Menu

[r13978]: / branches / gsoc2012-doxygen / Doc / Manual / CSharp.html  Maximize  Restore  History

Download this file

2507 lines (2088 with data), 85.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>SWIG and C#</title>
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body bgcolor="#FFFFFF">
<H1><a name="CSharp"></a>19 SWIG and C#</H1>
<!-- INDEX -->
<div class="sectiontoc">
<ul>
<li><a href="#CSharp_introduction">Introduction</a>
<li><a href="#CSharp_differences_java">Differences to the Java module</a>
<li><a href="#CSharp_void_pointers">Void pointers</a>
<li><a href="#CSharp_arrays">C# Arrays</a>
<ul>
<li><a href="#CSharp_arrays_swig_library">The SWIG C arrays library</a>
<li><a href="#CSharp_arrays_pinvoke_default_array_marshalling">Managed arrays using P/Invoke default array marshalling</a>
<li><a href="#CSharp_arrays_pinning">Managed arrays using pinning</a>
</ul>
<li><a href="#CSharp_exceptions">C# Exceptions</a>
<ul>
<li><a href="#CSharp_exception_example_check_typemap">C# exception example using "check" typemap</a>
<li><a href="#CSharp_exception_example_percent_exception">C# exception example using %exception</a>
<li><a href="#CSharp_exception_example_exception_specifications">C# exception example using exception specifications</a>
<li><a href="#CSharp_custom_application_exception">Custom C# ApplicationException example</a>
</ul>
<li><a href="#CSharp_directors">C# Directors</a>
<ul>
<li><a href="#CSharp_directors_example">Directors example</a>
<li><a href="#CSharp_directors_implementation">Directors implementation</a>
<li><a href="#CSharp_director_caveats">Director caveats</a>
</ul>
<li><a href="#CSharp_multiple_modules">Multiples modules</a>
<li><a href="#CSharp_typemap_examples">C# Typemap examples</a>
<ul>
<li><a href="#CSharp_memory_management_member_variables">Memory management when returning references to member variables</a>
<li><a href="#CSharp_memory_management_objects">Memory management for objects passed to the C++ layer</a>
<li><a href="#CSharp_date_marshalling">Date marshalling using the csin typemap and associated attributes</a>
<li><a href="#CSharp_date_properties">A date example demonstrating marshalling of C# properties</a>
<li><a href="#CSharp_partial_classes">Turning wrapped classes into partial classes</a>
<li><a href="#CSharp_extending_proxy_class">Extending proxy classes with additional C# code</a>
<li><a href="#CSharp_enum_underlying_type">Underlying type for enums</a>
</ul>
</ul>
</div>
<!-- INDEX -->
<H2><a name="CSharp_introduction"></a>19.1 Introduction</H2>
<p>
The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages.
The wrapper code implementation uses C# and the Platform Invoke (PInvoke) interface to access natively compiled C/C++ code.
The PInvoke interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and non-Microsoft platforms.
PInvoke is part of the ECMA/ISO C# specification.
It is also better suited for robust production environments due to the Managed C++ flaw called the
<a href="http://msdn.microsoft.com/en-us/library/aa290048(VS.71).aspx">Mixed DLL Loading Problem</a>.
SWIG C# works equally well on non-Microsoft operating systems such as Linux, Solaris and Apple Mac using
<a href="http://www.mono-project.com/Main_Page">Mono</a> and <a href="http://www.dotgnu.org/pnet.html">Portable.NET</a>.
</p>
<p>
To get the most out of this chapter an understanding of interop is required.
The <a href="http://msdn.microsoft.com">Microsoft Developer Network (MSDN)</a> has a good reference guide in a section titled "Interop Marshaling".
Monodoc, available from the Mono project, has a very useful section titled <a href="http://www.mono-project.com/Interop_with_Native_Libraries">Interop with native libraries</a>.
</p>
<H2><a name="CSharp_differences_java"></a>19.2 Differences to the Java module</H2>
<p>
The C# module is very similar to the Java module, so until some more complete documentation has been written,
please use the <a href="Java.html#Java">Java documentation</a> as a guide to using SWIG with C#.
The C# module has the same major SWIG features as the Java module.
The rest of this section should be read in conjunction with the Java documentation as it lists the main differences.
The most notable differences to Java are the following:
<ul>
<li>
When invoking SWIG use the <tt>-csharp</tt> command line option instead of <tt>-java</tt>.
</li>
<li>
The <tt>-nopgcpp</tt> command line option does not exist.
</li>
<li>
The <tt>-package</tt> command line option does not exist.
</li>
<li>
The <tt>-namespace &lt;name&gt;</tt> commandline option will generate all code into the namespace specified by <tt>&lt;name&gt;</tt>.
C# supports nested namespaces that are not lexically nested, so nested namespaces will of course also work. For example:
<tt>-namespace com.bloggs.widget</tt>, will generate code into C# namespaces:
<div class="code"><pre>
namespace com.bloggs.widget {
...
}
</pre></div>
Note that by default, the generated C# classes have no namespace and the module name is unrelated to namespaces. The module name is just like in Java and is merely used to name some of the generated classes.
</li>
<li>
The <a href="SWIGPlus.html#SWIGPlus_nspace">nspace feature</a> is also supported as described in this general section with a C# example.
Unlike Java which requires the use of the -package option when using the <tt>nspace</tt> feature, the -namespace option is not mandatory for C#.
</li>
<li>
The <tt>-dllimport &lt;name&gt;</tt> commandline option specifies the name of the DLL for the <tt>DllImport</tt> attribute for every PInvoke method. If this commandline option is not given, the <tt>DllImport</tt> DLL name is the same as the module name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the resulting code into a single DLL.
</li>
<li>
C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.
</li>
<li>
Global constants are generated into the module class. There is no constants interface.
</li>
<li>
There is no implementation for type unsafe enums - not deemed necessary.
</li>
<li>
The default enum wrapping approach is proper C# enums, not typesafe enums.
<br>
Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums.
This is because C# enum items must be initialised from a compile time constant.
If an enum item has an initialiser and the initialiser doesn't compile as C# code,
then the %csconstvalue directive must be used as %csconst(0) will have no effect.
If it was used, it would generate an illegal runtime initialisation via a PInvoke call.
</li>
<li>
C# doesn't support the notion of throws clauses.
Therefore there is no 'throws' typemap attribute support for adding exception classes to a throws clause.
Likewise there is no need for an equivalent to <tt>%javaexception</tt>.
In fact, throwing C# exceptions works quite differently, see <a href="CSharp.html#CSharp_exceptions">C# Exceptions</a> below.
</li>
<li>
The majority of the typemaps are in csharp.swg, not java.swg.
</li>
<li>
<p>Typemap equivalent names:</p>
<div class="code"><pre>
jni -&gt; ctype
jtype -&gt; imtype
jstype -&gt; cstype
javain -&gt; csin
javaout -&gt; csout
javadirectorin -&gt; csdirectorin
javadirectorout -&gt; csdirectorout
javainterfaces -&gt; csinterfaces and csinterfaces_derived
javabase -&gt; csbase
javaclassmodifiers -&gt; csclassmodifiers
javacode -&gt; cscode
javaimports -&gt; csimports
javabody -&gt; csbody
javafinalize -&gt; csfinalize
javadestruct -&gt; csdestruct
javadestruct_derived -&gt; csdestruct_derived
</pre></div>
</li>
<li>
<p>Typemap macros:</p>
<div class="code"><pre>
SWIG_JAVABODY_PROXY -&gt; SWIG_CSBODY_PROXY
SWIG_JAVABODY_TYPEWRAPPER -&gt; SWIG_CSBODY_TYPEWRAPPER
</pre></div>
</li>
<li>
<p>Additional typemaps:</p>
<div class="code"><pre>
csvarin C# code property set typemap
csvarout C# code property get typemap
csattributes C# attributes for attaching to proxy classes/enums
</pre></div>
</li>
<li>
<p>Feature equivalent names:</p>
<div class="code"><pre>
%javaconst -&gt; %csconst
%javaconstvalue -&gt; %csconstvalue
%javamethodmodifiers -&gt; %csmethodmodifiers
</pre></div>
</li>
<li>
<p>Pragma equivalent names:</p>
<div class="code"><pre>
%pragma(java) -&gt; %pragma(csharp)
jniclassbase -&gt; imclassbase
jniclassclassmodifiers -&gt; imclassclassmodifiers
jniclasscode -&gt; imclasscode
jniclassimports -&gt; imclassimports
jniclassinterfaces -&gt; imclassinterfaces
</pre></div>
</li>
<li>
<p>Special variable equivalent names:</p>
<div class="code"><pre>
$javaclassname -&gt; $csclassname
$&amp;javaclassname -&gt; $&amp;csclassname
$*javaclassname -&gt; $*csclassname
$javaclazzname -&gt; $csclazzname
$javainput -&gt; $csinput
$jnicall -&gt; $imcall
</pre></div>
</li>
<li>
<p>
Unlike the "javain" typemap, the "csin" typemap does not support the 'pgcpp' attribute as the C# module does not have a premature garbage collection prevention parameter.
The "csin" typemap supports additional optional attributes called 'cshin' and 'terminator'.
The 'cshin' attribute should contain the parameter type and name whenever a <a href="Java.html#Java_constructor_helper_function">constructor helper function</a> is generated due to the 'pre' or 'post' attributes.
The 'terminator' attribute normally just contains a closing brace for when the 'pre' attribute contains an opening brace, such as when a C# <tt>using</tt> or <tt>fixed</tt> block is started.
Note that 'pre', 'post', 'terminator' and 'cshin' attributes are not used for marshalling the property set.
Please see the <a href="#CSharp_date_marshalling">Date marshalling example</a> and <a href="#CSharp_date_properties">Date marshalling of properties example</a> for further understanding of these "csin" applicable attributes.
</p>
</li>
<li>
<p>
Support for asymmetric type marshalling. The 'ctype', 'imtype' and 'cstype' typemaps support an optional <tt>out</tt> attribute which is used for output types.
If this typemap attribute is specified, then the type specified in the attribute is used for output types and
the type specified in the typemap itself is used for the input type.
