From: peter <com...@ya...> - 2015-07-09 16:41:52
|
hi, my code was working fine, but now i cant figure out what went wrong. any ideas? the code is supposed to plot a timeseries which it does and overlay it with another that is partially defined the input file is contructed like this: the first line is just for information purposes. after that: the first row is a growing number (the x value), the second is the timeseries and the third is the partially defined second timeseries this is the code, after the code is a example input file. the code is also accessible via this paste service: https://dpaste.de/5ZrX it got a nice python code formatter. 1. def plotTimeSeriesAndSAX(inputfile_tmp, verbose=False): 2. 3. if verbose: 4. print "plotTimeSeriesAndSAX()" 5. print "\tinputfile:", inputfile_tmp 6. print "\toutputfile: %s.png" % inputfile_tmp 7. 8. inputfile = open(inputfile_tmp, "r"); 9. 10. 11. # this holds my timeseries 12. x = [] 13. y = [] 14. 15. # this holds my "pattern" 16. pattern_x_values = [] 17. pattern_y_values = [] 18. 19. # these are for temporary use only, hold the current pattern data 20. tmp_x = [] 21. tmp_y = [] 22. 23. 24. # remove pattern/sax string, sax_string_with_Z from the datafile, only used as text in the plot 25. first_line = inputfile.readline() 26. pattern, sax, sax_string_with_Z = first_line.split() 27. 28. 29. 30. 31. for line in inputfile.readlines(): 32. 33. data = line.split() 34. x_data = data[0] 35. y_data = data[1] 36. 37. #if there is a third line (pattern at this position) 38. if len(data) == 3: 39. y2_data = data[2] 40. tmp_y.append(y2_data) 41. tmp_x.append(x_data) 42. else: 43. # if the pattern ends, add it to pattern_x/y_value and clear the tmp list 44. if len(tmp_x) != 0: 45. pattern_x_values.append(tmp_x) 46. pattern_y_values.append(tmp_y) 47. tmp_x = [] 48. tmp_y = [] 49. 50. 51. x.append(x_data) 52. y.append(y_data) 53. 54. #if pattern == "ccd": 55. # print "pattern x_values:", pattern_x_values 56. # print "pattern y_values:", pattern_y_values 57. if verbose: 58. print "\ttimeseries y value", y 59. print "pattern x_values:", pattern_x_values 60. print "pattern y_values:", pattern_y_values 61. 62. 63. 64. colors = ["red", "magenta", "mediumblue", "darkorchid", "grey"] 65. #linestyle = ["-", "--"] 66. 67. # without this, the second plot contains the first and the second 68. # the third plot contains: the first, second and third 69. plot.clf() 70. 71. # plot all my patterns into the plot 72. for s in range(0,len(pattern_x_values)): 73. #if verbose: 74. # print "\tpattern x value:", pattern_x_values[s] 75. # print "\tpattern y value:", pattern_y_values[s] 76. 77. plot.plot(pattern_x_values[s], pattern_y_values[s], colors[1]) 78. 79. 80. #plot.plot(x_all[0], y_all[0]) 81. 82. 83. import matplotlib.patches as mpatches 84. 85. 86. #red_patch = mpatches.Patch(color='red', label='The red data') 87. 88. from time import gmtime, strftime 89. current_date = strftime("%Y-%m-%d%H:%M:%S", gmtime()) 90. 91. 92. fig = plot.figure() 93. 94. 95. fig.text(0, 0, 'bottom-left corner') 96. fig.text(0, 1, current_date, ha='left', va='top') 97. mytext = "pattern: %ssax: %ssax with Z: %s" % (pattern, sax, sax_string_with_Z) 98. fig.text(1,1, mytext ) 99. 