snowflake, Databricks, BigQuery, and Redshift for scalable transformation. By focusing on the transformation layer, dbt helps organizations shorten pipeline development cycles, reduce data debt, and deliver trusted insights faster — complementing ingestion and loading tools in a modern ELT stack. |
||||
Big Data Features
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Data Lineage Features
Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View
Data Preparation Features
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
ETL Features
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
|
||||||
Integrations
Azure Marketplace
Braight
DataOps.live
Datadog
Datakin
Docker
GPT-4
Google Cloud BigQuery
Google Cloud Platform
Lightdash
|
Integrations
Azure Marketplace
Braight
DataOps.live
Datadog
Datakin
Docker
GPT-4
Google Cloud BigQuery
Google Cloud Platform
Lightdash
|
Integrations
Azure Marketplace
Braight
DataOps.live
Datadog
Datakin
Docker
GPT-4
Google Cloud BigQuery
Google Cloud Platform
Lightdash
|
||||
|
|
|