If this typemap attribute is not specified, then the type used for both input and output is the type specified in the typemap.
An example shows that <tt>char *</tt> could be marshalled in different ways,
</p>
<div class="code">
<pre>
%typemap(imtype, out="IntPtr") char * "string"
char * function(char *);
</pre>
</div>
<p>
The output type is thus IntPtr and the input type is string. The resulting intermediary C# code is:
</p>
<div class="code">
<pre>
public static extern IntPtr function(string jarg1);
</pre>
</div>
</li>
<li>
<p>
Support for type attributes.
The 'imtype' and 'cstype' typemaps can have an optional <tt>inattributes</tt> and <tt>outattributes</tt> typemap attribute.
The 'imtype' typemap can also have an optional <tt>directorinattributes</tt> and <tt>directoroutattributes</tt>
typemap attribute which attaches to director delegates, an implementation detail of directors, see <a href="#CSharp_directors_implementation">directors implementation</a>.
Note that there are C# attributes and typemap attributes, don't get confused between the two!!
The C# attributes specified in these typemap attributes are generated wherever the type is used in the C# wrappers.
These can be used to specify any C# attribute associated with a C/C++ type, but are more typically used for the C# <tt>MarshalAs</tt> attribute.
For example:
</p>
<div class="code">
<pre>
%typemap(imtype,
inattributes="[MarshalAs(UnmanagedType.LPStr)]",
outattributes="[return: MarshalAs(UnmanagedType.LPStr)]") const char * "String"
const char * GetMsg() {}
void SetMsg(const char *msg) {}
</pre>
</div>
<p>
The intermediary class will then have the marshalling as specified by everything in the 'imtype' typemap:
</p>
<div class="code">
<pre>
class examplePINVOKE {
...
[DllImport("example", EntryPoint="CSharp_GetMsg")]
[return: MarshalAs(UnmanagedType.LPStr)]
public static extern String GetMsg();
[DllImport("example", EntryPoint="CSharp_SetMsg")]
public static extern void SetMsg([MarshalAs(UnmanagedType.LPStr)]String jarg1);
}
</pre>
</div>
<p>
Note that the <tt>DllImport</tt> attribute is always generated, irrespective of any additional attributes specified.
</p>
<p>
These attributes are associated with the C/C++ parameter type or return type, which is subtly different to
the attribute features and typemaps covered next.
Note that all these different C# attributes can be combined so that a method has more than one attribute.
</p>
<p>
The <tt>directorinattributes</tt> and <tt>directoroutattributes</tt> typemap attribute are attached to the delegates in the director class, for example, the SwigDelegateBase_0
</p>
</li>
<li>
<p>
Support for attaching C# attributes to wrapped methods, variables and enum values.
This is done using the <tt>%csattributes</tt> feature, see <a href="Customization.html#Customization_features">%feature directives</a>.
Note that C# attributes are attached to proxy classes and enums using the <tt>csattributes</tt> typemap.
For example, imagine we have a custom attribute class, <tt>ThreadSafeAttribute</tt>, for labelling thread safety.
The following SWIG code shows how to attach this C# attribute to some methods and the class declaration itself:
</p>
<div class="code">
<pre>
%typemap(csattributes) AClass "[ThreadSafe]"
%csattributes AClass::AClass(double d) "[ThreadSafe(false)]"
%csattributes AClass::AMethod() "[ThreadSafe(true)]"
%inline %{
class AClass {
public:
AClass(double a) {}
void AMethod() {}
};
%}
</pre>
</div>
<p>
will generate a C# proxy class:
</p>
<div class="code">
<pre>
[ThreadSafe]
public class AClass : IDisposable {
...
[ThreadSafe(false)]
public AClass(double a) ...
[ThreadSafe(true)]
public void AMethod() ...
}
</pre>
</div>
<p>
If C# attributes need adding to the <tt>set</tt> or <tt>get</tt> part of C# properties, when wrapping C/C++ variables,
they can be added using the 'csvarin' and 'csvarout' typemaps respectively.
Note that the type used for the property is specified in the 'cstype' typemap.
If the 'out' attribute exists in this typemap, then the type used is from the 'out' attribute.
</p>
<p>
An example for attaching attributes to the enum and enum values is shown below.
</p>
<div class="code">
<pre>
%typemap(csattributes) Couleur "[System.ComponentModel.Description(\"Colours\")]"
%csattributes Rouge "[System.ComponentModel.Description(\"Red\")]"
%csattributes Vert "[System.ComponentModel.Description(\"Green\")]"
%inline %{
enum Couleur { Rouge, Orange, Vert };
%}
</pre>
</div>
<p>
which will result in the following C# enum:
</p>
<div class="code">
<pre>
[System.ComponentModel.Description("Colours")]
public enum Couleur {
[System.ComponentModel.Description("Red")]
Rouge,
Orange,
[System.ComponentModel.Description("Green")]
Vert
}
</pre>
</div>
</li>
<li>
<p>
The intermediary classname has <tt>PINVOKE</tt> appended after the module name instead of <tt>JNI</tt>, for example <tt>modulenamePINVOKE</tt>.
</p>
</li>
<li>
<p>
The <tt>%csmethodmodifiers</tt> feature can also be applied to variables as well as methods.
In addition to the default <tt>public</tt> modifier that SWIG generates when <tt>%csmethodmodifiers</tt> is not
specified, the feature will also replace the <tt>virtual</tt>/<tt>new</tt>/<tt>override</tt> modifiers that SWIG thinks is appropriate.
This feature is useful for some obscure cases where SWIG might get the <tt>virtual</tt>/<tt>new</tt>/<tt>override</tt> modifiers incorrect, for example with multiple inheritance.
</p>
</li>
<li>
<a name="CSharp_module_directive"></a>
<p>
The name of the intermediary class can be changed from its default, that is, the module name with PINVOKE appended after it.
The module directive attribute <tt>imclassname</tt> is used to achieve this:
</p>
<div class="code">
<pre>
%module (imclassname="name") modulename
</pre>
</div>
<p>
If <tt>name</tt> is the same as <tt>modulename</tt> then the module class name gets changed
from <tt>modulename</tt> to <tt>modulenameModule</tt>.
</p>
</li>
<li>
There is no additional 'premature garbage collection prevention parameter' as the marshalling of the <tt>HandleRef</tt> object
takes care of ensuring a reference to the proxy class is held until the unmanaged call completed.
</li>
</ul>
<p>
<b><tt>$dllimport</tt></b><br>
This is a C# only special variable that can be used in typemaps, pragmas, features etc.
The special variable will get translated into the value specified by the <tt>-dllimport</tt> commandline option
if specified, otherwise it is equivalent to the <b>$module</b> special variable.
</p>
<p>
<b><tt>$imclassname</tt></b><br>
This special variable expands to the intermediary class name. For C# this is usually the same as '$modulePINVOKE' ('$moduleJNI' for Java),
unless the imclassname attribute is specified in the <a href="CSharp.html#CSharp_module_directive">%module directive</a>.
</p>
<p>
The directory <tt>Examples/csharp</tt> has a number of simple examples.
Visual Studio .NET 2003 solution and project files are available for compiling with the Microsoft .NET C# compiler on Windows.
If your SWIG installation went well on a Unix environment and your C# compiler was detected, you should be able to type <tt>make</tt> in each example directory,
then <tt>ilrun runme.exe</tt> (Portable.NET C# compiler) or <tt>mono runme.exe</tt> (Mono C# compiler) to run the examples.
Windows users can also get the examples working using a
<a href="http://www.cygwin.com">Cygwin</a> or <a href="http://www.mingw.org">MinGW</a> environment for automatic configuration of the example makefiles.
Any one of the three C# compilers (Portable.NET, Mono or Microsoft) can be detected from within a Cygwin or Mingw environment if installed in your path.
<H2><a name="CSharp_void_pointers"></a>19.3 Void pointers</H2>
<p>
By default SWIG treats <tt>void *</tt> as any other pointer and hence marshalls it as a type wrapper class called <tt>SWIGTYPE_p_void</tt>.
If you want to marshall with the .NET <tt>System.IntPtr</tt> type instead, there is a simple set of named typemaps called
<tt>void *VOID_INT_PTR</tt> that can be used.
They can be applied like any other named typemaps:
</p>
<div class="code">
<pre>
%apply void *VOID_INT_PTR { void * }
void * f(void *v);
</pre>
</div>
<H2><a name="CSharp_arrays"></a>19.4 C# Arrays</H2>
<p>
There are various ways to pass arrays from C# to C/C++.
The default wrapping treats arrays as pointers and as such simple type wrapper classes are generated,
eg <tt>SWIGTYPE_p_int</tt> when wrapping the C type <tt>int []</tt> or <tt>int *</tt>.
This gives a rather restricted use of the underlying unmanaged code and the most practical way to use arrays is to enhance or customise
with one of the following three approaches; namely the SWIG C arrays library, P/Invoke default array marshalling or
pinned arrays.
</p>
<H3><a name="CSharp_arrays_swig_library"></a>19.4.1 The SWIG C arrays library</H3>
<p>
The C arrays library keeps all the array memory in the unmanaged layer.
The library is available to all language modules and is documented in the <a href="Library.html#Library_carrays">carrays.i library</a> section.
Please refer to this section for details, but for convenience, the C# usage for the two examples outlined there is shown below.
</p>
<p>
For the <tt>%array_functions</tt> example, the equivalent usage would be:
</p>
<div class="code">
<pre>
SWIGTYPE_p_double a = example.new_doubleArray(10); // Create an array
for (int i=0; i&lt;10; i++)
example.doubleArray_setitem(a,i,2*i); // Set a value
example.print_array(a); // Pass to C
example.delete_doubleArray(a); // Destroy array
</pre>
</div>
<p>
and for the <tt>%array_class</tt> example, the equivalent usage would be:
</p>
<div class="code">
<pre>
doubleArray c = new doubleArray(10); // Create double[10]
for (int i=0; i&lt;10; i++)
c.setitem(i, 2*i); // Assign values
example.print_array(c.cast()); // Pass to C
</pre>
</div>
<H3><a name="CSharp_arrays_pinvoke_default_array_marshalling"></a>19.4.2 Managed arrays using P/Invoke default array marshalling</H3>
<p>
In the P/Invoke default marshalling scheme, one needs to designate whether the invoked function will treat a managed
array parameter as input, output, or both. When the function is invoked, the CLR allocates a separate chunk of memory as big as the given managed array,
which is automatically released at the end of the function call. If the array parameter is marked as being input, the content of the managed array is copied
into this buffer when the call is made. Correspondingly, if the array parameter is marked as being output, the contents of the reserved buffer are copied
back into the managed array after the call returns. A pointer to this buffer
is passed to the native function.
