#data section:
S = 30
D = 100
decisions=['a','c','d','e']
events = ['b','f','g','h']
tree = {
'a':('b','e'),
'b':(('c',0.7),('d',0.3)),
'c':('f',90-S),
'd':('g',90-S),
'e':('h',90),
'f':((800-D-S,.143),(-D-S,.857)),
'g':((800-D-S,.5),(-D-S,.5)),
'h':((800-D,.25),(-D,.75))}
tree_root='a'
from pymprog import *
beginModel("dectree")
verbose(True)
x = var(decisions, 'x', bounds = (None, None))
y = var(events, 'y', bounds = (None, None))
#print "x['a']<=None:", x['a'] <= None
def vnode(node):
if node not in tree:
return node #assume a number
return (y[node] if node in events else x[node])
minimize(sum(x[i] for i in decisions),'forced')
decst = {}
for i in decisions:
decst[i] = st([ 0 <= x[i] - vnode(j)
for j in tree[i]], 'dec_node[%s]'%i)
st([y[i] == sum(j[1]*vnode(j[0]) for j in tree[i])
for i in events], 'evt_nodes')
solve()
print status()
for t in x: print x[t]
for t in y: print y[t]
print x[tree_root].primal
print "EVSI =", evaluate(y['b'] - x['e']+S)
def trace_dec(cnode):
#print "tracing node", cnode
if cnode in decisions:
k = 0
for j in tree[cnode]:
#print "branch",j,decst[cnode][k].dual
if decst[cnode][k].dual:
print "%s -> %s"%(cnode,str(j))
trace_dec(j)
k += 1
elif cnode in events:
for j in tree[cnode]:
trace_dec(j[0])
trace_dec(tree_root)