About
Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
|
About
Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
|
About
Dask is open source and freely available. It is developed in coordination with other community projects like NumPy, pandas, and scikit-learn. Dask uses existing Python APIs and data structures to make it easy to switch between NumPy, pandas, scikit-learn to their Dask-powered equivalents. Dask's schedulers scale to thousand-node clusters and its algorithms have been tested on some of the largest supercomputers in the world. But you don't need a massive cluster to get started. Dask ships with schedulers designed for use on personal machines. Many people use Dask today to scale computations on their laptop, using multiple cores for computation and their disk for excess storage. Dask exposes lower-level APIs letting you build custom systems for in-house applications. This helps open source leaders parallelize their own packages and helps business leaders scale custom business logic.
|
About
python-sql is a library to write SQL queries in a pythonic way. Simple selects, select with where condition. Select with join or select with multiple joins. Select with group_by and select with output name. Select with order_by, or select with sub-select. Select on other schema and insert query with default values. Insert query with values, and insert query with query. Update query with values. Update query with where condition. Update query with from the list. Delete query with where condition, and delete query with sub-query. Provides limit style, qmark style, and numeric style.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Organizations that want a unified analytics engine for large-scale data processing
|
Audience
Companies in need of a big data solution
|
Audience
Enterprises requiring a solution that provides advanced parallelism for analytics, enabling performance at scale
|
Audience
Developers searching for a solution offering a library to write SQL queries
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationApache Software Foundation
Founded: 1999
United States
spark.apache.org
|
Company InformationMicrosoft
Founded: 1975
United States
azure.microsoft.com/en-us/services/databricks/
|
Company InformationDask
Founded: 2019
dask.org
|
Company InformationPython Software Foundation
United States
pypi.org/project/python-sql/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|
||||
|
|
||||||
|
|
||||||
|
|
||||||
Categories |
Categories |
Categories |
Categories |
|||
Streaming Analytics Features
Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards
|
||||||
Integrations
Amundsen
Apache Hive
Apache Mesos
Apache Phoenix
Daft
Deequ
Eureka
IBM watsonx.data
Kestra
LOGIQ
|
Integrations
Amundsen
Apache Hive
Apache Mesos
Apache Phoenix
Daft
Deequ
Eureka
IBM watsonx.data
Kestra
LOGIQ
|
Integrations
Amundsen
Apache Hive
Apache Mesos
Apache Phoenix
Daft
Deequ
Eureka
IBM watsonx.data
Kestra
LOGIQ
|
Integrations
Amundsen
Apache Hive
Apache Mesos
Apache Phoenix
Daft
Deequ
Eureka
IBM watsonx.data
Kestra
LOGIQ
|
|||
|
|
|
|
|