</p>
<p>
The reason for allocating a separate buffer is to leave the CLR free to relocate the managed array object
during garbage collection. If the overhead caused by the copying is causing a significant performance penalty, consider pinning the managed array and
passing a direct reference as described in the next section.
</p>
<p>
For more information on the subject, see the
<a href="http://msdn.microsoft.com/en-us/library/z6cfh6e6(VS.80).aspx">Default Marshaling for Arrays</a> article
on MSDN.
</p>
<p>
The P/Invoke default marshalling is supported by the <tt>arrays_csharp.i</tt> library via the INPUT, OUTPUT and INOUT typemaps.
Let's look at some example usage. Consider the following C function:
</p>
<div class="code">
<pre>
void myArrayCopy(int *sourceArray, int *targetArray, int nitems);
</pre>
</div>
<p>
We can now instruct SWIG to use the default marshalling typemaps by
</p>
<div class="code">
<pre>
%include "arrays_csharp.i"
%apply int INPUT[] {int *sourceArray}
%apply int OUTPUT[] {int *targetArray}
</pre>
</div>
<p>
As a result, we get the following method in the module class:
</p>
<div class="code">
<pre>
public static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
examplePINVOKE.myArrayCopy(sourceArray, targetArray, nitems);
}
</pre>
</div>
<p>
If we look beneath the surface at the corresponding intermediary class code, we see
that SWIG has generated code that uses attributes
(from the System.Runtime.InteropServices namespace) to tell the CLR to use default
marshalling for the arrays:
</p>
<div class="code">
<pre>
[DllImport("example", EntryPoint="CSharp_myArrayCopy")]
public static extern void myArrayCopy([In, MarshalAs(UnmanagedType.LPArray)]int[] jarg1,
[Out, MarshalAs(UnmanagedType.LPArray)]int[] jarg2,
int jarg3);
</pre>
</div>
<p>
As an example of passing an inout array (i.e. the target function will both read from and
write to the array), consider this C function that swaps a given number of elements
in the given arrays:
</p>
<div class="code">
<pre>
void myArraySwap(int *array1, int *array2, int nitems);
</pre>
</div>
<p>
Now, we can instruct SWIG to wrap this by
</p>
<div class="code">
<pre>
%include "arrays_csharp.i"
%apply int INOUT[] {int *array1}
%apply int INOUT[] {int *array2}
</pre>
</div>
<p>
This results in the module class method
</p>
<div class="code">
<pre>
public static void myArraySwap(int[] array1, int[] array2, int nitems) {
examplePINVOKE.myArraySwap(array1, array2, nitems);
}
</pre>
</div>
<p>
and intermediary class method
</p>
<div class="code">
<pre>
[DllImport("example", EntryPoint="CSharp_myArraySwap")]
public static extern void myArraySwap([In, Out, MarshalAs(UnmanagedType.LPArray)]int[] jarg1,
[In, Out, MarshalAs(UnmanagedType.LPArray)]int[] jarg2,
int jarg3);
</pre>
</div>
<H3><a name="CSharp_arrays_pinning"></a>19.4.3 Managed arrays using pinning</H3>
<p>
It is also possible to pin a given array in memory (i.e. fix its location in memory), obtain a
direct pointer to it, and then pass this pointer to the wrapped C/C++ function. This approach
involves no copying, but it makes the work of the garbage collector harder as
the managed array object can not be relocated before the fix on the array is released. You should avoid
fixing arrays in memory in cases where the control may re-enter the managed side via a callback and/or
another thread may produce enough garbage to trigger garbage collection.
</p>
<p>
For more information, see the <a href="http://msdn.microsoft.com/en-us/library/f58wzh21(VS.80).aspx">fixed statement</a> in the C# language reference.
</p>
<p>
Now let's look at an example using pinning, thus avoiding the CLR making copies
of the arrays passed as parameters. The <tt>arrays_csharp.i</tt> library file again provides the required support via the <tt>FIXED</tt> typemaps.
Let's use the same function from the previous section:
</p>
<div class="code">
<pre>
void myArrayCopy(int *sourceArray, int *targetArray, int nitems);
</pre>
</div>
<p>
We now need to declare the module class method unsafe, as we are using pointers:
</p>
<div class="code">
<pre>
%csmethodmodifiers myArrayCopy "public unsafe";
</pre>
</div>
<p>
Apply the appropriate typemaps to the array parameters:
</p>
<div class="code">
<pre>
%include "arrays_csharp.i"
%apply int FIXED[] {int *sourceArray}
%apply int FIXED[] {int *targetArray}
</pre>
</div>
<p>
Notice that there is no need for separate in, out or inout typemaps as is the
case when using P/Invoke default marshalling.
</p>
<p>
As a result, we get the following method in the module class:
</p>
<div class="code">
<pre>
public unsafe static void myArrayCopy(int[] sourceArray, int[] targetArray, int nitems) {
fixed ( int *swig_ptrTo_sourceArray = sourceArray ) {
fixed ( int *swig_ptrTo_targetArray = targetArray ) {
{
examplePINVOKE.myArrayCopy((IntPtr)swig_ptrTo_sourceArray, (IntPtr)swig_ptrTo_targetArray,
nitems);
}
}
}
}
</pre>
</div>
<p>
On the method signature level the only difference to the version using P/Invoke default
marshalling is the "unsafe" quantifier, which is required because we are handling pointers.
</p>
<p>
Also the intermediary class method looks a little different from the default marshalling
example - the method is expecting an IntPtr as the parameter type.
</p>
<div class="code">
<pre>
[DllImport("example", EntryPoint="CSharp_myArrayCopy")]
public static extern void myArrayCopy(IntPtr jarg1, IntPtr jarg2, int jarg3);
</pre>
</div>
<H2><a name="CSharp_exceptions"></a>19.5 C# Exceptions</H2>
<p>
It is possible to throw a C# Exception from C/C++ code.
SWIG already provides the framework for throwing C# exceptions if it is able to detect that a C++ exception could be thrown.
Automatically detecting that a C++ exception could be thrown is only possible when a C++ exception specification is used,
see <a href="SWIGPlus.html#SWIGPlus_exception_specifications">Exception specifications</a>.
The <a href="Customization.html#Customization_exception">Exception handling with %exception</a> section details the <tt>%exception</tt> feature.
Customised code for handling exceptions with or without a C++ exception specification is possible and the details follow.
However anyone wishing to do this should be familiar with the contents of the sections referred to above.
</p>
<p>
Unfortunately a C# exception cannot simply be thrown from unmanaged code for a variety of reasons.
Most notably being that throwing a C# exception results in exceptions being thrown across the C PInvoke interface and C does not understand exceptions.
The design revolves around a C# exception being constructed and stored as a pending exception, to be thrown only when the unmanaged code has completed.
Implementing this is a tad involved and there are thus some unusual typemap constructs.
Some practical examples follow and they should be read in conjunction with the rest of this section.
</p>
<p>
First some details about the design that must be followed.
Each typemap or feature that generates <b>unmanaged code</b> supports an attribute called <tt>canthrow</tt>.
This is simply a flag which when set indicates that the code in the typemap/feature has code which might want to throw a C# exception.
The code in the typemap/feature can then raise a C# exception by calling one of the C functions,
<tt>SWIG_CSharpSetPendingException()</tt> or <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>.
When called, the function makes a callback into the managed world via a delegate.
The callback creates and stores an exception ready for throwing when the unmanaged code has finished.
The typemap/feature unmanaged code is then expected to force an immediate return from the unmanaged wrapper function,
so that the pending managed exception can then be thrown.
The support code has been carefully designed to be efficient as well as thread-safe.
However to achieve the goal of efficiency requires some optional code generation in the <b>managed code</b> typemaps.
Code to check for pending exceptions is generated if and only if the unmanaged code has code to set a pending exception,
that is if the <tt>canthrow</tt> attribute is set.
The optional managed code is generated using the <tt>excode</tt> typemap attribute and <tt>$excode</tt> special variable in the relevant managed code typemaps.
Simply, if any relevant unmanaged code has the <tt>canthrow</tt> attribute set, then any occurrences of <tt>$excode</tt>
is replaced with the code in the <tt>excode</tt> attribute.
If the <tt>canthrow</tt> attribute is not set, then any occurrences of <tt>$excode</tt> are replaced with nothing.
</p>
<p>
The prototypes for the <tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt> functions are
</p>
<div class="code">
<pre>
static void SWIG_CSharpSetPendingException(SWIG_CSharpExceptionCodes code,
const char *msg);
static void SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpExceptionArgumentCodes code,
const char *msg,
const char *param_name);
</pre>
</div>
<p>
The first parameter defines which .NET exceptions can be thrown:
</p>
<div class="code">
<pre>
typedef enum {
SWIG_CSharpApplicationException,
SWIG_CSharpArithmeticException,
SWIG_CSharpDivideByZeroException,
SWIG_CSharpIndexOutOfRangeException,
SWIG_CSharpInvalidCastException,
SWIG_CSharpInvalidOperationException,
SWIG_CSharpIOException,
SWIG_CSharpNullReferenceException,
SWIG_CSharpOutOfMemoryException,
SWIG_CSharpOverflowException,
SWIG_CSharpSystemException
} SWIG_CSharpExceptionCodes;
typedef enum {
SWIG_CSharpArgumentException,
SWIG_CSharpArgumentNullException,
SWIG_CSharpArgumentOutOfRangeException,
} SWIG_CSharpExceptionArgumentCodes;
</pre>
</div>
<p>
where, for example, <tt>SWIG_CSharpApplicationException</tt> corresponds to the .NET exception, <tt>ApplicationException</tt>.
