About
AWS Deep Learning AMIs (DLAMI) provides ML practitioners and researchers with a curated and secure set of frameworks, dependencies, and tools to accelerate deep learning in the cloud. Built for Amazon Linux and Ubuntu, Amazon Machine Images (AMIs) come preconfigured with TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, allowing you to quickly deploy and run these frameworks and tools at scale. Develop advanced ML models at scale to develop autonomous vehicle (AV) technology safely by validating models with millions of supported virtual tests. Accelerate the installation and configuration of AWS instances, and speed up experimentation and evaluation with up-to-date frameworks and libraries, including Hugging Face Transformers. Use advanced analytics, ML, and deep learning capabilities to identify trends and make predictions from raw, disparate health data.
|
About
DeepSpeed is an open source deep learning optimization library for PyTorch. It's designed to reduce computing power and memory use, and to train large distributed models with better parallelism on existing computer hardware. DeepSpeed is optimized for low latency, high throughput training.
DeepSpeed can train DL models with over a hundred billion parameters on the current generation of GPU clusters. It can also train up to 13 billion parameters in a single GPU.
DeepSpeed is developed by Microsoft and aims to offer distributed training for large-scale models. It's built on top of PyTorch, which specializes in data parallelism.
|
About
Accelerate your deep learning workload. Speed your time to value with AI model training and inference. With advancements in compute, algorithm and data access, enterprises are adopting deep learning more widely to extract and scale insight through speech recognition, natural language processing and image classification. Deep learning can interpret text, images, audio and video at scale, generating patterns for recommendation engines, sentiment analysis, financial risk modeling and anomaly detection. High computational power has been required to process neural networks due to the number of layers and the volumes of data to train the networks. Furthermore, businesses are struggling to show results from deep learning experiments implemented in silos.
|
About
python-sql is a library to write SQL queries in a pythonic way. Simple selects, select with where condition. Select with join or select with multiple joins. Select with group_by and select with output name. Select with order_by, or select with sub-select. Select on other schema and insert query with default values. Insert query with values, and insert query with query. Update query with values. Update query with where condition. Update query with from the list. Delete query with where condition, and delete query with sub-query. Provides limit style, qmark style, and numeric style.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Deep Learning solution that helps developers quickly build scalable, secure deep learning applications
|
Audience
Deep learning model developers
|
Audience
Organizations that need a deep learning platform
|
Audience
Developers searching for a solution offering a library to write SQL queries
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationAmazon
Founded: 2006
United States
aws.amazon.com/machine-learning/amis/
|
Company InformationMicrosoft
Founded: 1975
United States
www.deepspeed.ai/
|
Company InformationIBM
Founded: 1911
United States
www.ibm.com/products/deep-learning-platform
|
Company InformationPython Software Foundation
United States
pypi.org/project/python-sql/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
||||||
|
|
|
|||||
|
|
||||||
|
|
|
|
||||
Categories |
Categories |
Categories |
Categories |
|||
Machine Learning Features
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
|
||||||
Integrations
AUSIS
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Axolotl
|
Integrations
AUSIS
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Axolotl
|
Integrations
AUSIS
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Axolotl
|
Integrations
AUSIS
AWS Marketplace
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Axolotl
|
|||
|
|
|
|
|