100. 101. # add the original timeseries to the plot 102. plot.plot(x,y, "forestgreen") 103. #if pattern == "ccd": 104. # plot.show() 105. 106. 107. directory, filename = os.path.split(inputfile_tmp) 108. 109. plot.savefig(os.path.join(directory, "plots/%s.png" % filename))#, bbox_inches='tight') 110. # remove the last figure from memory 111. #plot.close() 112. 113. 114. 115. 116. 117. 118. 119. 120. #input: 121. dee ccccccccccaacddeedcccccccdc ZZZZZZZZZZZZZZdeeZZZZZZZZZZ 122. 1 -0.015920084 123. 2 -0.044660769 124. 3 -0.044660769 125. 4 -0.092561907 126. 5 0.012820599 127. 6 -0.015920084 128. 7 0.012820599 129. 8 -0.054240996 130. 9 0.031981054 131. 10 0.031981054 132. 11 -0.025500313 133. 12 -0.044660769 134. 13 0.012820599 135. 14 -0.025500313 136. 15 0.0032403709 137. 16 -0.006339857 138. 17 0.0032403709 139. 18 -0.025500313 140. 19 0.031981054 141. 20 0.031981054 142. 21 0.031981054 143. 22 0.022400826 144. 23 0.031981054 145. 24 0.05114151 146. 25 0.079882193 147. 26 0.05114151 148. 27 0.05114151 149. 28 0.05114151 150. 29 0.099042646 151. 30 0.060721738 152. 31 -0.015920084 153. 32 -0.054240996 154. 33 0.23316584 155. 34 0.26190652 156. 35 0.37686926 157. 36 0.12778333 158. 37 -0.044660769 159. 38 -0.26500601 160. 39 -0.41828965 161. 40 -0.38954897 162. 41 -0.26500601 163. 42 -0.14046305 164. 43 -0.073401452 165. 44 -0.12130259 166. 45 -0.082981679 167. 46 -0.14046305 168. 47 -0.054240996 169. 48 -0.082981679 170. 49 -0.015920084 171. 50 -0.073401452 172. 51 -0.015920084 173. 52 0.10862288 174. 53 1.1816084 175. 54 -1.3379915 176. 55 -4.6335899 177. 56 -6.74124 178. 57 -4.7772933 179. 58 -3.4839626 180. 59 -2.075669 181. 60 -1.0984858 182. 61 -0.37038851 183. 62 -0.063821223 184. 63 0.11820311 185. 64 0.13736356 186. 65 0.15652401 187. 66 0.11820311 188. 67 0.32896812 189. 68 0.27148675 190. 69 0.30022744 191. 70 0.31938789 192. 71 0.3577088 0.5449999999999999 193. 72 0.40560994 0.5449999999999999 194. 73 0.44393085 0.5449999999999999 195. 74 0.49183198 0.5449999999999999 196. 75 0.67385632 0.5449999999999999 197. 76 0.79839928 0.84 198. 77 0.9995841 0.84 199. 78 1.1528677 0.84 200. 79 1.4115338 0.84 201. 80 1.5552373 0.84 202. 81 1.7468418 0.84 203. 82 1.7755825 0.84 204. 83 1.7276813 0.84 205. 84 1.4115338 0.84 206. 85 1.0858061 0.84 207. 86 0.65469586 208. 87 0.43435063 209. 88 0.21400538 210. 89 0.14694379 211. 90 0.089462421 212. 91 0.070301966 213. 92 0.031981054 214. 93 0.05114151 215. 94 0.070301966 216. 95 0.13736356 217. 96 0.079882193 218. 97 0.12778333 219. 98 0.15652401 220. 99 0.16610425 221. 100 0.13736356 222. 101 0.13736356 223. 102 0.089462421 224. 103 0.2523263 225. 104 0.21400538 226. 105 0.22358561 227. 106 0.1852647 228. 107 0.19484493 229. 108 0.1852647 230. 109 0.16610425 231. 110 0.13736356 232. 111 0.15652401 233. 112 0.14694379 234. 113 0.16610425 235. 114 0.099042646 236. 115 0.12778333 237. 116 0.13736356 238. 117 0.089462421 239. 118 0.079882193 240. 119 0.089462421 241. 120 0.041561282 242. 121 0.041561282 243. 122 0.079882193 244. 123 0.11820311 245. 124 0.099042646 246. 125 0.089462421 247. 126 0.05114151 248. 127 0.17568447 249. 128 0.30022744 250. 129 0.32896812 251. 130 0.42477039 252. 131 0.17568447 253. 132 0.022400826 254. 133 -0.20752464 255. 134 -0.24584556 256. 135 -0.24584556 |