The <tt>msg</tt> and <tt>param_name</tt> parameters contain the C# exception message and parameter name associated with the exception.
</p>
<p>
The <tt>%exception</tt> feature in C# has the <tt>canthrow</tt> attribute set.
The <tt>%csnothrowexception</tt> feature is like <tt>%exception</tt>, but it does not have the <tt>canthrow</tt> attribute
set so should only be used when a C# exception is not created.
</p>
<H3><a name="CSharp_exception_example_check_typemap"></a>19.5.1 C# exception example using "check" typemap</H3>
<p>
Lets say we have the following simple C++ method:
</p>
<div class="code">
<pre>
void positivesonly(int number);
</pre>
</div>
<p>
and we want to check that the input <tt>number</tt> is always positive and if not throw a C# <tt>ArgumentOutOfRangeException</tt>.
The "check" typemap is designed for checking input parameters. Below you will see the <tt>canthrow</tt> attribute is set because
the code contains a call to <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>. The full example follows:
</p>
<div class="code">
<pre>
%module example
%typemap(check, canthrow=1) int number %{
if ($1 &lt; 0) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted", "number");
return $null;
}
// SWIGEXCODE is a macro used by many other csout typemaps
%define SWIGEXCODE
"\n if ($modulePINVOKE.SWIGPendingException.Pending)"
"\n throw $modulePINVOKE.SWIGPendingException.Retrieve();"
%enddef
%typemap(csout, excode=SWIGEXCODE) void {
$imcall;$excode
}
%}
%inline %{
void positivesonly(int number) {
}
%}
</pre>
</div>
<p>
When the following C# code is executed:
</p>
<div class="code">
<pre>
public class runme {
static void Main() {
example.positivesonly(-1);
}
}
</pre>
</div>
<p>
The exception is thrown:
</p>
<div class="code">
<pre>
Unhandled Exception: System.ArgumentOutOfRangeException: only positive numbers accepted
Parameter name: number
in &lt;0x00034&gt; example:positivesonly (int)
in &lt;0x0000c&gt; runme:Main ()
</pre>
</div>
<p>
Now let's analyse the generated code to gain a fuller understanding of the typemaps. The generated unmanaged C++ code is:
</p>
<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_positivesonly(int jarg1) {
int arg1 ;
arg1 = (int)jarg1;
if (arg1 &lt; 0) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted", "number");
return ;
}
positivesonly(arg1);
}
</pre>
</div>
<p>
This largely comes from the "check" typemap. The managed code in the module class is:
</p>
<div class="code">
<pre>
public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly(number);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}
}
</pre>
</div>
<p>
This comes largely from the "csout" typemap.
</p>
<p>
The "csout" typemap is the same as the default void "csout" typemap so is not strictly necessary for the example.
However, it is shown to demonstrate what managed output code typemaps should contain,
that is, a <tt>$excode</tt> special variable and an <tt>excode</tt> attribute.
Also note that <tt>$excode</tt> is expanded into the code held in the <tt>excode</tt> attribute.
The <tt>$imcall</tt> as always expands into <tt>examplePINVOKE.positivesonly(number)</tt>.
The exception support code in the intermediary class, <tt>examplePINVOKE</tt>, is not shown, but is contained within the inner classes,
<tt>SWIGPendingException</tt> and <tt>SWIGExceptionHelper</tt> and is always generated.
These classes can be seen in any of the generated wrappers.
However, all that is required of a user is as demonstrated in the "csin" typemap above.
That is, is to check <tt>SWIGPendingException.Pending</tt> and to throw the exception returned by <tt>SWIGPendingException.Retrieve()</tt>.
</p>
<p>
If the "check" typemap did not exist, then
the following module class would instead be generated:
</p>
<div class="code">
<pre>
public class example {
public static void positivesonly(int number) {
examplePINVOKE.positivesonly(number);
}
}
</pre>
</div>
<p>
Here we see the pending exception checking code is omitted.
In fact, the code above would be generated if the <tt>canthrow</tt> attribute was not in the "check" typemap, such as:
</p>
<div class="code">
<pre>
%typemap(check) int number %{
if ($1 &lt; 0) {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentOutOfRangeException,
"only positive numbers accepted", "number");
return $null;
}
%}
</pre>
</div>
<p>
Note that if SWIG detects you have used <tt>SWIG_CSharpSetPendingException()</tt> or <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>
without setting the <tt>canthrow</tt> attribute you will get a warning message similar to
</p>
<div class="code">
<pre>
example.i:21: Warning 845: Unmanaged code contains a call to a SWIG_CSharpSetPendingException
method and C# code does not handle pending exceptions via the canthrow attribute.
</pre>
</div>
<p>
Actually it will issue this warning for any function beginning with <tt>SWIG_CSharpSetPendingException</tt>.
</P>
<H3><a name="CSharp_exception_example_percent_exception"></a>19.5.2 C# exception example using %exception</H3>
<p>
Let's consider a similar, but more common example that throws a C++ exception from within a wrapped function.
We can use <tt>%exception</tt> as mentioned in <a href="Customization.html#Customization_exception">Exception handling with %exception</a>.
</p>
<div class="code">
<pre>
%exception negativesonly(int value) %{
try {
$action
} catch (std::out_of_range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
}
%}
%inline %{
#include &lt;stdexcept&gt;
void negativesonly(int value) {
if (value &gt;= 0)
throw std::out_of_range("number should be negative");
}
%}
</pre>
</div>
<p>
The generated unmanaged code this time catches the C++ exception and converts it into a C# <tt>ApplicationException</tt>.
</p>
<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_negativesonly(int jarg1) {
int arg1 ;
arg1 = (int)jarg1;
try {
negativesonly(arg1);
} catch (std::out_of_range e) {
SWIG_CSharpSetPendingException(SWIG_CSharpApplicationException, e.what());
return ;
}
}
</pre>
</div>
<p>
The managed code generated does check for the pending exception as mentioned earlier as the C# version of <tt>%exception</tt> has the <tt>canthrow</tt> attribute set by default:
</p>
<div class="code">
<pre>
public static void negativesonly(int value) {
examplePINVOKE.negativesonly(value);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}
</pre>
</div>
<H3><a name="CSharp_exception_example_exception_specifications"></a>19.5.3 C# exception example using exception specifications</H3>
<p>
When C++ exception specifications are used, SWIG is able to detect that the method might throw an exception.
By default SWIG will automatically generate code to catch the exception and convert it into a managed <tt>ApplicationException</tt>,
as defined by the default "throws" typemaps.
The following example has a user supplied "throws" typemap which is used whenever an exception specification contains a <tt>std::out_of_range</tt>,
such as the <tt>evensonly</tt> method below.
</p>
<div class="code">
<pre>
%typemap(throws, canthrow=1) std::out_of_range {
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, $1.what(), NULL);
return $null;
}
%inline %{
#include &lt;stdexcept&gt;
void evensonly(int input) throw (std::out_of_range) {
if (input%2 != 0)
throw std::out_of_range("number is not even");
}
%}
</pre>
</div>
<p>
Note that the type for the throws typemap is the type in the exception specification.
SWIG generates a try catch block with the throws typemap code in the catch handler.
</p>
<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_evensonly(int jarg1) {
int arg1 ;
arg1 = (int)jarg1;
try {
evensonly(arg1);
}
catch(std::out_of_range &amp;_e) {
{
SWIG_CSharpSetPendingExceptionArgument(SWIG_CSharpArgumentException, (&amp;_e)-&gt;what(), NULL);
return ;
}
}
}
</pre>
</div>
<p>
Multiple catch handlers are generated should there be more than one exception specifications declared.
</p>
<H3><a name="CSharp_custom_application_exception"></a>19.5.4 Custom C# ApplicationException example</H3>
<p>
This example involves a user defined exception.
The conventional .NET exception handling approach is to create a custom <tt>ApplicationException</tt> and throw it in your application.
The goal in this example is to convert the STL <tt>std::out_of_range</tt> exception into one of these custom .NET exceptions.
</p>
<p>
The default exception handling is quite easy to use as the <tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt>
methods are provided by SWIG.
However, for a custom C# exception, the boiler plate code that supports these functions needs replicating.
In essence this consists of some C/C++ code and C# code.
The C/C++ code can be generated into the wrapper file using the <tt>%insert(runtime)</tt> directive and
the C# code can be generated into the intermediary class using the <tt>imclasscode</tt> pragma as follows:
</p>
<div class="code">
<pre>
%insert(runtime) %{
// Code to handle throwing of C# CustomApplicationException from C/C++ code.
// The equivalent delegate to the callback, CSharpExceptionCallback_t, is CustomExceptionDelegate
// and the equivalent customExceptionCallback instance is customDelegate
typedef void (SWIGSTDCALL* CSharpExceptionCallback_t)(const char *);
CSharpExceptionCallback_t customExceptionCallback = NULL;
extern "C" SWIGEXPORT
void SWIGSTDCALL CustomExceptionRegisterCallback(CSharpExceptionCallback_t customCallback) {
customExceptionCallback = customCallback;
}
// Note that SWIG detects any method calls named starting with
// SWIG_CSharpSetPendingException for warning 845
static void SWIG_CSharpSetPendingExceptionCustom(const char *msg) {
customExceptionCallback(msg);
}
%}
%pragma(csharp) imclasscode=%{
class CustomExceptionHelper {
// C# delegate for the C/C++ customExceptionCallback
public delegate void CustomExceptionDelegate(string message);
static CustomExceptionDelegate customDelegate =
new CustomExceptionDelegate(SetPendingCustomException);
[DllImport("$dllimport", EntryPoint="CustomExceptionRegisterCallback")]
public static extern
void CustomExceptionRegisterCallback(CustomExceptionDelegate customCallback);
static void SetPendingCustomException(string message) {
SWIGPendingException.Set(new CustomApplicationException(message));
}
static CustomExceptionHelper() {
CustomExceptionRegisterCallback(customDelegate);
}
}
static CustomExceptionHelper exceptionHelper = new CustomExceptionHelper();
%}
</pre>
</div>
<p>
The method stored in the C# delegate instance, <tt>customDelegate</tt> is what gets called by the C/C++ callback.
