About
Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark achieves high performance for both batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and a physical execution engine. Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it interactively from the Scala, Python, R, and SQL shells. Spark powers a stack of libraries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application. Spark runs on Hadoop, Apache Mesos, Kubernetes, standalone, or in the cloud. It can access diverse data sources. You can run Spark using its standalone cluster mode, on EC2, on Hadoop YARN, on Mesos, or on Kubernetes. Access data in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other data sources.
|
About
Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn. Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
|
About
Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem.
|
About
Wing Python IDE was designed from the ground up for Python, to bring you a more productive development experience. Type less and let Wing worry about the details. Get immediate feedback by writing your Python code interactively in the live runtime. Easily navigate code and documentation. Avoid common errors and find problems early with assistance from Wing's deep Python code analysis. Keep code clean with smart refactoring and code quality inspection. Debug any Python code. Inspect debug data and try out bug fixes interactively without restarting your app. Work locally or on a remote host, VM, or container. Wingware's 21 years of Python IDE experience bring you a more Pythonic development environment. Wing was designed from the ground up for Python, written in Python, and is extensible with Python. So you can be more productive.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Organizations that want a unified analytics engine for large-scale data processing
|
Audience
Companies in need of a big data solution
|
Audience
Data scientists and engineers wanting a machine learning solution for efficient data processing and analysis within the Apache Spark framework
|
Audience
Python developers seeking a tool to build applications
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationApache Software Foundation
Founded: 1999
United States
spark.apache.org
|
Company InformationMicrosoft
Founded: 1975
United States
azure.microsoft.com/en-us/services/databricks/
|
Company InformationApache Software Foundation
Founded: 1995
United States
spark.apache.org/mllib/
|
Company InformationWingware
Founded: 1999
United States
wingware.com
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|
|
|||
|
|
|
|||||
|
|
|
|
||||
|
|
||||||
Categories |
Categories |
Categories |
Categories |
|||
Streaming Analytics Features
Data Enrichment
Data Wrangling / Data Prep
Multiple Data Source Support
Process Automation
Real-time Analysis / Reporting
Visualization Dashboards
|
Application Development Features
Access Controls/Permissions
Code Assistance
Code Refactoring
Collaboration Tools
Compatibility Testing
Data Modeling
Debugging
Deployment Management
Graphical User Interface
Mobile Development
No-Code
Reporting/Analytics
Software Development
Source Control
Testing Management
Version Control
Web App Development
|
|||||
Integrations
Amazon Web Services (AWS)
AnalyticsCreator
Apache Hive
Apache Kylin
Azure HDInsight
Dataiku
Hue
IBM watsonx.data
Jamba
Mercurial
|
Integrations
Amazon Web Services (AWS)
AnalyticsCreator
Apache Hive
Apache Kylin
Azure HDInsight
Dataiku
Hue
IBM watsonx.data
Jamba
Mercurial
|
Integrations
Amazon Web Services (AWS)
AnalyticsCreator
Apache Hive
Apache Kylin
Azure HDInsight
Dataiku
Hue
IBM watsonx.data
Jamba
Mercurial
|
Integrations
Amazon Web Services (AWS)
AnalyticsCreator
Apache Hive
Apache Kylin
Azure HDInsight
Dataiku
Hue
IBM watsonx.data
Jamba
Mercurial
|
|||
|
|
|
|
|