From: peter <com...@ya...> - 2015-07-09 16:49:32
|
On 07/09/2015 06:40 PM, peter wrote: > hi, > > my code was working fine, but now i cant figure out what went wrong. > any ideas? > > the code is supposed to plot a timeseries which it does and overlay it > with another that is partially defined > the input file is contructed like this: > the first line is just for information purposes. > after that: > the first row is a growing number (the x value), the second is the > timeseries and the third is the partially defined second timeseries > > this is the code, after the code is a example input file. > the code is also accessible via this paste service: > https://dpaste.de/5ZrX it got a nice python code formatter. > ups, the last mail had a leading number from dpaste, this is the code without: def plotTimeSeriesAndSAX(inputfile_tmp, verbose=False): if verbose: print "plotTimeSeriesAndSAX()" print "\tinputfile:", inputfile_tmp print "\toutputfile: %s.png" % inputfile_tmp inputfile = open(inputfile_tmp, "r"); # this holds my timeseries x = [] y = [] # this holds my "pattern" pattern_x_values = [] pattern_y_values = [] # these are for temporary use only, hold the current pattern data tmp_x = [] tmp_y = [] # remove pattern/sax string, sax_string_with_Z from the datafile, only used as text in the plot first_line = inputfile.readline() pattern, sax, sax_string_with_Z = first_line.split() for line in inputfile.readlines(): data = line.split() x_data = data[0] y_data = data[1] #if there is a third line (pattern at this position) if len(data) == 3: y2_data = data[2] tmp_y.append(y2_data) tmp_x.append(x_data) else: # if the pattern ends, add it to pattern_x/y_value and clear the tmp list if len(tmp_x) != 0: pattern_x_values.append(tmp_x) pattern_y_values.append(tmp_y) tmp_x = [] tmp_y = [] x.append(x_data) y.append(y_data) #if pattern == "ccd": # print "pattern x_values:", pattern_x_values # print "pattern y_values:", pattern_y_values if verbose: print "\ttimeseries y value", y print "pattern x_values:", pattern_x_values print "pattern y_values:", pattern_y_values colors = ["red", "magenta", "mediumblue", "darkorchid", "grey"] #linestyle = ["-", "--"] # without this, the second plot contains the first and the second # the third plot contains: the first, second and third plot.clf() # plot all my patterns into the plot for s in range(0,len(pattern_x_values)): #if verbose: # print "\tpattern x value:", pattern_x_values[s] # print "\tpattern y value:", pattern_y_values[s] plot.plot(pattern_x_values[s], pattern_y_values[s], colors[1]) #plot.plot(x_all[0], y_all[0]) import matplotlib.patches as mpatches #red_patch = mpatches.Patch(color='red', label='The red data') from time import gmtime, strftime current_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) fig = plot.figure() fig.text(0, 0, 'bottom-left corner') fig.text(0, 1, current_date, ha='left', va='top') mytext = "pattern: %s sax: %s sax with Z: %s" % (pattern, sax, sax_string_with_Z) fig.text(1,1, mytext ) # add the original timeseries to the plot plot.plot(x,y, "forestgreen") #if pattern == "ccd": # plot.show() directory, filename = os.path.split(inputfile_tmp) plot.savefig(os.path.join(directory, "plots/%s.png" % filename))#, bbox_inches='tight') # remove the last figure from memory #plot.close() dee ccccccccccaacddeedcccccccdc ZZZZZZZZZZZZZZdeeZZZZZZZZZZ 1 -0.015920084 2 -0.044660769 3 -0.044660769 4 -0.092561907 5 0.012820599 6 -0.015920084 7 0.012820599 8 -0.054240996 9 0.031981054 10 0.031981054 11 -0.025500313 12 -0.044660769 13 0.012820599 14 -0.025500313 15 0.0032403709 16 -0.006339857 17 0.0032403709 18 -0.025500313 19 0.031981054 20 0.031981054 21 0.031981054 22 0.022400826 23 0.031981054 24 0.05114151 25 0.079882193 26 0.05114151 27 0.05114151 28 0.05114151 29 0.099042646 30 0.060721738 31 -0.015920084 32 -0.054240996 33 0.23316584 34 0.26190652 35 0.37686926 36 0.12778333 37 -0.044660769 38 -0.26500601 39 -0.41828965 40 -0.38954897 41 -0.26500601 42 -0.14046305 43 -0.073401452 44 -0.12130259 45 -0.082981679 46 -0.14046305 47 -0.054240996 48 -0.082981679 49 -0.015920084 50 -0.073401452 51 -0.015920084 52 0.10862288 53 1.1816084 54 -1.3379915 55 -4.6335899 56 -6.74124 57 -4.7772933 58 -3.4839626 59 -2.075669 60 -1.0984858 61 -0.37038851 62 -0.063821223 63 0.11820311 64 0.13736356 65 0.15652401 66 0.11820311 67 0.32896812 68 0.27148675 69 0.30022744 70 0.31938789 71 0.3577088 0.5449999999999999 72 0.40560994 0.5449999999999999 73 0.44393085 0.5449999999999999 74 0.49183198 0.5449999999999999 75 0.67385632 0.5449999999999999 76 0.79839928 0.84 77 0.9995841 0.84 78 1.1528677 0.84 79 1.4115338 0.84 80 1.5552373 0.84 81 1.7468418 0.84 82 1.7755825 0.84 83 1.7276813 0.84 84 1.4115338 0.84 85 1.0858061 0.84 86 0.65469586 87 0.43435063 88 0.21400538 89 0.14694379 90 0.089462421 91 0.070301966 92 0.031981054 93 0.05114151 94 0.070301966 95 0.13736356 96 0.079882193 97 0.12778333 98 0.15652401 99 0.16610425 100 0.13736356 101 0.13736356 102 0.089462421 103 0.2523263 104 0.21400538 105 0.22358561 106 0.1852647 107 0.19484493 108 0.1852647 109 0.16610425 110 0.13736356 111 0.15652401 112 0.14694379 113 0.16610425 114 0.099042646 115 0.12778333 116 0.13736356 117 0.089462421 118 0.079882193 119 0.089462421 120 0.041561282 121 0.041561282 122 0.079882193 123 0.11820311 124 0.099042646 125 0.089462421 126 0.05114151 127 0.17568447 128 0.30022744 129 0.32896812 130 0.42477039 131 0.17568447 132 0.022400826 133 -0.20752464 134 -0.24584556 135 -0.24584556 |
From: Sterling S. <sm...@fu...> - 2015-07-09 16:50:46
|
Can you be more specific about the problem you are having? -Sterling On Jul 9, 2015, at 9:40AM, peter <com...@ya...