However, the equivalent to the C# delegate, that is the C/C++ callback, needs to be assigned before any unmanaged code is executed.
This is achieved by putting the initialisation code in the intermediary class.
Recall that the intermediary class contains all the PInvoke methods, so the static variables in the intermediary class will be initialised
before any of the PInvoke methods in this class are called.
The <tt>exceptionHelper</tt> static variable ensures the C/C++ callback is initialised with the value in <tt>customDelegate</tt> by calling
the <tt>CustomExceptionRegisterCallback</tt> method in the <tt>CustomExceptionHelper</tt> static constructor.
Once this has been done, unmanaged code can make callbacks into the managed world as <tt>customExceptionCallback</tt> will be initialised with a valid callback/delegate.
Any calls to <tt>SWIG_CSharpSetPendingExceptionCustom()</tt> will make the callback to create the pending exception in the same way that
<tt>SWIG_CSharpSetPendingException()</tt> and <tt>SWIG_CSharpSetPendingExceptionArgument()</tt> does.
In fact the method has been similarly named so that SWIG can issue the warning about missing <tt>canthrow</tt> attributes as discussed earlier.
It is an invaluable warning as it is easy to forget the <tt>canthrow</tt> attribute when writing typemaps/features.
</p>
<p>
The <tt>SWIGPendingException</tt> helper class is not shown, but is generated as an inner class into the intermediary class.
It stores the pending exception in Thread Local Storage so that the exception handling mechanism is thread safe.
</p>
<p>
The boiler plate code above must be used in addition to a handcrafted <tt>CustomApplicationException</tt>:
</p>
<div class="code">
<pre>
// Custom C# Exception
class CustomApplicationException : System.ApplicationException {
public CustomApplicationException(string message)
: base(message) {
}
}
</pre>
</div>
<p>
and the SWIG interface code:
</p>
<div class="code">
<pre>
%typemap(throws, canthrow=1) std::out_of_range {
SWIG_CSharpSetPendingExceptionCustom($1.what());
return $null;
}
%inline %{
void oddsonly(int input) throw (std::out_of_range) {
if (input%2 != 1)
throw std::out_of_range("number is not odd");
}
%}
</pre>
</div>
<p>
The "throws" typemap now simply calls our new <tt>SWIG_CSharpSetPendingExceptionCustom()</tt> function so that the exception can be caught, as such:
</p>
<div class="code">
<pre>
try {
example.oddsonly(2);
} catch (CustomApplicationException e) {
...
}
</pre>
</div>
<H2><a name="CSharp_directors"></a>19.6 C# Directors</H2>
<p>
The SWIG directors feature adds extra code to the generated C# proxy classes that enable these classes to be used in cross-language polymorphism.
Essentially, it enables unmanaged C++ code to call back into managed code for virtual methods so that a C# class can derive from a wrapped C++ class.
</p>
<p>
The following sections provide information on the C# director implementation and contain most of the information required to use the C# directors.
However, the <a href="Java.html#Java_directors">Java directors</a> section should also be read in order to gain more insight into directors.
</p>
<H3><a name="CSharp_directors_example"></a>19.6.1 Directors example</H3>
<p>
Imagine we are wrapping a C++ base class, <tt>Base</tt>, from which we would like to inherit in C#.
Such a class is shown below as well as another class, <tt>Caller</tt>, which calls the virtual method <tt>UIntMethod</tt>
from pure unmanaged C++ code.
</p>
<div class="code">
<pre>
// file: example.h
class Base {
public:
virtual ~Base() {}
virtual unsigned int UIntMethod(unsigned int x) {
std::cout &lt;&lt; "Base - UIntMethod(" &lt;&lt; x &lt;&lt; ")" &lt;&lt; std::endl;
return x;
}
virtual void BaseBoolMethod(const Base &amp;b, bool flag) {}
};
class Caller {
public:
Caller(): m_base(0) {}
~Caller() { delBase(); }
void set(Base *b) { delBase(); m_base = b; }
void reset() { m_base = 0; }
unsigned int UIntMethodCall(unsigned int x) { return m_base-&gt;UIntMethod(x); }
private:
Base *m_base;
void delBase() { delete m_base; m_base = 0; }
};
</pre>
</div>
<p>
The director feature is turned off by default and the following simple interface file shows how directors are enabled
for the class <tt>Base</tt>.
</p>
<div class="code">
<pre>
/* File : example.i */
%module(directors="1") example
%{
#include "example.h"
%}
%feature("director") Base;
%include "example.h"
</pre>
</div>
<p>
The following is a C# class inheriting from <tt>Base</tt>:
</p>
<div class="code">
<pre>
public class CSharpDerived : Base
{
public override uint UIntMethod(uint x)
{
Console.WriteLine("CSharpDerived - UIntMethod({0})", x);
return x;
}
}
</pre>
</div>
<p>
The <tt>Caller</tt> class can demonstrate the <tt>UIntMethod</tt> method being called from unmanaged code using the following C# code:
</p>
<div class="targetlang">
<pre>
public class runme
{
static void Main()
{
Caller myCaller = new Caller();
// Test pure C++ class
using (Base myBase = new Base())
{
makeCalls(myCaller, myBase);
}
// Test director / C# derived class
using (Base myBase = new CSharpDerived())
{
makeCalls(myCaller, myBase);
}
}
static void makeCalls(Caller myCaller, Base myBase)
{
myCaller.set(myBase);
myCaller.UIntMethodCall(123);
myCaller.reset();
}
}
</pre>
</div>
<p>
If the above is run, the output is then:
</p>
<div class="shell">
<pre>
Base - UIntMethod(123)
CSharpDerived - UIntMethod(123)
</pre>
</div>
<H3><a name="CSharp_directors_implementation"></a>19.6.2 Directors implementation</H3>
<p>
The previous section demonstrated a simple example where the virtual <tt>UIntMethod</tt> method was called from
C++ code, even when the overridden method is implemented in C#.
The intention of this section is to gain an insight into how the director feature works.
It shows the generated code for the two virtual methods, <tt>UIntMethod</tt> and <tt>BaseBoolMethod</tt>,
when the director feature is enabled for the <tt>Base</tt> class.
</p>
<p>
Below is the generated C# <tt>Base</tt> director class.
</p>
<div class="code">
<pre>
using System;
using System.Runtime.InteropServices;
public class Base : IDisposable {
private HandleRef swigCPtr;
protected bool swigCMemOwn;
internal Base(IntPtr cPtr, bool cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = new HandleRef(this, cPtr);
}
internal static HandleRef getCPtr(Base obj) {
return (obj == null) ? new HandleRef(null, IntPtr.Zero) : obj.swigCPtr;
}
~Base() {
Dispose();
}
public virtual void Dispose() {
lock(this) {
if(swigCPtr.Handle != IntPtr.Zero &amp;&amp; swigCMemOwn) {
swigCMemOwn = false;
examplePINVOKE.delete_Base(swigCPtr);
}
swigCPtr = new HandleRef(null, IntPtr.Zero);
GC.SuppressFinalize(this);
}
}
public virtual uint UIntMethod(uint x) {
uint ret = examplePINVOKE.Base_UIntMethod(swigCPtr, x);
return ret;
}
public virtual void BaseBoolMethod(Base b, bool flag) {
examplePINVOKE.Base_BaseBoolMethod(swigCPtr, Base.getCPtr(b), flag);
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}
public Base() : this(examplePINVOKE.new_Base(), true) {
SwigDirectorConnect();
}
private void SwigDirectorConnect() {
if (SwigDerivedClassHasMethod("UIntMethod", swigMethodTypes0))
swigDelegate0 = new SwigDelegateBase_0(SwigDirectorUIntMethod);
if (SwigDerivedClassHasMethod("BaseBoolMethod", swigMethodTypes1))
swigDelegate1 = new SwigDelegateBase_1(SwigDirectorBaseBoolMethod);
examplePINVOKE.Base_director_connect(swigCPtr, swigDelegate0, swigDelegate1);
}
private bool SwigDerivedClassHasMethod(string methodName, Type[] methodTypes) {
System.Reflection.MethodInfo methodInfo = this.GetType().GetMethod(methodName, methodTypes);
bool hasDerivedMethod = methodInfo.DeclaringType.IsSubclassOf(typeof(Base));
return hasDerivedMethod;
}
private uint SwigDirectorUIntMethod(uint x) {
return UIntMethod(x);
}
private void SwigDirectorBaseBoolMethod(IntPtr b, bool flag) {
BaseBoolMethod(new Base(b, false), flag);
}
internal delegate uint SwigDelegateBase_0(uint x);
internal delegate void SwigDelegateBase_1(IntPtr b, bool flag);
private SwigDelegateBase_0 swigDelegate0;
private SwigDelegateBase_1 swigDelegate1;
private static Type[] swigMethodTypes0 = new Type[] { typeof(uint) };
private static Type[] swigMethodTypes1 = new Type[] { typeof(Base), typeof(bool) };
}
</pre>
</div>
<p>
Everything from the <tt>SwigDirectorConnect()</tt> method and below is code that is only generated when
directors are enabled.
The design comprises a C# delegate being initialised for each virtual method on construction of the class.
Let's examine the <tt>BaseBoolMethod</tt>.
</p>
<p>
In the <tt>Base</tt> constructor a call is made to <tt>SwigDirectorConnect()</tt> which contains the initialisation code for all the virtual methods.
It uses a support method, <tt>SwigDerivedClassHasMethod()</tt>, which simply uses reflection to determine if the named method,
BaseBoolMethod, with the list of required parameter types, exists in a subclass.
If it does not exist, the delegate is not initialised as there is no need for unmanaged code to call back into managed C# code.
However, if there is an overridden method in any subclass, the delegate is required.
It is then initialised to the <tt>SwigDirectorBaseBoolMethod</tt> which in turn will call <tt>BaseBoolMethod</tt> if invoked.
The delegate is not initialised to the <tt>BaseBoolMethod</tt> directly as quite often types will need marshalling from the unmanaged type
to the managed type in which case an intermediary method (<tt>SwigDirectorBaseBoolMethod</tt>) is required for the marshalling.
