About
Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
|
About
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. Keras is the most used deep learning framework among top-5 winning teams on Kaggle. Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
|
About
Transition seamlessly between eager and graph modes with TorchScript, and accelerate the path to production with TorchServe. Scalable distributed training and performance optimization in research and production is enabled by the torch-distributed backend. A rich ecosystem of tools and libraries extends PyTorch and supports development in computer vision, NLP and more. PyTorch is well supported on major cloud platforms, providing frictionless development and easy scaling. Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, 1.10 builds that are generated nightly. Please ensure that you have met the prerequisites (e.g., numpy), depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies.
|
About
Simple, fast, safe, and compiled. For developing maintainable software. Simple language for building maintainable programs. You can learn the entire language by going through the documentation over a weekend, and in most cases, there's only one way to do something. This results in simple, readable, and maintainable code. This results in simple, readable, and maintainable code. Despite being simple, V gives a lot of power to the developer and can be used in pretty much every field, including systems programming, webdev, gamedev, GUI, mobile, science, embedded, tooling, etc. V is very similar to Go. If you know Go, you already know 80% of V. Bounds checking, No undefined values, no variable shadowing, immutable variables by default, immutable structs by default, option/result and mandatory error checks, sum types, generics, and immutable function args by default, mutable args have to be marked on call.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Anyone looking for an open-source deep learning framework with expression, speed and modularity
|
Audience
Developers interested in an deep learning API solution to minimize the number of user actions required for common use cases
|
Audience
Researchers in need of an open source machine learning solution to accelerate research prototyping and production deployment
|
Audience
Developers interested in a language for building maintainable programs
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationBAIR
United States
caffe.berkeleyvision.org
|
Company InformationKeras
United States
keras.io
|
Company InformationPyTorch
Founded: 2016
pytorch.org
|
Company InformationV Programming Language
United States
vlang.io
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|
||||
|
|
|
|||||
|
|
||||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
Deep Learning Features
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
|
|||||
Integrations
Akira AI
Apolo
Cerebrium
CodeQwen
DagsHub
Database Mart
Dataoorts GPU Cloud
EdgeCortix
GPUEater
Google AI Edge
|
Integrations
Akira AI
Apolo
Cerebrium
CodeQwen
DagsHub
Database Mart
Dataoorts GPU Cloud
EdgeCortix
GPUEater
Google AI Edge
|
Integrations
Akira AI
Apolo
Cerebrium
CodeQwen
DagsHub
Database Mart
Dataoorts GPU Cloud
EdgeCortix
GPUEater
Google AI Edge
|
Integrations
Akira AI
Apolo
Cerebrium
CodeQwen
DagsHub
Database Mart
Dataoorts GPU Cloud
EdgeCortix
GPUEater
Google AI Edge
|
|||
|
|
|
|
|