> wrote: > hi, > > my code was working fine, but now i cant figure out what went wrong. > any ideas? > > the code is supposed to plot a timeseries which it does and overlay it with another that is partially defined > the input file is contructed like this: > the first line is just for information purposes. > after that: > the first row is a growing number (the x value), the second is the timeseries and the third is the partially defined second timeseries > > this is the code, after the code is a example input file. > the code is also accessible via this paste service: https://dpaste.de/5ZrX it got a nice python code formatter. > > • def plotTimeSeriesAndSAX(inputfile_tmp, verbose=False): > • > • if verbose: > • print "plotTimeSeriesAndSAX()" > • print "\tinputfile:", inputfile_tmp > • print "\toutputfile: %s.png" % inputfile_tmp > • > • inputfile = open(inputfile_tmp, "r"); > • > • > • # this holds my timeseries > • x = [] > • y = [] > • > • # this holds my "pattern" > • pattern_x_values = [] > • pattern_y_values = [] > • > • # these are for temporary use only, hold the current pattern data > • tmp_x = [] > • tmp_y = [] > • > • > • # remove pattern/sax string, sax_string_with_Z from the datafile, only used as text in the plot > • first_line = inputfile.readline() > • pattern, sax, sax_string_with_Z = first_line.split() > • > • > • > • > • for line in inputfile.readlines(): > • > • data = line.split() > • x_data = data[0] > • y_data = data[1] > • > • #if there is a third line (pattern at this position) > • if len(data) == 3: > • y2_data = data[2] > • tmp_y.append(y2_data) > • tmp_x.append(x_data) > • else: > • # if the pattern ends, add it to pattern_x/y_value and clear the tmp list > • if len(tmp_x) != 0: > • pattern_x_values.append(tmp_x) > • pattern_y_values.append(tmp_y) > • tmp_x = [] > • tmp_y = [] > • > • > • x.append(x_data) > • y.append(y_data) > • > • #if pattern == "ccd": > • # print "pattern x_values:", pattern_x_values > • # print "pattern y_values:", pattern_y_values > • if verbose: > • print "\ttimeseries y value", y > • print "pattern x_values:", pattern_x_values > • print "pattern y_values:", pattern_y_values > • > • > • > • colors = ["red", "magenta", "mediumblue", "darkorchid", "grey"] > • #linestyle = ["-", "--"] > • > • # without this, the second plot contains the first and the second > • # the third plot contains: the first, second and third > • plot.clf() > • > • # plot all my patterns into the plot > • for s in range(0,len(pattern_x_values)): > • #if verbose: > • # print "\tpattern x value:", pattern_x_values[s] > • # print "\tpattern y value:", pattern_y_values[s] > • > • plot.plot(pattern_x_values[s], pattern_y_values[s], colors[1]) > • > • > • #plot.plot(x_all[0], y_all[0]) > • > • > • import matplotlib.patches as mpatches > • > • > • #red_patch = mpatches.Patch(color='red', label='The red data') > • > • from time import gmtime, strftime > • current_date = strftime("%Y-%m-%d %H:%M:%S", gmtime()) > • > • > • fig = plot.figure() > • > • > • fig.text(0, 0, 'bottom-left corner') > • fig.text(0, 1, current_date, ha='left', va='top') > • mytext = "pattern: %s sax: %s sax with Z: %s" % (pattern, sax, sax_string_with_Z) > • fig.text(1,1, mytext ) > • > • > • # add the original timeseries to the plot > • plot.plot(x,y, "forestgreen") > • #if pattern == "ccd": > • # plot.show() > • > • > • directory, filename = os.path.split(inputfile_tmp) > • > • plot.savefig(os.path.join(directory, "plots/%s.png" % filename))#, bbox_inches='tight') > • # remove the last figure from memory > • #plot.close() > • > • > • > • > • > • > • > • > • #input: > • dee