In this case, the C# <tt>Base</tt> class needs to be created from the unmanaged <tt>IntPtr</tt> type.
</p>
<p>
The last thing that <tt>SwigDirectorConnect()</tt> does is to pass the delegates to the unmanaged code.
It calls the intermediary method <tt>Base_director_connect()</tt> which is really a call to the C function <tt>CSharp_Base_director_connect()</tt>.
This method simply maps each C# delegate onto a C function pointer.
</p>
<div class="code">
<pre>
SWIGEXPORT void SWIGSTDCALL CSharp_Base_director_connect(void *objarg,
SwigDirector_Base::SWIG_Callback0_t callback0,
SwigDirector_Base::SWIG_Callback1_t callback1) {
Base *obj = (Base *)objarg;
SwigDirector_Base *director = dynamic_cast&lt;SwigDirector_Base *&gt;(obj);
if (director) {
director-&gt;swig_connect_director(callback0, callback1);
}
}
class SwigDirector_Base : public Base, public Swig::Director {
public:
SwigDirector_Base();
virtual unsigned int UIntMethod(unsigned int x);
virtual ~SwigDirector_Base();
virtual void BaseBoolMethod(Base const &amp;b, bool flag);
typedef unsigned int (SWIGSTDCALL* SWIG_Callback0_t)(unsigned int);
typedef void (SWIGSTDCALL* SWIG_Callback1_t)(void *, unsigned int);
void swig_connect_director(SWIG_Callback0_t callbackUIntMethod,
SWIG_Callback1_t callbackBaseBoolMethod);
private:
SWIG_Callback0_t swig_callbackUIntMethod;
SWIG_Callback1_t swig_callbackBaseBoolMethod;
void swig_init_callbacks();
};
void SwigDirector_Base::swig_connect_director(SWIG_Callback0_t callbackUIntMethod,
SWIG_Callback1_t callbackBaseBoolMethod) {
swig_callbackUIntMethod = callbackUIntMethod;
swig_callbackBaseBoolMethod = callbackBaseBoolMethod;
}
</pre>
</div>
<p>
Note that for each director class SWIG creates an unmanaged director class for making the callbacks. For example <tt>Base</tt> has <tt>SwigDirector_Base</tt> and <tt>SwigDirector_Base</tt>
is derived from <tt>Base</tt>.
Should a C# class be derived from <tt>Base</tt>, the underlying C++ <tt>SwigDirector_Base</tt> is created rather than <tt>Base</tt>.
The <tt>SwigDirector_Base</tt> class then implements all the virtual methods, redirecting calls up to managed code if the callback/delegate is non-zero.
The implementation of <tt>SwigDirector_Base::BaseBoolMethod</tt> shows this - the callback is made by invoking the <tt>swig_callbackBaseBoolMethod</tt> function pointer:
</p>
<div class="code">
<pre>
void SwigDirector_Base::BaseBoolMethod(Base const &amp;b, bool flag) {
void * jb = 0 ;
unsigned int jflag ;
if (!swig_callbackBaseBoolMethod) {
Base::BaseBoolMethod(b,flag);
return;
} else {
jb = (Base *) &amp;b;
jflag = flag;
swig_callbackBaseBoolMethod(jb, jflag);
}
}
</pre>
</div>
<H3><a name="CSharp_director_caveats"></a>19.6.3 Director caveats</H3>
<p>
There is a subtle gotcha with directors.
If default parameters are used, it is recommended to follow a pattern of always calling a single method in any C# derived class.
An example will clarify this and the reasoning behind the recommendation. Consider the following C++ class wrapped as a director class:
</p>
<div class="code">
<pre>
class Defaults {
public:
virtual ~Defaults();
virtual void DefaultMethod(int a=-100);
};
</pre>
</div>
<p>
Recall that C++ methods with default parameters generate overloaded methods for each defaulted parameter, so a C# derived class can be created
with two <tt>DefaultMethod</tt> override methods:
</p>
<div class="code">
<pre>
public class CSharpDefaults : Defaults
{
public override void DefaultMethod()
{
DefaultMethod(-100); // note C++ default value used
}
public override void DefaultMethod(int x)
{
}
}
</pre>
</div>
<p>
It may not be clear at first, but should a user intend to call <tt>CSharpDefaults.DefaultMethod()</tt> from C++, a call is actually made to <tt>CSharpDefaults.DefaultMethod(int)</tt>.
This is because the initial call is made in C++ and therefore the <tt>DefaultMethod(int)</tt> method will be called as is expected with C++ calls to methods with defaults,
with the default being set to -100.
The callback/delegate matching this method is of course the overloaded method <tt>DefaultMethod(int)</tt>.
However, a call from C# to <tt>CSharpDefaults.DefaultMethod()</tt> will of course call this exact method and in order for behaviour to be consistent with calls from C++, the implementation
should pass the call on to <tt>CSharpDefaults.DefaultMethod(int)</tt>using the C++ default value, as shown above.
</p>
<H2><a name="CSharp_multiple_modules"></a>19.7 Multiples modules</H2>
<p>
When using <a href="Modules.html">multiple modules</a> it is is possible to compile each SWIG generated wrapper
into a different assembly.
However, by default the generated code may not compile if
generated classes in one assembly use generated classes in another assembly.
The visibility of the
<tt>getCPtr()</tt> and pointer constructor generated from the <tt>csbody</tt> typemaps needs changing.
The default visibility is <tt>internal</tt> but it needs to be <tt>public</tt> for access from a different assembly.
Just changing 'internal' to 'public' in the typemap achieves this.
Two macros are available in <tt>csharp.swg</tt> to make this easier and using them is the preferred approach
over simply copying the typemaps and modifying as this is forward compatible with any changes in
the <tt>csbody</tt> typemap in future versions of SWIG.
The macros are for the proxy and typewrapper classes and can respectively be used to
to make the method and constructor public:
</p>
<div class="code">
<pre>
SWIG_CSBODY_PROXY(public, public, SWIGTYPE)
SWIG_CSBODY_TYPEWRAPPER(public, public, public, SWIGTYPE)
</pre>
</div>
<p>
Alternatively, instead of exposing these as public, consider
using the <tt>[assembly:InternalsVisibleTo("Name")]</tt> attribute available in the .NET framework when you
know which assemblies these can be exposed to.
Another approach would be to make these public, but also to hide them from intellisense by using
the <tt>[System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]</tt> attribute
if you don't want users to easily stumble upon these so called 'internal workings' of the wrappers.
</p>
<H2><a name="CSharp_typemap_examples"></a>19.8 C# Typemap examples</H2>
This section includes a few examples of typemaps. For more examples, you
might look at the files "<tt>csharp.swg</tt>" and "<tt>typemaps.i</tt>" in
the SWIG library.
<H3><a name="CSharp_memory_management_member_variables"></a>19.8.1 Memory management when returning references to member variables</H3>
<p>
This example shows how to prevent premature garbage collection of objects when the underlying C++ class returns a pointer or reference to a member variable.
The example is a direct equivalent to this <a href="Java.html#Java_memory_management_objects">Java equivalent</a>.
</p>
<p>
Consider the following C++ code:
</p>
<div class="code">
<pre>
struct Wheel {
int size;
Wheel(int sz) : size(sz) {}
};
class Bike {
Wheel wheel;
public:
Bike(int val) : wheel(val) {}
Wheel&amp; getWheel() { return wheel; }
};
</pre>
</div>
<p>
and the following usage from C# after running the code through SWIG:
</p>
<div class="code">
<pre>
Wheel wheel = new Bike(10).getWheel();
Console.WriteLine("wheel size: " + wheel.size);
// Simulate a garbage collection
System.GC.Collect();
System.GC.WaitForPendingFinalizers();
Console.WriteLine("wheel size: " + wheel.size);
</pre>
</div>
<p>
Don't be surprised that if the resulting output gives strange results such as...
</p>
<div class="shell">
<pre>
wheel size: 10
wheel size: 135019664
</pre>
</div>
<p>
What has happened here is the garbage collector has collected the <tt>Bike</tt> instance as it doesn't think it is needed any more.
The proxy instance, <tt>wheel</tt>, contains a reference to memory that was deleted when the <tt>Bike</tt> instance was collected.
In order to prevent the garbage collector from collecting the <tt>Bike</tt> instance a reference to the <tt>Bike</tt> must
be added to the <tt>wheel</tt> instance. You can do this by adding the reference when the <tt>getWheel()</tt> method
is called using the following typemaps.
</p>
<div class="code">
<pre>
%typemap(cscode) Wheel %{
// Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;
}
%}
// Add a C# reference to prevent premature garbage collection and resulting use
// of dangling C++ pointer. Intended for methods that return pointers or
// references to a member variable.
%typemap(csout, excode=SWIGEXCODE) Wheel&amp; getWheel {
IntPtr cPtr = $imcall;$excode
$csclassname ret = null;
if (cPtr != IntPtr.Zero) {
ret = new $csclassname(cPtr, $owner);
ret.addReference(this);
}
return ret;
}
</pre>
</div>
<p>
The code in the first typemap gets added to the <tt>Wheel</tt> proxy class.
The code in the second typemap constitutes the bulk of the code in the generated <tt>getWheel()</tt> function:
</p>
<div class="code">
<pre>
public class Wheel : IDisposable {
...
// Ensure that the GC doesn't collect any Bike instance set from C#
private Bike bikeReference;
internal void addReference(Bike bike) {
bikeReference = bike;
}
}
public class Bike : IDisposable {
...
public Wheel getWheel() {
IntPtr cPtr = examplePINVOKE.Bike_getWheel(swigCPtr);
Wheel ret = null;
if (cPtr != IntPtr.Zero) {
ret = new Wheel(cPtr, false);
ret.addReference(this);
}
return ret;
}
}
</pre>
</div>
<p>
Note the <tt>addReference</tt> call.
</p>
<H3><a name="CSharp_memory_management_objects"></a>19.8.2 Memory management for objects passed to the C++ layer</H3>
<p>
The example is a direct equivalent to this <a href="Java.html#Java_memory_management_objects">Java equivalent</a>.
Managing memory can be tricky when using C++ and C# proxy classes.
The previous example shows one such case and this example looks at memory management for a class passed to a C++ method which expects the object to remain in scope
after the function has returned. Consider the following two C++ classes:
</p>
<div class="code">
<pre>
struct Element {
int value;
Element(int val) : value(val) {}
};
class Container {
Element* element;
public:
Container() : element(0) {}
void setElement(Element* e) { element = e; }
Element* getElement() { return element; }
};
</pre>
</div>
<p>
and usage from C++
</p>
<div class="code">
<pre>
Container container;
Element element(20);
container.setElement(&amp;element);
cout &lt;&lt; "element.value: " &lt;&lt; container.getElement()-&gt;value &lt;&lt; endl;
</pre>
</div>
<p>
and more or less equivalent usage from C#
</p>
<div class="code">
<pre>
Container container = new Container();
Element element = new Element(20);
container.setElement(element);
</pre>
</div>
<p>
The C++ code will always print out 20, but the value printed out may not be this in the C# equivalent code.
In order to understand why, consider a garbage collection occuring...
</p>
<div class="code">
<pre>
Container container = new Container();
Element element = new Element(20);
container.setElement(element);
Console.WriteLine("element.value: " + container.getElement().value);
// Simulate a garbage collection
System.GC.Collect();
System.GC.WaitForPendingFinalizers();
Console.WriteLine("element.value: " + container.getElement().value);
</pre>
</div>
<p>
The temporary element created with <tt>new Element(20)</tt> could get garbage collected
which ultimately means the <tt>container</tt> variable is holding a dangling pointer, thereby printing out any old random value instead of the expected value of 20.
One solution is to add in the appropriate references in the C# layer...
</p>
<div class="code">
<pre>
public class Container : IDisposable {
...
// Ensure that the GC doesn't collect any Element set from C#
// as the underlying C++ class stores a shallow copy
private Element elementReference;
private HandleRef getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);
}
public void setElement(Element e) {
examplePINVOKE.Container_setElement(swigCPtr, getCPtrAndAddReference(e));
}
}
</pre>
</div>
<p>
The following typemaps will generate the desired code.
The 'csin' typemap matches the input parameter type for the <tt>setElement</tt> method.
The 'cscode' typemap simply adds in the specified code into the C# proxy class.
</p>
<div class="code">
<pre>
%typemap(csin) Element *e "getCPtrAndAddReference($csinput)"
%typemap(cscode) Container %{
// Ensure that the GC doesn't collect any Element set from C#
// as the underlying C++ class stores a shallow copy
private Element elementReference;
private HandleRef getCPtrAndAddReference(Element element) {
elementReference = element;
return Element.getCPtr(element);
}
%}
</pre>
</div>
<H3><a name="CSharp_date_marshalling"></a>19.8.3 Date marshalling using the csin typemap and associated attributes</H3>
<p>
The <a href="Java.html#Java_nan_exception_typemap">NaN Exception example</a> is a simple example of the "javain" typemap and its 'pre' attribute.
This example demonstrates how a C++ date class, say <tt>CDate</tt>, can be mapped onto the standard .NET date class,
<tt>System.DateTime</tt> by using the 'pre', 'post' and 'pgcppname' attributes of the "csin" typemap (the C# equivalent to the "javain" typemap).
The example is an equivalent to the <a href="Java.html#Java_date_marshalling">Java Date marshalling example</a>.
The idea is that the <tt>System.DateTime</tt> is used wherever the C++ API uses a <tt>CDate</tt>.
Let's assume the code being wrapped is as follows:
</p>
<div class="code">
<pre>
class CDate {
public:
CDate();
CDate(int year, int month, int day);
int getYear();
int getMonth();
int getDay();
...
};
struct Action {
static int doSomething(const CDate &amp;dateIn, CDate &amp;dateOut);
Action(const CDate &amp;date, CDate &amp;dateOut);
};
</pre>
</div>
<p>
Note that <tt>dateIn</tt> is const and therefore read only and <tt>dateOut</tt> is a non-const output type.
</p>
<p>
First let's look at the code that is generated by default, where the C# proxy class <tt>CDate</tt> is used in the proxy interface:
</p>
<div class="code">
<pre>
public class Action : IDisposable {
...
public Action(CDate dateIn, CDate dateOut)
: this(examplePINVOKE.new_Action(CDate.getCPtr(dateIn), CDate.getCPtr(dateOut)), true) {
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}
public int doSomething(CDate dateIn, CDate dateOut) {
int ret = examplePINVOKE.Action_doSomething(swigCPtr,
CDate.getCPtr(dateIn),
CDate.getCPtr(dateOut));
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
return ret;
}
}
</pre>
</div>
<p>
The <tt>CDate &amp;</tt> and <tt>const CDate &amp;</tt> C# code is generated from the following two default typemaps:
</p>
<div class="code">
<pre>
%typemap(cstype) SWIGTYPE &amp; "$csclassname"
%typemap(csin) SWIGTYPE &amp; "$csclassname.getCPtr($csinput)"
</pre>
</div>
<p>
where '$csclassname' is translated into the proxy class name, <tt>CDate</tt> and '$csinput' is translated into the name of the parameter, eg <tt>dateIn</tt>.
From C#, the intention is then to call into a modifed API with something like:
</p>
<div class="code">
<pre>
System.DateTime dateIn = new System.DateTime(2011, 4, 13);
System.DateTime dateOut = new System.DateTime();
// Note in calls below, dateIn remains unchanged and dateOut
// is set to a new value by the C++ call
Action action = new Action(dateIn, out dateOut);
dateIn = new System.DateTime(2012, 7, 14);
</pre>
</div>
<p>
To achieve this mapping, we need to alter the default code generation slightly so that at the C# layer,
a <tt>System.DateTime</tt> is converted into a <tt>CDate</tt>.
The intermediary layer will still take a pointer to the underlying <tt>CDate</tt> class.
The typemaps to achieve this are shown below.
</p>
<div class="code">
<pre>
%typemap(cstype) const CDate&amp; "System.DateTime"
%typemap(csin,
pre=" CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);"
) const CDate &amp;
"$csclassname.getCPtr(temp$csinput)"
%typemap(cstype) CDate&amp; "out System.DateTime"
%typemap(csin,
pre=" CDate temp$csinput = new CDate();",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
cshin="out $csinput"
) CDate &amp;
"$csclassname.getCPtr(temp$csinput)"
</pre>
</div>
<p>
The resulting generated proxy code in the <tt>Action</tt> class follows:
</p>
<div class="code">
<pre>
public class Action : IDisposable {
...
public int doSomething(System.DateTime dateIn, out System.DateTime dateOut) {
CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, dateIn.Day);
CDate tempdateOut = new CDate();
try {
int ret = examplePINVOKE.Action_doSomething(swigCPtr,
CDate.getCPtr(tempdateIn),
CDate.getCPtr(tempdateOut));
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
return ret;
} finally {
dateOut = new System.DateTime(tempdateOut.getYear(),
tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
}
}
static private IntPtr SwigConstructAction(System.DateTime dateIn, out System.DateTime dateOut) {
CDate tempdateIn = new CDate(dateIn.Year, dateIn.Month, dateIn.Day);
CDate tempdateOut = new CDate();
try {
return examplePINVOKE.new_Action(CDate.getCPtr(tempdateIn), CDate.getCPtr(tempdateOut));
} finally {
dateOut = new System.DateTime(tempdateOut.getYear(),
tempdateOut.getMonth(), tempdateOut.getDay(), 0, 0, 0);
}
}
public Action(System.DateTime dateIn, out System.DateTime dateOut)
: this(Action.SwigConstructAction(dateIn, out dateOut), true) {
if (examplePINVOKE.SWIGPendingException.Pending)
throw examplePINVOKE.SWIGPendingException.Retrieve();
}
}
</pre>
</div>
<p>
A few things to note:
</p>
<ul>
<li> The "cstype" typemap has changed the parameter type to <tt>System.DateTime</tt> instead of the default generated <tt>CDate</tt> proxy.
<li> The non-const <tt>CDate &amp;</tt> type is marshalled as a reference parameter in C# as the date cannot be explicitly set once the object has been created, so a new object is created instead.
<li> The code in the 'pre' attribute appears before the intermediary call (<tt>examplePINVOKE.new_Action</tt> / <tt>examplePINVOKE.Action_doSomething</tt>).
<li> The code in the 'post' attribute appears after the intermediary call.
<li> A try .. finally block is generated with the intermediary call in the try block and 'post' code in the finally block.
The alternative of just using a temporary variable for the return value from the intermediary call and the 'post' code being inserted before the
return statement is not possible given that the intermediary call and method return comes from a single source (the "csout" typemap).
<li> The temporary variables in the "csin" typemaps are called <tt>temp$csin</tt>, where "$csin" is replaced with the parameter name.
"$csin" is used to mangle the variable name so that more than one <tt>CDate &amp;</tt> type can be used as a parameter in a method, otherwise two or
more local variables with the same name would be generated.
<li> The use of the "csin" typemap causes a constructor helper function (<tt>SwigConstructAction</tt>) to be generated.
This allows C# code to be called before the intermediary call made in the constructor initialization list.
<li> The 'cshin' attribute is required for the <tt>SwigConstructAction</tt> constructor helper function so that the 2nd parameter is declared as <tt>out dateOut</tt> instead of just <tt>dateOut</tt>.
</ul>
<p>
So far we have considered the date as an input only and an output only type.