ccccccccccaacddeedcccccccdc ZZZZZZZZZZZZZZdeeZZZZZZZZZZ > • 1 -0.015920084 > • 2 -0.044660769 > • 3 -0.044660769 > • 4 -0.092561907 > • 5 0.012820599 > • 6 -0.015920084 > • 7 0.012820599 > • 8 -0.054240996 > • 9 0.031981054 > • 10 0.031981054 > • 11 -0.025500313 > • 12 -0.044660769 > • 13 0.012820599 > • 14 -0.025500313 > • 15 0.0032403709 > • 16 -0.006339857 > • 17 0.0032403709 > • 18 -0.025500313 > • 19 0.031981054 > • 20 0.031981054 > • 21 0.031981054 > • 22 0.022400826 > • 23 0.031981054 > • 24 0.05114151 > • 25 0.079882193 > • 26 0.05114151 > • 27 0.05114151 > • 28 0.05114151 > • 29 0.099042646 > • 30 0.060721738 > • 31 -0.015920084 > • 32 -0.054240996 > • 33 0.23316584 > • 34 0.26190652 > • 35 0.37686926 > • 36 0.12778333 > • 37 -0.044660769 > • 38 -0.26500601 > • 39 -0.41828965 > • 40 -0.38954897 > • 41 -0.26500601 > • 42 -0.14046305 > • 43 -0.073401452 > • 44 -0.12130259 > • 45 -0.082981679 > • 46 -0.14046305 > • 47 -0.054240996 > • 48 -0.082981679 > • 49 -0.015920084 > • 50 -0.073401452 > • 51 -0.015920084 > • 52 0.10862288 > • 53 1.1816084 > • 54 -1.3379915 > • 55 -4.6335899 > • 56 -6.74124 > • 57 -4.7772933 > • 58 -3.4839626 > • 59 -2.075669 > • 60 -1.0984858 > • 61 -0.37038851 > • 62 -0.063821223 > • 63 0.11820311 > • 64 0.13736356 > • 65 0.15652401 > • 66 0.11820311 > • 67 0.32896812 > • 68 0.27148675 > • 69 0.30022744 > • 70 0.31938789 > • 71 0.3577088 0.5449999999999999 > • 72 0.40560994 0.5449999999999999 > • 73 0.44393085 0.5449999999999999 > • 74 0.49183198 0.5449999999999999 > • 75 0.67385632 0.5449999999999999 > • 76 0.79839928 0.84 > • 77 0.9995841 0.84 > • 78 1.1528677 0.84 > • 79 1.4115338 0.84 > • 80 1.5552373 0.84 > • 81 1.7468418 0.84 > • 82 1.7755825 0.84 > • 83 1.7276813 0.84 > • 84 1.4115338 0.84 > • 85 1.0858061 0.84 > • 86 0.65469586 > • 87 0.43435063 > • 88 0.21400538 > • 89 0.14694379 > • 90 0.089462421 > • 91 0.070301966 > • 92 0.031981054 > • 93 0.05114151 > • 94 0.070301966 > • 95 0.13736356 > • 96 0.079882193 > • 97 0.12778333 > • 98 0.15652401 > • 99 0.16610425 > • 100 0.13736356 > • 101 0.13736356 > • 102 0.089462421 > • 103 0.2523263 > • 104 0.21400538 > • 105 0.22358561 > • 106 0.1852647 > • 107 0.19484493 > • 108 0.1852647 > • 109 0.16610425 > • 110 0.13736356 > • 111 0.15652401 > • 112 0.14694379 > • 113 0.16610425 > • 114 0.099042646 > • 115 0.12778333 > • 116 0.13736356 > • 117 0.089462421 > • 118 0.079882193 > • 119 0.089462421 > • 120 0.041561282 > • 121 0.041561282 > • 122 0.079882193 > • 123 0.11820311 > • 124 0.099042646 > • 125 0.089462421 > • 126 0.05114151 > • 127 0.17568447 > • 128 0.30022744 > • 129 0.32896812 > • 130 0.42477039 > • 131 0.17568447 > • 132 0.022400826 > • 133 -0.20752464 > • 134 -0.24584556 > • 135 -0.24584556 > > > > ------------------------------------------------------------------------------ > Don't Limit Your Business. Reach for the Cloud. > GigeNET's Cloud Solutions provide you with the tools and support that > you need to offload your IT needs and focus on growing your business. > Configured For All Businesses. Start Your Cloud Today. > https://www.gigenetcloud.com/_______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users |