Now let's consider <tt>CDate *</tt> used as an input/output type. Consider the following C++ function which modifies the date passed in:
</p>
<div class="code">
<pre>
void addYears(CDate *pDate, int years) {
*pDate = CDate(pDate-&gt;getYear() + years, pDate-&gt;getMonth(), pDate-&gt;getDay());
}
</pre>
</div>
<p>
If usage of <tt>CDate *</tt> commonly follows this input/output pattern, usage from C# like the following
</p>
<div class="code">
<pre>
System.DateTime christmasEve = new System.DateTime(2000, 12, 24);
example.addYears(ref christmasEve, 10); // christmasEve now contains 2010-12-24
</pre>
</div>
<p>
will be possible with the following <tt>CDate *</tt> typemaps
</p>
<div class="code">
<pre>
%typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"
%typemap(csin,
pre=" CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
cshin="ref $csinput"
) CDate *
"$csclassname.getCPtr(temp$csinput)"
</pre>
</div>
<p>
Globals are wrapped by the module class and for a module called example, the typemaps result in the following code:
</p>
<div class="code">
<pre>
public class example {
public static void addYears(ref System.DateTime pDate, int years) {
CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day);
try {
examplePINVOKE.addYears(CDate.getCPtr(temppDate), years);
} finally {
pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
0, 0, 0);
}
}
...
}
</pre>
</div>
<p>
The following typemap is the same as the previous but demonstrates how a using block can be used for the temporary variable.
The only change to the previous typemap is the introduction of the 'terminator' attribute to terminate the <tt>using</tt> block.
The <tt>subtractYears</tt> method is nearly identical to the above <tt>addYears</tt> method.
</p>
<div class="code">
<pre>
%typemap(csin,
pre=" using (CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day)) {",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
terminator=" } // terminate temp$csinput using block",
cshin="ref $csinput"
) CDate *
"$csclassname.getCPtr(temp$csinput)"
void subtractYears(CDate *pDate, int years) {
*pDate = CDate(pDate-&gt;getYear() - years, pDate-&gt;getMonth(), pDate-&gt;getDay());
}
</pre>
</div>
<p>
The resulting generated code shows the termination of the <tt>using</tt> block:
</p>
<div class="code">
<pre>
public class example {
public static void subtractYears(ref System.DateTime pDate, int years) {
using (CDate temppDate = new CDate(pDate.Year, pDate.Month, pDate.Day)) {
try {
examplePINVOKE.subtractYears(CDate.getCPtr(temppDate), years);
} finally {
pDate = new System.DateTime(temppDate.getYear(), temppDate.getMonth(), temppDate.getDay(),
0, 0, 0);
}
} // terminate temppDate using block
}
...
}
</pre>
</div>
<H3><a name="CSharp_date_properties"></a>19.8.4 A date example demonstrating marshalling of C# properties</H3>
<p>
The previous section looked at converting a C++ date class to <tt>System.DateTime</tt> for parameters.
This section extends this idea so that the correct marshalling is obtained when wrapping C++ variables.
Consider the same <tt>CDate</tt> class from the previous section and a global variable:
</p>
<div class="code">
<pre>
CDate ImportantDate = CDate(1999, 12, 31);
</pre>
</div>
<p>
The aim is to use <tt>System.DateTime</tt> from C# when accessing this date as shown in the following usage where the module name is 'example':
</p>
<div class="code">
<pre>
example.ImportantDate = new System.DateTime(2000, 11, 22);
System.DateTime importantDate = example.ImportantDate;
Console.WriteLine("Important date: " + importantDate);
</pre>
</div>
<p>
When SWIG wraps a variable that is a class/struct/union, it is wrapped using a pointer to the type for the reasons given in <a href="SWIG.html#SWIG_structure_data_members">Stucture data members</a>.
The typemap type required is thus <tt>CDate *</tt>. Given that the previous section already designed <tt>CDate *</tt> typemaps, we'll use those same typemaps plus the 'csvarin' and 'csvarout' typemaps.
<div class="code">
<pre>
%typemap(cstype, out="System.DateTime") CDate * "ref System.DateTime"
%typemap(csin,
pre=" CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);",
post=" $csinput = new System.DateTime(temp$csinput.getYear(),"
" temp$csinput.getMonth(), temp$csinput.getDay(), 0, 0, 0);",
cshin="ref $csinput"
) CDate *
"$csclassname.getCPtr(temp$csinput)"
%typemap(csvarin, excode=SWIGEXCODE2) CDate * %{
/* csvarin typemap code */
set {
CDate temp$csinput = new CDate($csinput.Year, $csinput.Month, $csinput.Day);
$imcall;$excode
} %}
%typemap(csvarout, excode=SWIGEXCODE2) CDate * %{
/* csvarout typemap code */
get {
IntPtr cPtr = $imcall;
CDate tempDate = (cPtr == IntPtr.Zero) ? null : new CDate(cPtr, $owner);$excode
return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),
0, 0, 0);
} %}
</pre>
</div>
<p>
For a module called example, the typemaps result in the following code:
</p>
<div class="code">
<pre>
public class example {
public static System.DateTime ImportantDate {
/* csvarin typemap code */
set {
CDate tempvalue = new CDate(value.Year, value.Month, value.Day);
examplePINVOKE.ImportantDate_set(CDate.getCPtr(tempvalue));
}
/* csvarout typemap code */
get {
IntPtr cPtr = examplePINVOKE.ImportantDate_get();
CDate tempDate = (cPtr == IntPtr.Zero) ? null : new CDate(cPtr, false);
return new System.DateTime(tempDate.getYear(), tempDate.getMonth(), tempDate.getDay(),
0, 0, 0);
}
}
...
}
</pre>
</div>
<p>
Some points to note:
</p>
<ul>
<li>The property set comes from the 'csvarin' typemap and the property get comes from the 'csvarout' typemap.
<li>The type used for the property comes from the 'cstype' typemap. This particular example has the 'out' attribute set in the typemap and as it is specified, it is used in preference to the type in the typemap body. This is because the type in the 'out' attribute can never include modifiers such as 'ref', thereby avoiding code such as <tt>public static ref System.DateTime ImportantDate { ...</tt>, which would of course not compile.
<li>The <tt>$excode</tt> special variable expands to nothing as there are no exception handlers specified in any of the unmanaged code typemaps (in fact the marshalling was done using the default unmanaged code typemaps.)
<li>The <tt>$imcall</tt> typemap expands to the appropriate intermediary method call in the <tt>examplePINVOKE</tt> class.
<li>The <tt>$csinput</tt> special variable in the 'csin' typemap always expands to <tt>value</tt> for properties. In this case <tt>$csclassname.getCPtr(temp$csinput)</tt> expands to <tt>CDate.getCPtr(tempvalue)</tt>.
<li>The 'csin' typemap has 'pre', 'post' and 'cshin' attributes, and these are all ignored in the property set. The code in these attributes must instead be replicated within the 'csvarin' typemap. The line creating the <tt>temp$csinput</tt> variable is such an example; it is identical to what is in the 'pre' attribute.
</ul>
<H3><a name="CSharp_partial_classes"></a>19.8.5 Turning wrapped classes into partial classes</H3>
<p>
C# supports the notion of partial classes whereby a class definition can be split into more than one file.
It is possible to turn the wrapped C++ class into a partial C# class using the <tt>csclassmodifiers</tt> typemap.
Consider a C++ class called <tt>ExtendMe</tt>:
</p>
<div class="code">
<pre>
class ExtendMe {
public:
int Part1() { return 1; }
};
</pre>
</div>
<p>
The default C# proxy class generated is:
</p>
<div class="code">
<pre>
public class ExtendMe : IDisposable {
...
public int Part1() {
...
}
}
</pre>
</div>
<p>
The default csclassmodifiers typemap shipped with SWIG is
</p>
<div class="code">
<pre>
%typemap(csclassmodifiers) SWIGTYPE "public class"
</pre>
</div>
<p>
Note that the type used is the special catch all type <tt>SWIGTYPE</tt>.
If instead we use the following typemap to override this for just the <tt>ExtendMe</tt> class:
</p>
<div class="code">
<pre>
%typemap(csclassmodifiers) ExtendMe "public partial class"
</pre>
</div>
<p>
The C# proxy class becomes a partial class:
</p>
<div class="code">
<pre>
public partial class ExtendMe : IDisposable {
...
public int Part1() {
...
}
}
</pre>
</div>
<p>
You can then of course declare another part of the partial class elsewhere, for example:
</p>
<div class="code">
<pre>
public partial class ExtendMe : IDisposable {
public int Part2() {
return 2;
}
}
</pre>
</div>
<p>
and compile the following code:
</p>
<div class="code">
<pre>
ExtendMe em = new ExtendMe();
Console.WriteLine("part1: {0}", em.Part1());
Console.WriteLine("part2: {0}", em.Part2());
</pre>
</div>
<p>
demonstrating that the class contains methods calling both unmanaged code - <tt>Part1()</tt> and managed code - <tt>Part2()</tt>.
The following example is an alternative approach to adding managed code to the generated proxy class.
</p>
<H3><a name="CSharp_extending_proxy_class"></a>19.8.6 Extending proxy classes with additional C# code</H3>
<p>
The previous example showed how to use partial classes to add functionality to a generated C# proxy class.
It is also possible to extend a wrapped struct/class with C/C++ code by using the <a href="SWIGPlus.html#SWIGPlus_class_extension">%extend directive</a>.
A third approach is to add some C# methods into the generated proxy class with the <tt>cscode</tt> typemap.
If we declare the following typemap before SWIG parses the <tt>ExtendMe</tt> class used in the previous example
</p>
<div class="code">
<pre>
%typemap(cscode) ExtendMe %{
public int Part3() {
return 3;
}
%}
</pre>
</div>
<p>
The generated C# proxy class will instead be:
</p>
<div class="code">
<pre>
public class ExtendMe : IDisposable {
...
public int Part3() {
return 3;
}
public int Part1() {
...
}
}
</pre>
</div>
<H3><a name="CSharp_enum_underlying_type"></a>19.8.7 Underlying type for enums</H3>
<P>
C# enums use int as the underlying type for each enum item.
If you wish to change the underlying type to something else, then use the <tt>csbase</tt> typemap.
For example when your C++ code uses a value larget than int, this is necessary as the C# compiler will not compile values which are too large to fit into an int.
Here is an example:
</p>
<div class="code">
<pre>
%typemap(csbase) BigNumbers "uint"
%inline %{
enum BigNumbers { big=0x80000000, bigger };
%}
</pre>
</div>
<p>
The generated enum will then use the given underlying type and compile correctly:
</p>
<div class="code">
<pre>
public enum BigNumbers : uint {
big = 0x80000000,
bigger
}
</pre>
</div>
</body>
</html>
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.